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ABSTRACT  

The aim of this paper is the introduction of a new concept that concerned the analysis of a 

large class of distributed parabolic systems. It is the general concept of gradient remediability. 

More precisely, we study with respect to the gradient observation, the existence of an input 

operator (gradient efficient actuators) ensuring the compensation of known or unknown 

disturbances acting on the considered system. Then, we introduce and we characterize the 

notions of exact and weak gradient remediability and their relationship with the notions of 

exact and weak gradient controllability. Main properties concerning the notion of gradient 

efficient actuators are considered. The minimum energy problem is studies, and we show how 

to find the optimal control, which compensates the disturbance of the system. Approximations 

and numerical simulations are also presented.   

Keywords: actuators efficient; disturbance; gradient; parabolic systems; remediability; 

sensors. 
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1. INTRODUCTION 

Various real problems can be formulated within certain concepts of distributed systems 

analysis. These concepts consist of a set of notions as controllability, detectability, 

observability, remediability…, which enable a better knowledge and understanding of the 

system to be obtained. These concepts have been studies at different degrees (exact, weak, 

extended). Systems analysis can be done from a purely theoretical viewpoint [1,2]. However, 

the study may be also become concrete, in some sense, by using the structures of actuators 

and sensors. Thus, one can study the different concepts of controllability via actuators 

structures [3-5] or the different concepts of observability via sensors structures [6-8].  

An extension of these concepts that is very important in practical applications is that of 

gradient controllability [9], gradient detectability [10] and gradient observability [11-13]. 

These concepts are of great interest from a more practical and control point of view since 

there exist systems that cannot be controllable but gradient controllable or that cannot be 

observable but gradient observable or that cannot be detectable but gradient detectable and 

they provide a means to deal with some problems from the real world, for example in the 

thermic isolation problem it may be that the control is only required to vanish the 

temperature-gradient before crossing the wall.  

Hence, with the same preoccupation, we introduce in this paper, a new concept that is gradient 

remediability of distributed parabolic systems. We recall that the notion of remediability 

consists in studying the existence of a convenient input operator (efficient actuators), ensuring 

the remediability of any disturbance acting in the considered systems. This problem is 

particularly motivated by pollution problems and so called space compensation or 

remediability problem. The notions of remediability and efficient actuators are introduced and 

studied first for discrete systems and there for continuous systems of a finite time horizon and 

for other situations (regional and asymptotic cases, internal or boundary actions of 

disturbances) [14-16].  

This paper is organized as follows: In the second paragraph, we start by presenting the 

notations and some preliminary material. After, we recall the notions of exact and weak 

gradient controllability. In the third paragraph, we introduce and we characterize the notions 
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of exact and weak gradient remadiability. We show how to find an input operator (actuators) 

with respect to the output (gradient observation) that ensures the gradient remediability of a 

disturbed parabolic system. By analogy with the relation between the remediability and the 

controllability examined in the finite time case, it is then natural to study, in the paragraph 4, 

the relationship between the gradient remediability and the gradient controllability. We show  

that the gradient remediability is weaker and more supple than the gradient controllability of 

the parabolic systems, that is to say, if any parabolic systems are gradient controllable, then it 

is gradient remediable. The fifth paragraph recall the notion of gradient strategic actuators and 

we give a characterization of gradient remediability which shows that the gradient 

remediability of any system may depend on the structure of the actuators and sensors. Then 

we introduce and we characterize the notion of gradient efficient actuators. In paragraph 6, 

using an extension of Hilbert Uniqueness Method (H.U.M), we examine the problem of 

gradient remediability with minimum energy, and we give the optimal control that 

compensate an arbitrary disturbance. In the last paragraph, approximations and numerical 

results are presented. 

 

2. CONSIDERED SYSTEM   

Let   be an open and bounded regular subset of nIR  3,2,1n with a smooth 

boundary  . For 0T , we denoted by  TQ ,0 ,  T,0 . Consider a 

parabolic system defined by 

       

   
 























0,

0,

,,,

0

ty

xyxy

QtxftButxyAtx
t

y



                  (1) 

Where A  is a second order linear differential operator with compact resolvent and which 

generates a strongly continuous semi-group    0ttS on the Hilbert space  2L  .    0
*

ttS  

is considered for the adjoint semi-groupe of    0ttS  .  

   UTLuXUB ;,0,, 2L  where U is a Hilbert space representing the control space and 

  1
0HX  the state space. The disturbance term  XTLf ;,02  is generally unknown.  
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The system (1) admits a unique solution       211
0 ;,0;,0 LTCHTCy   [17] given by  

             
t t

dssfstSdssBustSytSty
0 0

0  

and it is augmented by the output equation 

   tyCtz                                   (2) 

where     OLC
n
,2 L , O is a Hilbert space (observation space). In the case of an 

observation on  T,0  with q  sensors, we take generally qIRO   .The operator   is 

defined by  

    

























n

n
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y

x

y

x

y
yy

LH

,,,

:

21

21
0


 

while 
*  its adjoint operator. 

 

3. GRADIENT REMEDIABILITY  

The system (1) is disturbed by the force f  assumed unknown and excited by a control u  

that will be chosen so as to compensate for the disturbance f . In the autonomous case, 

without disturbance  0f and without control  0u , this same system is written 

   

   
 



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


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





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0,
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0
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xyxy

QtxyAtx
t
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

                     (3) 

The system (3) admits a unique solution       211
0 ;,0;,0 LTCHTCy  [17] given by 

    0ytSty   then the observation on  T,0  is normal and it is given by     0ytSCtz  . 

But if the control 0u and the disturbance 0f , the observation noted fuz ,  is disturbed 

such that  

  tz fu,            
t t

dssfstSCdssBustSCytSC
0 0

0  

The problem consists to study the existence of an input operator B  (actuators), with respect 

to the output operator C  (sensors), ensuring at the timeT , the gradient remediability of any 
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disturbance on the system, that is:  

For any  XTLf ;,02 , there exists  UTLu ;,02  such that     0
, yTSCTz fu  this is 

equivalent to 0 FfCHuC where H  and F  are two operators defined by 

 

    


T

dssBusTSHuu

XUTLH

0

2 ;,0:

 

 

    


T

dssfsTSFff

XXTLF

0

2 ;,0:

 

This leads to the following definitions  

Definition 1:  

1) We say that the system (1) augmented by the output equation (2) is exactly gradient f - 

remediable on  T,0 , if there exists a control  UTLu ;,02  such that  

0 FfCHuC  

2) We say that the system (1) augmented by the output equation (2) is weakly gradient f - 

remediable on  T,0 , if for every ,0 there exists a control  UTLu ;,02  such that 


O

FfCHuC  

3) We say that the system (1) augmented by the output equation (2) is exactly (resp. weakly) 

gradient remediable on  T,0 , if for every  XTLf ;,02  the system (1)–(2) is exactly 

(resp. weakly) gradient f - remediable. 

Proposition 1: 

Let us consider  XTLf ;,02 .  

1) The system (1)–(2) is exactly gradient f - remediable on  T,0  if and only if  

 HCFfC  ImIm  

2) The system (1)–(2) is weakly gradient f - remediable on  T,0  if and only if  

 HCFfC  ImIm  

Proof:  

1) We assume that the system (1)–(2) is exactly gradient f - remediable on  T,0 , then there 
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exists  UTLu ;,02 such that 0 FfCHuC , that is 

  1HuCuHCHuCFfC  with  uu 1  UTLu ;,02
1 then 

HCFfC  Im .  

Conversely, we assume that HCFfC  Im , then there exists  UTLu ;,02  such that 

HuCFfC   that is 0 HuCFfC  this gives   0 uHCFfC . We put 

 UTLuu ;,02
1   where the system (1)–(2) is exactly gradient f - remediable. 

2) We assume that the system (1)–(2) is weakly gradient f - remediable on  T,0 , then 

 UTLu ;,0,0 2  such that 
O

HuCFfC that is  UTLu ;,0,0 2  

such that   
O

uHCFfC . We put  UTLuu ;,02
1  , 

then  UTLu ;,0,0 2
1  such that 

O
HuCFfC 1 , this gives 

 HCFfC  Im . 

Conversely, we assume that  HCFfC  Im , then  UTLu ;,0,0 2
1   such that 


O

HuCFfC 1 . We put  uu1  UTL ;,02 , then  UTLu ;,0,0 2  such 

that 
O

HuCFfC  where the system (1)–(2) is weakly gradient f - remediable.  

Proposition 2:  

1) The system (1)–(2) is exactly gradient remediable on  T,0  if and only if  

HCFC  ImIm  

2) The system (1)–(2) is weakly gradient remediable on  T,0  if and only if  

HCFC  ImIm         

Proof:  

1) We assume that the system (1)–(2) is exactly gradient remediable on  T,0  then 

 XTLf ;,02  the system (1)–(2) is exactly gradient f - remediable on  T,0  and 

from the Proposition 1 we have,  XTLf ;,02 : HCFfC  Im , this gives 

HCFC  ImIm .  

Conversely, we assume that HCFC  ImIm and we show that the system (1)–(2) is 

exactly gradient remediable on  T,0 . Let  XTLf ;,02  then FCFfC  Im  since 
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HCFC  ImIm we have HCFfC  Im  then there exists  UTLu ;,02  such 

that HuCFfC   that is to say 0 HuCFfC  this gives   0 uHCFfC . 

We put  uu1  UTL ;,02  where the system (1)–(2) is exactly gradient remediable. 

2) We assume that the system (1)–(2) is weakly gradient remediable on  T,0  

then  XTLf ;,02  the system (1)–(2) is weakly gradient f - remediable on  T,0  and 

from the Proposition.1 we have,  XTLf ;,02 : HCFfC  Im , this gives 

HCFC  ImIm .  

Conversely, we assume that HCFC  ImIm and we show that the system (1)–(2) is 

weakly gradient remediable on  T,0 . Let  XTLf ;,02  then FCFfC  Im . Since 

FCIm HCIm then  HCFfC  Im this leads to  UTLu ;,0,0 2  such 

that HuCFfC    by putting  uu1  UTL ;,02 this 

gives  UTLu ;,0,0 2
1   such that 

O
HuCFfC 1  where the system 

(1)–(2) is weakly gradient remediable on  T,0 .                                  � 

 

4. GRADIENT REMEDIABILITY AND GRADIENT CONTROLLABILITY  

By analogy with the relation between the remediability and the controllability examined in the 

finite time case, it is then natural to study, in this paragraph, the relationship between the 

gradient remediability and the gradient controllability. Firstly, we recall the definitions of 

exact and weak controllability. 

Definition 2: 

1) The system (1) is said to be exactly gradient controllable on  T,0  if   nd Ly  2  

there exist a control  UTLu ;,02  such that   dyTy  . 

2) The system (1) is said weakly gradient controllable on  T,0  

if   nd Ly  2 , 0 there exist a control  UTLu ;,02  such that 

 
 







 

n
L

dyTy 2
. 
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Proposition 3: 

1) If the system (1)–(2) is exactly gradient controllable on  T,0 , then it is exactly gradient 

remediable on  T,0 . 

2) If the system (1)–(2) is weakly gradient controllable on  T,0 , then it is weakly gradient 

remediable on  T,0 . 

Proof: 

1) We assume that the system (1)–(2) is exactly gradient controllable  and let   0yTSyd   

then there exists  UTLu ;,02  such that     0yTSTy   that is to say 

    00 yTSFfHuyTS   this leads to 0 FfHu  then let 

0 FfCHuC  and then the system (1) – (2) is exactly gradient remediable. 

2) We assume that the system (1)–(2) is weakly gradient controllable and let   0yTSy d   

then ,0   UTLu ;,02  such that    
 







 

n
L

yTSTy 2
0  that 

is  







 

n
L

FfHu 2 . Since the operator C  is continue, consequently we have 

 
n

LO
FfHukFfCHuC






 

 2  with 0k  where the system (1)–(2) is 

weakly gradient remediable.                                                � 

 

5. GRADIENT REMEDIABILITY, SENSORS AND ACTUATORS  

We suppose that the system (1) is excited by p  zone actuators    iipiii Lgg 


2

1
,, , 

   ii gsupp  in this case the control space is  pIRU   and the operator: 

              





p

i

iiip

p

tuxgxBututututu

XIRB

1

21 ,,,

:


 

Its adjoint is given by 

p
T

p
p IRzgzgzgzB 









,,,,,,

2211
*                    (4)          
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Also suppose that the output of the system (2) is given by q sensors    iiqiii DLhhD 2

1
,, 

 , 

being the spatial distribution,  ii hD supp , for qi ,,1 and ji DD  for ji  , then 

the operator C is defined by:  

  

       
Tn

i
qDiq

n

i
Di

n

i
Di

qn

tyhtyhtyhtCy

IRLC














 11

22

1
11

2

,,,,,,

:


 

its adjoint is given by *C  with for   qT

q IR  ,,, 21   

           








 



q

i

iiiD

q

i

iiiD

q

i

iiiD xhxxhxxhxC
111

* ,,,             (5) 

Lemma 1 [18]:  

Let WV,  and Z  be reflexive Banach spaces,  ZVP ,L  and  ZWQ ,L . Then the 

following properties are equivalent: 

i. QP ImIm   

ii. 0  such that ', *

'

**

'

* ZzzQzP
WV

*   

We have the following characterizations:  

Proposition 4:  

1) The system (1)–(2) is exactly gradient remediable on  T,0  if and only if there exists 

0  such that for every qIR , we have 

    
 

 







 pIRTLXTL
CTSBCTS

;,02
****

';,02
*** ..   

2) The system (1) – (2) is weakly gradient remediable on  T,0  if and only if  

   ******* kerker CFCFB   

Proof: 

1) It follows from the fact that   ****** . CTSCF   and that   ******* . CTSBCH   

and since the Proposition 2, we put FCP   and HCQ   and using the Lemma 1. 

2) We assume that the system (1)–(2) is weakly gradient remediable on  T,0 and we show 

that     ******* kerker CFCFB  . Let qIR  such that 0****  CFB , and we 

have 
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 
 








.

.
***

**

TSBH

TSF
 

then, 00 *******   CHCFB this gives  ***ker CH  and we have 

     ***kerIm CHHC . Since the hypothesis and the Proposition 2, we have 

HCFC  ImIm then    ***kerIm CHFC    FfCXTLf :;,02

   ***ker CH 0,  FfC  because  ***ker CH  , this 

gives    ***kerIm CFFC 
 , where the result. 

Conversely, assume that    ******* kerker CFCFB   and we show that 

HCFC  ImIm . Let  XTLf ;,02  such that FCf Im , we have 

   ***kerIm CHHC . For every qIR  such that 0***  CH , that is 

0****  CFB we have 0***  CF  because    ******* kerker CFCFB    

then 0,  FfC , where the result.                                            � 

Corollary 1:  

The system (1)–(2) is exactly gradient remediable on  T,0  if and only if  0  such that 

qIR , we have 

   
 






p

i

T

Li

T

X
dsCsTSgdsCsTS

i

1 0

2***

0

2

'

***
2

,   

Proof:  

Since the Proposition 4, the system (1)–(2) is exactly gradient remediable on  T,0  if and 

only if there exists 0  such that for every qIR , we have 

 
 

   
2

;,0

****2

';,0

***
22

..
pIRTLXTL

CTSBCTS    

by using (4) the formula of the operator *B , we have  

   



p

i

T

i

T

X
dsCsTSgdsCsTS

1 0

2***

0

2

'

*** ,   

where the result.                                                             � 

In the following, without loss of generality we consider, the system (1) with a dynamics Aof 

the form 
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 
      






1
0

2

1

2

1

,, HHADywwyAy
mr

j

jmLjm

m

m   

where  
1

1



m
mrjjmw  is an orthogonal basis in  1

0H  of eigenvectors of A orthonormal in 

 2L , associated to eigenvalues 0m  with a multiplicity mr . Then, the operator A  

generates on the Hilbert space  2L  a strongly continuous semi-group    0ttS  given by 

[1,19]: 

 
 







mr

j

jmLjm

m

tm wwyeytS
1

2

1

,                   (6) 

Corollary 2:  

The system (1)–(2) is exactly gradient remediable on  T,0  if and only if  0  such that 

qIR , we have 

 
 

   
 



 





  















p

i

T

jmi

mr

j

jm

m

sTm

m
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j

n
Lmj

Tm

m

dswgwCewCe
1 0

2

1

*

11 1

2

2
*2 ,,,1

2

1



  

Proof:  

Since the Corollary 1, the system (1)-(2) is exactly gradient remediable on  T,0  if and only 

if there exists 0  such that for every qIR , we have 

   





p

i

T

i
i

T

X
dsCsTSgdsCsTS

1 0

2***

0

2

'

*** ,   

By using (6) the formula of the operator S  and since it is auto-adjoint, we obtain 

 
 

 

 







T r

j

jm

m

sT

T

L
dswCedsCsTS

m

m

0 1

2**

1

2

0

2*** ,
2

 

 



mr

j

jm
Tm

m m

wCe
1

2*2

1

,1
2

1





 

and 

 
 

  
 




 















p

i

T

jmi

mr

j

jm

m

sTm

p

i

T

iLi dswgwCedsCsTSg
1 0

2

1

**

11 0

2

2
*** ,,,  

 

where the result.                                                             � 

By using (5) the formula of the operator *C , we have the following corollary: 
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Corollary 3:  

The system (1)–(2) is exactly gradient remediable on  T,0  if and only if  0  such that 

qIR , we have 

 
 

 

 
ds

x

w
hwge
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w
he
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
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
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





 

Proof:  

Since the Corollary 2, the system (1)-(2) is exactly gradient remediable on  T,0  if and only 

if there exists 0  such that for every qIR , we have 

 
 

   
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
  

and by using (5) the formula of the operator *C , we have 
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* ,,
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 lDL

n
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q
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mj
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w
h

21 1

,
  


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where the result.                                                             � 

This characterization shows that the remediability of a system may depend on the structure of 

the actuators and sensors. 

By analogy with the concept of gradient strategic actuator, we introduce the notion of gradient 

efficient actuator, as follows: 

Definition 3:  

The actuators    iipiii Lgg 


2

1
,,  are said to be gradient efficient if the system (1)–(2) 

so excited is weakly gradient remediable. 

The actuators gradient efficient define actions with the structure (spatial distribution, location 

and number) can compensate the effect of disturbance distributed on the system. We have then 
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the following characterization of the gradient efficient actuators. 

For 1m , let mM  be the matrix of order  mrp  defined by   piwgM
jijmim  1,,  

and mrj 1  and let mG  be the matrix of order  mrq   defined by 

qi
x

w
hG

ji

n

k k

jm

im 
















 



1,,
1

  and mrj 1 . 

Proposition 5:  

The actuators    iipiii Lgg 


2

1
,,  are gradient efficient if and only if 

   mm
m

fMC kerker
1

**


  . Where, for qIR and 1m ,  

  mf   mr
T

mrmmm IRwCwCwC  ,,,,,, **
2

**
1

**    

Proof:  

We assume that the actuators    iipiii Lgg 


2

1
,,  are gradient efficient and we show 

that    mm
m

fMC kerker
1

**


  . Since the Proposition 4, the system (1)-(2) is weakly 

gradient remediable on  T,0  if and only if    ******* kerker CFCFB  . Let qIR , 

we have 

   ******** . CTSBCFB 
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and we have 1m , 
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If we assume that  mm
m

fMker
1

  , then 
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 

 
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1
kerker CFBfM mm

m



  that is 
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1
kerker CFBfM mm

m



 .  

On the other hand, we have for every qIR ,  

   
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m
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Tm wwCeCTSCF  

 

 
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 ***ker CF  , then 0***  CF  
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0,
1 1

** 
 

jm

m
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j

jm wwC    **** ker0 CC   . Then, 

   ***** kerker CCF  . If we assume that  **ker C , then 0**  C  that is 

  0,
1 1

**.***   
 


jm

m

mr

j

jm
Tm wwCeCF    ***ker CF  , then 

   ***** kerker CFC   that is    ***** kerker CFC  .  

Where the result.                                                            �  

Corollary 4:  

If there exists 10 m  such that  

qGrank T
m 

0
                                (7) 

then the actuators    iipiii Lgg 


2

1
,,  are efficient if and only if    0ker

1
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T
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Let qIR , then  T
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w
hwg

q

l

l

mr

j

n

k k

jm

ljmi ,,1,1,0,,
1 1 1





 

  

  



S. Rekkab et al.          J Fundam Appl Sci. 2017, 9(3), 1535-1558              1549 
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m
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1
  mm

m
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1
 . 

On the other hand,   **ker C 0**  C , then for 0m that appears in the hypothesis 

and by using (5) the formula of the operator *C , we obtain 
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m 

0
 , then  0ker

0
T

mG  this gives 0 . That is    0ker **  C  

Finally, the proof follows directly from the Proposition 5.                     � 

Corollary 5:  

If there exists 10 m  such that      qGrank T
m 

0
 and if 

  qGMrank T
mm 

00
                             (8) 

Or                                  

 
00 mm rMrank                                 (9) 

then the actuators    iipiii Lgg 


2

1
,,  are gradient efficient. 

Proof:  

Assume that there exists 10 m  such that   qGMrank T
nn 
00

. The matrix  T
mm GM

00
 is of 

order qp . From the theorem of rank to matrices [20], we 

have      qGMGMrank T
mm

T
mm 

0000
kerdim , and then    0kerdim
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T

mm GM  witch is 

equivalent to    0ker
00
T

mm GM    0ker
1




T
mm

m
GM . Since the Corollary 4, that is 

equivalent to the gradient efficient of the actuators    iipiii Lgg 


2

1
,, . 

Now, we suppose that   qGrank T
m 

0
  and  

00 mm rMrank  . The matrix  T
mG

0
 is of 

order qrm 
0

. By using the theorem of rank to matrices [20], we have 

     qGGrank T
m

T
m 
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kerdim then,    0kerdim

0
T

mG . That is equivalent to  

   0ker
0
T

mG                                (10) 

The same, the matrix  
0mM  is of order 

0mrp  . By using the theorem of rank for matrices 
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[19], we have     
000

kerdim mmm rMMrang  . And from (9), we obtain 
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mm GM which gives   0
00

T
mm GM . 

From (11), we obtain 0
0

T
mG  and from (10), we obtain 0  then    0ker

00
T

mm GM  

and then,    0ker
1




T
mm

m
GM  which is equivalent, from the Corollary 4, to the gradient 

efficient of the actuators    iipiii Lgg 


2

1
,, .                                 � 

Remark 1: 

1) The condition (8) pq  . 

2) The condition pq   is not necessary for actuators to be gradient efficient. Indeed, in the 

case of a single actuator  g,1  and of q  sensors  
qiii hD

1
, , with 1q , 

 
mrjjmm wgM




1
, is of order  mr1  and 
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
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11 1
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From the Corollary 4, if there exists 10 m  such that qGrank T
m 

0
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gradient efficient if and only if    0ker
1




T
mm

m
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

T

inin
mi

GM                         (12) 
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6. GRADIENT REMEDIABILITY WITH MINIMUM ENERGY 

For  XTLf ;,02 , we study the existence and the unicity of an optimal control 

 PIRTLu ;,02  ensuring, at the timeT , the gradient remediability of the disturbance f  

such that 0 FfCHuC . That is the set defined by  

  0/;,02  FfCHuCIRTLuD P              (13) 

is non empty.  

We consider the function    
2

;,0

2

2 Pq IRTLIR
uFfCHuCuJ      

The considered problem becomes  uJ
Du

min . For its resolution, we will use an extension of the 

Hilbert Uniqueness Methods (H.U.M). For qIR , let us note  

 
2

1

0

2****

* 












 

T

IR
dsCsTSB

P
  

*
is a semi-norm on qIR . If the condition (7) is verified then it is a norm if and only if the 

system (1)-(2) is weakly gradient remediable on  T,0 . The corresponding inner product is 

given by     dsCsTSBCsTSB
T

 
0

********

*
,,   

and the operator qq IRIR  :  defined by 

    


T

dsCsTSBBsTSC

CHHC

0

****

***





 

Then, we have the following proposition: 

Proposition 6:  

If the condition (7) is verified, then 
*
is a norm on qIR if and only if the system (1)-(2) is 

weakly gradient remediable on  T,0  and the operator  is invertible. 

Proof :  

We have 
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  0

2

1

0

2****

*















 

T

IR
dsCsTSB

P
     0

;,0

****
2


PIRTL

CsTSB   

      ************ ker.ker0. CFBCTSBCTSB    

But   ****ker CFB  mm
m

fMker
1
  (see the Proof of Proposition 5) and we have also 

 


T
mm

m
GMker

1
  mm

m
fMker

1
   (see the Proof of Corollary 4) 

then,    ****ker CFB  T
mm

m
GMker

1
  this gives   T

mm
m

GMker
1
  and since the 

Corollary 4 we obtain the result. 

On the other hand the operator   is symmetric, indeed 

qIR
qIR

CHHC  ,, *** qIRqIR
CHHC   ,, ***  

and positive definite, indeed 

 

   

0,0

,

,

,,

2

*

0

********

;,0

******

***

2


















for

dsCsTSBCsTSB

CHCH

CHHC

T

IR

IRTL

IRIR

P

P

qq

 

and then  is invertible.                                                      � 

We give hereafter the expression of the optimal control ensuring the gradient remediability of 

a disturbance f at the timeT . 

Proposition 7:  

For  XTLf ;,02 , there exists a unique q
f IR  such that FfCf   and the 

control     ff
CSBu 

**** ..   verifies 0 FfCHuC
f . Moreover, it is optimal and 

  *;,02 f
IRTL Pf

u   . 

Proof :  

From the Proposition 6, the operator   is invertible then, for  XTLf ;,02 , there exists a 

unique q
f IR  such that  
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FfCf   

and if we put     ff
CSBu 

**** ..  , we obtain 

   
f

T

ff HuCdsCsTSBBsTSC   
0

****
 


f

HuCFfC  0 FfCHuC
f . 

The set D defined by (13) is closed, convex and not empty. For Du , we 

have    
2

;,02 PIRTL
uuJ  . J  is strictly convex on D , and then has a unique minimum at 

Du * , characterized by 
  ;0,

;,0

**
2


PIRTL

uvu  Dv  .  

For Dv , we have 

 
     PPff IRTLff

IRTL
CSBvCSBuvu

;,0

********

;,0
22

.,.,         

0,  qIRff HvC   

Since *u is unique, then 
f

uu *
and 

f
u is optimal with 

 
   

2

*

2

;,0

****
2

;,0
22

. fIRTLf
IRTL

PPf
CSBu   .                                  � 

 

6. APPROXIMATIONS AND NUMERICAL SIMULATIONS 

This section concerns approximations and numerical simulations of the problem of gradient 

remediability. First we give an approximation of f as a solution of a finite dimension linear 

system bAx  and then the optimal control
f

u , with a comparison between the 

corresponding observation noted fuz ,  and the normal case. 

7.1 Approximations  

 Coefficients of the system: For ,1, ji let  

qIRjiji eea , where  
qiie

1
is the canonical basis of qIR , we have 

    
T

ii dseCsTSBBsTSCe
0

****           

And for NM ,  sufficiently large, we have 
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qIRjj eFfCb ,  

For N  sufficiently large, we have 
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' ,,   

 The optimal control: In this part, we give an  

approximation of the optimal control 
f

u which is defined by     ff
CTSBu 

**** ..  . 

Its function coordinates  ., fju   are given by 

    fjfj CTSgu 
***

, .,. 
 

  i

k

hm
N

m

mr

h
jLhmj

Tm

n

k

q

i

fi h
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w
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,



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 




 

  

for a large integer N . 

 Cost: The minimum energy (cost) is defined by  

 
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1

0

2****

;,02 
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


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n
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sTm dswg
x

w
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for N sufficiently large. 

 The corresponding observation: The observation corresponding to the control is 

given by 

             
t t
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0 0

0
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7.2 Numerical simulations 

We consider without loss of generally the following diffusion system 

           

   
   




























Tty

xyxy

Ttxftuxgtxytx
t

y p

i

iii

,00,

0,

,0,,,

0

1





 

with  1,0  and a Dirichlet boundary condition. In this case, the functions  .mw  are 

defined by     1;sin2  mxmxwm  . The associated eigenvalues are simple and given 

by 1;22  mmm  . Then in the case of: 

 an initial state:   ,0.0 y  

 a sensor:  hD,  with  1,0D  and   22xxh    1q  

 an efficient actuator:  g,  with  1,0  and   32xxg   1p  

 a disturbance function: defined by   0;240, 10 










tetxf
x

t

 

  For 1NM  and 70T , we obtain numerical results illustrating the theoretical results 

established in previous sections. Hence, in figure1, we give the representations of the discrete 

observation fuz ,  corresponding to the control 
f

uu   and the disturbance f  and 0,0z  

which represent the normal observation, that is 0u  and 0f .   

 

Fig.1. Representation of fuz ,  (blue line) and 0,0z  (red line). 
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This figure show that for t  sufficiently large  50t , the disturbance f  is compensate by 

the control optimal 
f

u at the time T   70T  that is, we have    tztz f
f

u 0,0, 


. 

The optimal control 
f

u  ensuring the gradient remediability of the disturbance f  , is 

represented in figure 2. 

 

Fig.2. Representation of the optimal control 
f

u  (blue line) 

 

8. CONCLUSION  

In this paper, which is an extension of previous works to the analysis of the gradient of a 

large class of parabolic systems, new notions of weak and exact gradient remediability are 

introduced and characterized. The relation between the notion of gradient remediability and 

the notion of gradient controllability is also studied. We have shown that a parabolic system 

is gradient remediable if it is gradient controllable. Furthermore, we have shown that the 

exact and weak gradient remediability of a system may depend on the structure and the 

number of the actuators and sensors. Using an extension of the Hilbert Uniqueness Method, 

we have shown how to find the optimal control ensuring the gradient remediability of the 

known or unknown disturbance. The results of illustrative examples and numerical 

approximations are acceptable.  

These results are developed for a class of discrete linear distributed parabolic systems, but 

the considered approach can be extended to other class of systems with a convenient choice 

of space.  
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