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ABSTRACT

The aim of this paper is the introduction of a new concept that concerned the analysis of a
large class of distributed parabolic systems. It is the general concept of gradient remediability.
More precisely, we study with respect to the gradient observation, the existence of an input
operator (gradient efficient actuators) ensuring the compensation of known or unknown
disturbances acting on the considered system. Then, we introduce and we characterize the
notions of exact and weak gradient remediability and their relationship with the notions of
exact and weak gradient controllability. Main properties concerning the notion of gradient
efficient actuators are considered. The minimum energy problem is studies, and we show how
to find the optimal control, which compensates the disturbance of the system. Approximations
and numerical simulations are also presented.
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1. INTRODUCTION

Various real problems can be formulated within certain concepts of distributed systems
analysis. These concepts consist of a set of notions as controllability, detectability,
observability, remediability..., which enable a better knowledge and understanding of the
system to be obtained. These concepts have been studies at different degrees (exact, weak,
extended). Systems analysis can be done from a purely theoretical viewpoint [1,2]. However,
the study may be also become concrete, in some sense, by using the structures of actuators
and sensors. Thus, one can study the different concepts of controllability via actuators
structures [3-5] or the different concepts of observability via sensors structures [6-8].

An extension of these concepts that is very important in practical applications is that of
gradient controllability [9], gradient detectability [10] and gradient observability [11-13].
These concepts are of great interest from a more practical and control point of view since
there exist systems that cannot be controllable but gradient controllable or that cannot be
observable but gradient observable or that cannot be detectable but gradient detectable and
they provide a means to deal with some problems from the real world, for example in the
thermic isolation problem it may be that the control is only required to vanish the
temperature-gradient before crossing the wall.

Hence, with the same preoccupation, we introduce in this paper, a new concept that is gradient
remediability of distributed parabolic systems. We recall that the notion of remediability
consists in studying the existence of a convenient input operator (efficient actuators), ensuring
the remediability of any disturbance acting in the considered systems. This problem is
particularly motivated by pollution problems and so called space compensation or
remediability problem. The notions of remediability and efficient actuators are introduced and
studied first for discrete systems and there for continuous systems of a finite time horizon and
for other situations (regional and asymptotic cases, internal or boundary actions of
disturbances) [14-16].

This paper is organized as follows: In the second paragraph, we start by presenting the
notations and some preliminary material. After, we recall the notions of exact and weak

gradient controllability. In the third paragraph, we introduce and we characterize the notions
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of exact and weak gradient remadiability. We show how to find an input operator (actuators)
with respect to the output (gradient observation) that ensures the gradient remediability of a
disturbed parabolic system. By analogy with the relation between the remediability and the
controllability examined in the finite time case, it is then natural to study, in the paragraph 4,
the relationship between the gradient remediability and the gradient controllability. We show
that the gradient remediability is weaker and more supple than the gradient controllability of
the parabolic systems, that is to say, if any parabolic systems are gradient controllable, then it
is gradient remediable. The fifth paragraph recall the notion of gradient strategic actuators and
we give a characterization of gradient remediability which shows that the gradient
remediability of any system may depend on the structure of the actuators and sensors. Then
we introduce and we characterize the notion of gradient efficient actuators. In paragraph 6,
using an extension of Hilbert Uniqueness Method (H.U.M), we examine the problem of
gradient remediability with minimum energy, and we give the optimal control that
compensate an arbitrary disturbance. In the last paragraph, approximations and numerical

results are presented.

2. CONSIDERED SYSTEM
Let Q be an open and bounded regular subset of [R" (n=1,2,3) with a smooth

boundary 0Q . For 7 >0, we denoted by Q= QX]O, T[, > =0Qx]0,T[. Consider a

parabolic system defined by

a_y(x’t): Ay(x,t)—i— Bu(l‘)+ f(x,f) 0

ot
¥(x,0)=y°(x) Q (1)
y(£.1)=0 =

Where A is a second order linear differential operator with compact resolvent and which
generates a strongly continuous semi-group (S (t))tzo on the Hilbert space Lz(Q) . (S*(t))tzo
is considered for the adjoint semi-groupe of (S (t))zzo .

B e,f/(U,X),u €L2(0,T ;U) where Uis a Hilbert space representing the control space and

X=H, (Q) the state space. The disturbance term f' ELZ(O, X ) is generally unknown.
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The system (1) admits a unique solution Y eC(O,T ;Hé(Q))ﬂCI(O,T ;Lz(Q)) [17] given by

t

§(O)= S0y + [ $(=s)Buls)ds + [ S(t—5)7 (s s

0

and it is augmented by the output equation
z(t)= CVy(t) (2)
where Ce ((Lz(Q))n,O), O is a Hilbert space (observation space). In the case of an

observation on [O,T ] with ¢ sensors, we take generally O=IR? .The operator V is

defined by

while V' its adjoint operator.

3. GRADIENT REMEDIABILITY

The system (1) is disturbed by the force f assumed unknown and excited by a control u
that will be chosen so as to compensate for the disturbance /. In the autonomous case,

without disturbance ( f= O) and without control (u = 0) , this same system 1s written

D (er)=Ayes) O

o
¥(x,0)=y°(x) Q (3)
y(E1)=0 )

The system (3) admits a unique solution yeC (O,T JH| (Q))ﬂ C' (O,T L (Q))[17] given by
y(t)=S(¢)y" then the observation on [O, T ] is normal and it is given by z(t)=CVS(t)y".
But if the control u # 0and the disturbance /" # 0, the observation noted z, , is disturbed

such that
Zy £ (t)=CVS(t)y° + CVIS(t — 5)Buls)ds + CVIS(t —5)f(s)ds

The problem consists to study the existence of an input operator B (actuators), with respect

to the output operator C (sensors), ensuring at the time 7' , the gradient remediability of any
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disturbance on the system, that is:

For any f € [*(0,7;X), there exists u e L’ (O, T; U) such that z, ,(T)=CVS(T)y’this is

equivalentto CVHu+CVFf =0where H and F are two operators defined by
H:I’0,T;U)> X

u— Hu = j.S(T—S)Bu(S)dS

F:I’'(0,T;X)—> X
f—)Ff:jS(T—s)f(s)ds

This leads to the following definitions

Definition 1:

1) We say that the system (1) augmented by the output equation (2) is exactly gradient f -
remediable on [O, T ], if there exists a control u e L’ (O,T ;U ) such that
CVHu+CVFf =0
2) We say that the system (1) augmented by the output equation (2) is weakly gradient f -
remediable on [0, T ], if for every & > 0,there exists a control u € 1? (O, T,;U ) such that
|CVHu+ CVFf||, < &

3) We say that the system (1) augmented by the output equation (2) is exactly (resp. weakly)
gradient remediable on [O,T ], if for every fel’ (O,T ; X ) the system (1)—(2) is exactly
(resp. weakly) gradient f - remediable.

Proposition 1:

Let us consider f € L*(0,T; X).

1) The system (1)—(2) is exactly gradient f - remediable on [0, T ] if and only if

ImCVFf € Im(CVH)
2) The system (1)—(2) is weakly gradient f - remediable on [0, T ] if and only if
ImCVFf e Im(CVH)

Proof:

1) We assume that the system (1)—(2) is exactly gradient f - remediable on [0, T ], then there
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exists uel*(0,T;U) such that CVHu+CVFf =0 , that is
CVFf=-CVHu=CVH(-u)=CVHu, with  (uy=-u) wu,el*(0,T;U) then
CVFf eImCVH .

Conversely, we assume that CVFf e InCVH , then there exists u € L’ (0, U ) such that
CVFf=CVHu that is CVFf—CVHu=0 this gives CVFf+CVH(-u)=0. We put
u=-uecl’ (O, ;U ) where the system (1)—(2) is exactly gradient f - remediable.

2) We assume that the system (1)—(2) is weakly gradient f - remediable on [O, T ], then
Ve>0,3ue ’(0,T;U) such that |CVFf+CVHu|, <& that is Ve >0,3ue*(0,T;U)
such  that [CVEf—CVH(-u),<¢ . We put u=-uel’(0,T:U) |,
then Ve>0,3u, €’(0,T;U) such that |CVEf—CVHu|,<e& , this gives

CVFf e Im(CVH).

Conversely, we assume that CVFf e m, then Ve>0,3u, e’ (O, U ) such that
||CVFf—CVHu1||O <&. We put uy =—u e L*(0,T;U), thenVe >0, Ju eLZ(O,T;U) such
that ||CVF f+ CVHu” o <€ where the system (1)—(2) is weakly gradient f - remediable.
Proposition 2:
1) The system (1)—(2) is exactly gradient remediable on [O, T ] if and only if
ImCVF c ImCVH
2) The system (1)—(2) is weakly gradient remediable on [O, T ] if and only if
ImCVF c InCVH
Proof:
1) We assume that the system (1)—(2) is exactly gradient remediable on [O, T ] then
Vf el (O, T, X ) the system (1)—(2) is exactly gradient f - remediable on [0, T ] and

from the Proposition 1 we have, Vf eLz(O,T ;X): CVFf eImCVH , this gives
ImCVF c ImCVH .

Conversely, we assume that ImCVF < ImCVH and we show that the system (1)—(2) is
exactly gradient remediable on [O,T ] Let feL*(0,T;X) then CVFfeImCVF since
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2)

ImCVF c InCVH we have CVFfeImCVH then there exists ueL*(0,T;U) such
that CVFf=CVHu thatis to say CVEf —CVHu=0 this gives CVFf+CVH(-u)=0.
We put u, =-uel’ (0, ;U ) where the system (1)—(2) is exactly gradient remediable.

We assume that the system (1)~(2) is weakly gradient remediable on [0, T ]
then Vf € L’ ((), T, X ) the system (1)—(2) is weakly gradient f - remediable on [O, T ] and
from the Proposition.] we have, Vfel’ (O, T, X ) . CVEf eImCVH , this gives
ImCVF < InCVH .

Conversely, we assume that ImCVF < ImCVH and we show that the system (1)—(2) is

weakly gradient remediable on [O, T ] Let fel’ (O, T; X ) then CVFf eImCVF . Since
ImCVF < ImCVH then CVFf e Im(CVH)this leads toVe>0,3ueL’(0,7;U) such
that ||CVFf - CVHu” <eg by putting u,=-uec  L(0,T;U) this
gives Ve >0,3u, € L*(0,7;U) such that ||CVFf+ CVHuy, ||O <& where the system

(1)—(2) is weakly gradient remediable on [0, T ] 0

4. GRADIENT REMEDIABILITY AND GRADIENT CONTROLLABILITY

By analogy with the relation between the remediability and the controllability examined in the

finite time case, it is then natural to study, in this paragraph, the relationship between the

gradient remediability and the gradient controllability. Firstly, we recall the definitions of

exact and weak controllability.

Definition 2:

1) The system (1) is said to be exactly gradient controllable on [O,T ] if Vy! E(L2 (Q))n

there exist a control u € L’ (O, T,U ) such that Vy(T ) =y,

2) The system (1) is said weakly gradient controllable on [O, T ]

if Wy e(LZ(Q))” , V&>0 there exist a control wuel?(0,7;U) such that

HVy(T)—de(Lz(Q))n <&
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Proposition 3:
1) If the system (1)—~(2) is exactly gradient controllable on [O, T ], then it is exactly gradient

remediable on [O, T ]

2) If the system (1)—(2) is weakly gradient controllable on [O, T ], then it is weakly gradient

remediable on [O, T ]

Proof:

1) We assume that the system (1)—(2) is exactly gradient controllable and let y* =S (T )yo
then there exists ue L’ (0, T;U) such that Vy(T)=VS(T )yo that is to say
VS(T)y" + VHu +VFf =VS(T)y® this leads to VHu+VFEf=0 then Ilet
CVHu+ CVFf =0 and then the system (1) — (2) is exactly gradient remediable.

2) We assume that the system (1)~(2) is weakly gradient controllable and let y¢ =VS (T )y0

then Ve>0, Jue L’(0,7;U) such that HVJ’(T)—VS(T)J’OH(Lz(g))” <e that
is ||VHu+VFf||(Lz(Q))n <¢. Since the operator C is continue, consequently we have

||CVHu + CVFf”O < k||VHu + VFf”(LZ(Q)j" with k>0 where the system (1)—(2) is

weakly gradient remediable. 0

5. GRADIENT REMEDIABILITY, SENSORS AND ACTUATORS
We suppose that the system (1) is excited by p zone actuators (Qi,gi )Iggp,gi el’ (Qi),

Q, = Supp(gi ) c Q in this case the control space is U =IR” and the operator:
B:IR" > X
p
u(e)= oy (Dt (0o, () > Bu =) 1, (), (0l (1)
i=1

Its adjoint is given by

T
B2 :(<gl,z>gl ,<g2,z>Q2 ,...,<gp,Z>ij e IR? 4)
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Also suppose that the output of the system (2) is given by ¢ sensors (Di , hi) h, € L (Di ),

1<i<q
being the spatial distribution, D, =supph, < Q, for i=1,...,qand D, N D, = ¢ fori# j, then
the operator C is defined by:
C: (@) > Ir?
T
=03 05 20,0 e 000, |

i=1 i=1 i=1

its adjoint is given by C* with for0=(6,,6,,...,0, ) € IR?

q

ce(zg 03 20 (S 2 <x>el.hi<x>} ©)

i=1 i=1

Lemma 1 [18]:
Let V,W and Z be reflexive Banach spaces, Pei/(V,Z) and Qe (W,Z). Then the
following properties are equivalent:

i. ImPcImQ

ii. 3y>0 such that “P*Z*HV, <o’z . viez

W"
We have the following characterizations:
Proposition 4:

1) The system (1)—(2) is exactly gradient remediable on [O,T ] if and only if there exists

y >0 such that for every @ € IR? , we have

S(r-)v'c'o

< y|B's (r-)v'co

20,1;x LZ[O,T;]RPJ

2) The system (1) — (2) is weakly gradient remediable on [O, T ] if and only if
ker(B'F'V'C")=ker(F'V'C")
Proof:
1) It follows from the fact that F'V'C* =8"(T—)V'C" and that H'V'C" =B'S"(T-)V'C’
and since the Proposition 2, we put P=CVF and OQ=CVH and using the Lemma 1.
2) We assume that the system (1)—(2) is weakly gradient remediable on [O, T ]and we show
that ker(B*F*V*C*): ker(F*V*C*) . Let @e€IR? such that B'F'V'C'0=0, and we

have
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rwse)

then, B'F'V'C'0=0=H'V'C'0=0 this gives Ocker(H'V'C') and we have
Im(CVH)=|ker(H'V'C")|' . Since the hypothesis and the Proposition 2, we have
IMCVF cImCVH  then ImCVF clker(H'V'C' )| =vf e 2(0.T:X): CVFf
ker(H#'V'C)'  =(CVEf,6)=0  because  Oeker(H'V'C') ., this
gives 0 €[ImCVF]" =kef{ F'V'C"), where the result.

Conversely, assume that ker(B*F *V*C*)=ker(F *V*C*) and we show that

InCVF c ImCVH . Let felL’(0,7;X) such that feIlmCVF , we have

ImCVH = [ker(H Avarel )]i . For every 6ecIR? such that H'V'C0=0, that is
B'FV'C#=0 we have F'V'C@=0 because ker(B*F*V*C*): ker(F*V*C*)
then<CVF f ,9> =0, where the result. O

Corollary 1:
The system (1)—(2) is exactly gradient remediable on [O, T ] if and only if 3y >0 such that

V6@ elIR?, we have

Jis

Since the Proposition 4, the system (1)—(2) is exactly gradient remediable on [O, T ] if and

r-swcd as<ry j &8 (T-sV'Ca),  ds

_10

Proof:

only if there exists y >0 such that for every e IR’, we have

r-)v'col

<y|p's’(r-)v'c o

L*(0,7; x") LZ(OTIR’)

by using (4) the formula of the operator B~ , we have

p T
(T-s)V' a’s< ZJgSTSVC9>d

0 i=l o

where the result. 0
In the following, without loss of generality we consider, the system (1) with a dynamics Aof

the form
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where (wmj)lgjgrm is an orthogonal basis in HS(Q) of eigenvectors of A orthonormal in

m>1

LZ(Q), associated to eigenvalues A, <0 with a multiplicity 7,. Then, the operator A

generates on the Hilbert space L’ (Q) a strongly continuous semi-group (S (t))zzo given by

[1,19]:

Zel’”’zx >L2(Q)ij

m=1

Corollary 2:

(6)

The system (1)—(2) is exactly gradient remediable on [O, T ] if and only if 3y >0 such that

VO elIR?, we have

m=1 Jj=1

Proof:

D) AT N of DD X A )

Since the Corollary 1, the system (1)-(2) is exactly gradient remediable on [0, T ] if and only

if there exists >0 such that for every &€ IR?, we have

2 ot
*( - X'dsSQ/ZJ.g S T SVC9> ds

0 =l ¢

T

By using (6) the formula of the operator S and since it is auto-adjoint, we obtain

T

T
(T-sV'C" 2(Q)ds=J.Zeu’”( Z<VC6’wmj>d
0 m>l =l
o ,
_;2/1 — (e -1 );<c 0.9w,,)
and
p T p T Tin ?
ZRg A T s V C «9 Zj[ <V Co, wm]><gl, mj>j ds
i=1 9 i=1 o \_m=l j=1

where the result.

By using (5) the formula of the operator C~, we have the following corollary:
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Corollary 3:
The system (1)—(2) is exactly gradient remediable on [O, T ] if and only if 3y >0 such that

V6@ elIR?, we have

m>1 <Y J=l k=1 =1 (ny)
p T 7 n q 2
I (T=s) n
< 7;! {;e = <gz>Wm_7>L2(Q') — ;01<h[’ 8ka >J ds

Proof:

Since the Corollary 2, the system (1)-(2) is exactly gradient remediable on [O, T ] if and only
if there exists >0 such that for every e IR, we have
1 "m 2 p T "'m :
22T * A (T=s) *
Z_Z/im (e 1)Z<C 0,VWW>(L2(Q)J;1 <y : !(Ze Z<C Q,Vwmj><gi,wmj>J ds

m=1 Jj=1 m=1 Jj=1

and by using (5) the formula of the operator

C
q ow,,
le),azhl o
=1 1
Cc'o,v = ilz) O,k O SN OV
< ’ Wmf>(L2(Q)]n B = | o, :Z VT ox, "
: . ¢ < | L7(Dg

Eq | Oh .mj
X
- oYt 5

n

where the result. n

This characterization shows that the remediability of a system may depend on the structure of
the actuators and sensors.

By analogy with the concept of gradient strategic actuator, we introduce the notion of gradient
efficient actuator, as follows:

Definition 3:
The actuators (Ql., g, )ISiSp g, el’ (Ql.) are said to be gradient efficient if the system (1)—(2)
so excited is weakly gradient remediable.

The actuators gradient efficient define actions with the structure (spatial distribution, location

and number) can compensate the effect of disturbance distributed on the system. We have then
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the following characterization of the gradient efficient actuators.

Form=>1, let M, be the matrix of order (pxrm) defined by M, :(<gl.,wmj>) A<i<p

ij

and 1<j<r  and let G, be the matrix of order (qxrm) defined by

m

u ow, .
G = h,—* ,1<i< and 1<j<r .

k=1 k

Proposition 5:

The actuators (Qi,gi )lgiSp’ g el’ (Qi) are gradient efficient if and only if

ker(V*C*)z ﬂl ker(M, f, ). Where, for 6 e IR"and m=>1,

£,0)= V'O, (V' C 0w, ) (V' COm,, ) IR
Proof:

We assume that the actuators (Qi, g; )1 i<y 8i € r (Qi) are gradient efficient and we show

that ker(V*C*)z ﬂker(Mm fm) Since the Proposition 4, the system (1)-(2) is weakly

m=1
gradient remediable on [O, T ] if and only if ker(B*F *V*C*):ker(F *V*C*). Letd € IR?,

we have

Ze ' Z< C'6, W"v'>L2(Q)<gl’ ij>L2(Ql)

m=1 Jj=1

B'F'V'C0=BS(T-)V'C6= eV 9>Wmf>L2<g)<g2’Wmf>L2<gz)

m>1 =
;e : > <V C'o,w, > 2 )<gp, m1>L2(Q,,)

and we have Vm >1,

'm

Z<V*C*‘9; Wi >L2(Q)<g 1> W >L2(Ql)

=
M, f,(0)= Z<V*C*9;ij>L2(Q)<g2’W"’-i>L2(Qz)

'm

Z<V*C*6); W’”f>L2(Q)<gP’ ij>L2(Qp)

J=1

If we assume that@ € () ker (M, £, ), then

m=1
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Oeker(M,f,) Vm=>1

:Zvcewmj (giwy) =0, Vi€ 12,00, pl ¥m 21

:>Ze Z<V co,w, ><gl.,w .>:0,Vie{1,2,...,p},Vm21

m=1

= B'F'V'C'0=0=0cket(B'F'V'C" )where Nker(M, f,)ckedB F'V'C’) that is

m>1

N ker(Mmfm):keI(B*F*V*C*).

m>1

On the other hand, we have for every 6 € IR?,

F'V'Co= S V C Z Z<V c0,w, >wije assume that
m21 Jj=1

feker(F'V'C"), then F'V'C'6=0

F'V'Co=S(T-)Jv'C =) ™ Z(v C'0.w,;)w,; =0

m21 =1
=SS (VC0,m, )0, =05 V'CO=0 0 ker(V°C”). Then,
m>1 =1
ker(F*V*C*)c ker(V*C*). If we assume that 6 € ker(V*C*), then V'C'0 =0 thatis

FV'Co=Y "3 (v'Co,w, )w, =0=0ecke(FV'C), then

m>1 =1
ker(V*C*)c ker(F*V*C*) that is ker(V*C*): ker(F*V*C*).
Where the result. O
Corollary 4:

If there exists m, =1 such that
rank G,ZO =q (7)

then the actuators (Q;,g;),... g el (Q,) are efficient if and only if ) ker(M G ): {o}.

m>1

Proof:
Let @elR?,then Heﬂker(Mman)c>(Mman)9:0, Vm>1

m21
q
e

=1 j=1

n

(2w, >< Z%> 6,=0,Ym>1Vi=1,..,p

=1 OX;

'm
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= i<gi,wmj><V*C*,wmj>L2(Q) =0,Vm=>LVi=1,...,p

J=1

<:>(Mmfm)9=(), Vm=2le0e ker(Mmfm)this gives [ ker(MmG;): N ker(Mmfm).
m=>1

m>1 m>1

On the other hand, 8 € ker (V*C )<:> V'C'0=0, then for m,that appears in the hypothesis

and by using (5) the formula of the operator C”, we obtain

q " ow
vVCow V=) 86(h, a =0,Vi=1,...,r, =G 0=0=0ckerG’  and
< m0,> ; l< : ; Xy >L (o) ! " " "

since rank G, =gq ,then kerG) =1{0} this gives #=0.Thatis ker (v'c)=1o}
Finally, the proof follows directly from the Proposition 5. O
Corollary 5:
If there exists m, =1 such that rank (G,ZO )= g and if

rank (Mmo Gio)zq (8)
Or

rank (Mmo ): T 9)
then the actuators (Q,, g, )ISiSp ,g, €L’(Q,) are gradient efficient.
Proof:
Assume that there exists m, =1 such that rank (M "0 Gfo ): q . The matrix (M o G,,];O ) is of
order pxq . From the theorem of rank to  matrices [20], we
have rank (Mmo G, )+ dim(ker (Mmo G, )): g, and then dim(ker (Mmo G, ))z 0 witch is
equivalent to ker (M o Gomo ): o0} = an ker(M G )= {0}. Since the Corollary 4, that is

equivalent to the gradient efficient of the actuators (Q,, g, )Eigp .8, €L} (Q,).

Now, we suppose that rank( ! )zq and rank (M m0)=r , - The matrix (GT ) is of

m( m mQ

order r, xg . By using the theorem of rank to matrices [20], we have

m

rank (G; . )+ dim(ker (G,ZO )): g then, dim(ker (G,ZO ))z 0. That is equivalent to

ker (G )={o} (10)

The same, the matrix (M o ) is of order pxr, . By using the theorem of rank for matrices
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[19], we have rang (Mm0)+ dim(ker (Mmo )):r . And from (9), we obtain

mo

dim (ker (M o ))z 0 which is equivalent to

ker (M, )= {0} (11)
On the other hand, let @ eker (M, G” ), then (M, G” )0 =0which gives M, (G 6)=0.

From (11), we obtain G,,J;OH: 0 and from (10), we obtain =0 then ker (Mmo G,Z;O ): {O}

and then, [) ker(M mG;)={0} which is equivalent, from the Corollary 4, to the gradient

m=1
efficient of the actuators (Q,, g, )ls‘sp g, el (Qi ). O
Remark 1:
1) The condition (8) =g < p.

2) The condition g < p is not necessary for actuators to be gradient efficient. Indeed, in the

case of a single actuator (Ql, g) and of ¢ sensors (D,,A, )ie; o » With g>1,
n 8Wm )
M =(<g,wmj>) ~1s of order (lxrm) and G; :(Z<hl” ]>J is of order
1< j<ry, = axk iljgl;m
(rm xq) consequently M, G, = Zz<g, Wi > Gwmj is of order (lxq).
J= k=l ] axk 1<i<q

From the Corollary 4, if there exists m, >1 such that rank G,ZO =q, then (Ql,g) is
gradient efficient if and only if ) ker(M .Gl ): {0} Then there exists n,,n,,...,n, such
m>1

that n, #n, for i#j and

N ker(M, G )=1{0} (12)

i=l,m

then (Ql , g) is gradient efficient. In particular ifm =g, the condition (12) is equivalent to

n

S lemifnzz) EEemin )

j=1 k=1 j=1 k=l

#0

ZZ<g >< a;i> 22<gw><ha;1k>

j=1 k=1 =1 k=1
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6. GRADIENT REMEDIABILITY WITH MINIMUM ENERGY
For fel’ (0, T, X ) , we study the existence and the unicity of an optimal control
u eLz(O,T ;IR" ) ensuring, at the time7', the gradient remediability of the disturbance f
such that CVHu + CVFf = 0. That is the set defined by

D =1{ue I}(0,T;IR")/ CVHu + CVFf =0} (13)
is non empty.

2
2(0,7;1R")

2
IR?

We consider the function J(u)= ||CVHu + CVFf

+ |

The considered problem becomes migl J (u) For its resolution, we will use an extension of the

Hilbert Uniqueness Methods (H.U.M). For@ € IR, let us note

i

| [.is a semi-norm on IR? . If the condition (7) is verified then it is a norm if and only if the

o B'S(T-s)V'C"O| ,ds

2
IR"

system (1)-(2) is weakly gradient remediable on [O, T ] The corresponding inner product is

given by <6’, a>* =

O ey

(B'S"(T - s)V'C"0,B°S" (T —s)V"C o )ds

and the operator A:/R? — [IR? defined by
AO=CVHH'V'C'0
T
= CV[S(T - 5)BB"S"(T—s)V'C 0 ds
0

Then, we have the following proposition:

Proposition 6:

If the condition (7) is verified, then || |,is a norm on IR if and only if the system (1)-(2) is

weakly gradient remediable on [O, T ] and the operator A is invertible.

Proof :

We have
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% B'S'(T-s)V'C'o =

B'S (T-sWV'C'o|,

) 2
(I S——
0
= B'S(T-)V'C'0=0=0eker(B'S' (T-V'C )=ker(BFV'C’)
But ker(B*F v'ct ): an ker (M - ) (see the Proof of Proposition 5) and we have also
N ker(M,G" )= N ker(M,, £,) (see the Proof of Corollary 4)

m>1

then, ker(B*F*v*C* ) - N ker(Mm G,Z) this gives 0 e Ql ker(Mm G,i) and since the

m>1
Corollary 4 we obtain the result.

On the other hand the operator A is symmetric, indeed

IR IR

(A0,0) 4 =(CVHH'V'C"0,0)  =(0,CVHH'V'C'o)  =(0,A0)

IRY
and positive definite, indeed
(A0,0),. =(CVHH'V'C’0,0)
=(H'V'C'0,H'V'C’0),
T

= I<B*S*(T ~sIV'C'0.B'S'(T-s)V'C’0) ,ds

IR"

20,7317

0

=[6]; >0, fore=0

and then A is invertible. O

We give hereafter the expression of the optimal control ensuring the gradient remediability of
a disturbance f at the time 7.

Proposition 7:

For f eLz(O,T ;X), there exists a unique &, € IR’ such that AO, =-CVFf and the

control u, ()z B*S*(.)V*C*Hf verifies CVHu, + CVFf =0. Moreover, it is optimal and

.

=%
2(0.7:1r") H /

Proof :

ugf

From the Proposition 6, the operator A is invertible then, for f el’ (0, T, X ), there exists a

unique ¢, € IR’ such that
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AO, = -CVFf

and if we put u, ()= B*S*(.)V*C*Hf , we obtain
T

AB, =CV j S(T-5)BB'S" (T - 5)V'C’6, ds=CVHu,,
0

= —-CVFf = CVHugf = CVHugf +CVFf=0.

The set D defined by (13) is closed, convex and not empty. For ueD , we

2
2(0,7;1R7)"

have J (u) = ||u

J is strictly convex on D, and then has a unique minimum at

u" €D, characterized by <u*,v—u*> >0; VveD.

2 (O,T;IRP)
For ve D, we have

I112(0,7;17)

<u€/ V=it >LZ or) <B*S*(-)V*C*9f,v - B*S*(.)V*C*9f>

=(0,,.CVHv-A®,) , =0

IRY

Since " is unique, then u’ =1y, and u, is optimal with

,

2 2 2
.

B'S'(WV'Co,

le;

LZ(O,T;IRP):‘ LZ(O,T;IRP):
6. APPROXIMATIONS AND NUMERICAL SIMULATIONS

This section concerns approximations and numerical simulations of the problem of gradient

remediability. First we give an approximation of 6, as a solution of a finite dimension linear

system Ax=>5b and then the optimal control u, o with a comparison between the

corresponding observation noted z, , and the normal case.

7.1 Approximations

e Coefficients of the system: For 7, j > 1, let

a;; = <Ae. , ef> where (e.) is the canonical basis of IR?, we have
! ! J [ R4 L q

1<i<

T
Ae, = Cvj S(T—s)BB"S" (T —s\V'C"e, ds

0

And for M, N sufficiently large, we have
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b, =—(CVFf.e,)

For N sufficiently large, we have

N Iy T
5 ~—ZZZ <8wmh . > J’e/lm'(r—s)< F(5) ) 2 ds
ox, 2(p;)0 o

m'=1 h=1 k=1
e The optimal control: In this part, we give an
approximation of the optimal control u, which is defined by u,, (.)=B 'S *(T - .)V*C *Hf.

Its function coordinates u, , (.) are given by

u,, ()=(g,.8 (T-Jv'C'o >z

for a large integer N .

e Cost: The minimum energy (cost) is defined by

T 2
L2(0,T;IR1’J - [!“B*S*(T_S)V*C*H«f HjRP ds]

ugf

for N sufficiently large.
e The corresponding observation: The observation corresponding to the control is

given by

21y 1 (0= CVS(0y + OV sle=5)Bu, (5 + V[ S -s)(skis

Its coordinates (z ey f()) are obtained for a large integer N , as follows:
1<j<q

2yt ZZZ ) r@ <h (Xh >L2(D,)

m'=l h=l k=l

D PPITES

m'=l h=l k=1 i=l

+

t

N By n
\t—s \ an' \t—s
e s 333 % e o, s
k

0 m=l h=l k=l 0
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7.2 Numerical simulations

We consider without loss of generally the following diffusion system

L ()= 3(00)+ Y o, (N )+ () <RI
y(x,0)=y°(x) Q
WED)=0 oQx 10, 7|

with Qz]O, l[ and a Dirichlet boundary condition. In this case, the functions w, () are

defined by wm(x)zx/i sin(mﬂx);le. The associated eigenvalues are simple and given

2

by A, =-m’z*; m>=1.Then in the case of:
e aninitial state: 3’ () =0,
o asensor:(D,h) with D=0,1[ and A(x) =2x? (g=1)

e an efficient actuator: (Q, g) with Q= ]0, l[ and g(x)=2x’ ( p= 1)

e adisturbance function: defined by f (x, t) =240 e_[E x] ;1>0

For M=N=1 and T =70, we obtain numerical results illustrating the theoretical results
established in previous sections. Hence, in figurel, we give the representations of the discrete

observation z, , corresponding to the control u=u, and the disturbance S and z,,

which represent the normal observation, thatis #=0 and /'=0.

0 10 20 40 50 60 70 80

Observations

-10
-12

-14
Time

Fig.1. Representation of z, . (blue line) and z,, (red line).
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This figure show that for ¢ sufficiently large (t 250), the disturbance f is compensate by

the control optimal u, , at the time T (T = 70) that is, we have z, o-f (t) = ZO,O(Z).

The optimal control u, ; ensuring the gradient remediability of the disturbance f , is

represented in figure 2.

1,00E-01

0,00E+00
0,00E+00 1,00E+01 2,00E+01 3,00E+01 4,00E+01 5,00E+01 6,00E+01 7J00E+01 8 00E+01
-1,00E-01

-2,00E-01
-3,00E-01

-4,00E-01

Control Optimal

-5,00E-01
-6,00E-01
-7,00E-01

-8,00E-01 -
Time

Fig.2. Representation of the optimal control u, ; (blue line)

8. CONCLUSION

In this paper, which is an extension of previous works to the analysis of the gradient of a
large class of parabolic systems, new notions of weak and exact gradient remediability are
introduced and characterized. The relation between the notion of gradient remediability and
the notion of gradient controllability is also studied. We have shown that a parabolic system
is gradient remediable if it is gradient controllable. Furthermore, we have shown that the
exact and weak gradient remediability of a system may depend on the structure and the
number of the actuators and sensors. Using an extension of the Hilbert Uniqueness Method,
we have shown how to find the optimal control ensuring the gradient remediability of the
known or unknown disturbance. The results of illustrative examples and numerical
approximations are acceptable.

These results are developed for a class of discrete linear distributed parabolic systems, but
the considered approach can be extended to other class of systems with a convenient choice

of space.
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