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ABSTRACT

This work aims to compare several algorithms for predicting the inhibition performance of

localized corrosion. For this more than 400 electrochemical experiments were carried out in a

corrosive solution containing an inorganic inhibitor. Pitting potential is used to indicate the

performance of the inhibitor/oxidant mixture to prevent pitting corrosion.

At the end of the electrochemical program a file containing all the experimental results has been

prepared and submitted to several algorithms. Through a training phase each algorithm uses a set

of experimental results to adjust its parameters and another set to predict the pitting potential

starting from the properties and the chemical composition of the solution. The prediction

performance of an algorithm is estimated by the difference between experimental pitting potential

and the calculated one. The order of performance of the algorithms is: GA-ANN > LS-SVM >

PSO-ANN > ANN >ANFIS > KNN > RT > KBP > LDA.

Key words: Pitting potential, Corrosion inhibitor, Performance prediction, Artificial intelligence.
Author Correspondence, e-mail: jacoubchimie@yahoo.fr

doi: http://dx.doi.org/10.4314/jfas.v9i1.19

Journal of Fundamental and Applied Sciences

ISSN 1112-9867

Available online at http://www.jfas.info

Research Article

Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0

International License. Libraries Resource Directory. We are listed under Research Associations category.



Y. Boukhari et al. J Fundam Appl Sci. 2017, 9(1), 308-322 309

1. INTRODUCTION

Any industrial installation with solid/liquid interfaces is exposed to corrosion risks. If some forms

of corrosion can be estimated and controlled, others remain unpredictable and pernicious. Pitting

corrosion is one of the major industrial threats despite all the studies that have been devoted to it

[1, 2]. In aqueous medium and during a metastable phase, pits appearing on metal surfaces are

microscopic and undetectable [3]. When pits become stable, they evolve so quickly that they can

cause unexpected and irreversible material damages. Fighting such a threat can only be

preventive for example by the use of chemical inhibitors. For a secondary cooling circuit of a

nuclear installation, made of carbon steel and open to the atmosphere, the localized corrosion

inhibitors should also be chemically stable and non-toxic in order to avoid any damage to the

environment after the periodic water draining [4].

In the present work we have been interested by inorganic inhibitors: tungstate, molybdate whose

efficiency has been described in a previous study [5], and also silicates, carbonates, bicarbonates

and three forms of phosphates.

Many studies were conducted in order to understand the chemical process specific to each

inhibitor [6, 7]. But what is observed is that in the majority of studies, the performance is

interpreted in terms of the variation of local pH, ionic conductivity or passive film properties. The

inhibition performance has rarely been attributed to the specific chemistry of the inhibitor. A

consensual fact for all studies is the use of the pitting potential Epit as an inhibition performance

indicator. This parameter is usually taken from voltammograms obtained from linear potential

sweep voltammetry. If experimentally an anodic shifting of this parameter indicates an inhibition

performance, theoretically it is extremely difficult to predict the value of this parameter on the

basis of the chemical composition of the medium. Under these conditions, the artificial

intelligence through the use of training algorithms can be a feasible and effective alternative.

Among modern algorithms LS-SVM, KNN, LDA, ANN, PSO-ANN, ANFIS, GA-ANN, RT and

KBP are based on training and testing steps.

Least Squares Support Vector Machine (LS-SVM) is an algorithm recommended to solve both

discrimination and prediction problems through solving a set of linear equations. The technique

has been proposed by Suykens and Vandewalle [8]. Its principle is based on delimitation. It has

been applied with some enthusiasm in various fields especially in the prediction of corrosion

stress [9] or pits prediction [10]. K-Nearest Neighbors (KNN) algorithm is a discrimination and
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prediction tool. Its principle is to take into account at the same time the K samples destined to

training whose variables are the closest to those of the new entry x, by a distance to be defined.

The technique has been applied recently in some studies relating to localized corrosion [11].

Linear Discriminant Analysis (LDA) is however an older method. Its principle is to find a linear

combination of parameters. An example for the application of this algorithm is the study for

modeling offshore pipeline failures [12]. Artificial Neural Networks (ANN) is among the largely

used prevision algorithms. The principle is based on the adjustment during the training phase of

multiplication parameters. In a previous study, we concluded about the performance of the

algorithm for pitting potential prediction [5]. Particle Swarm Optimization (PSO) is a

metaheuristic procedure invented by Russell Eberhart [13]. The algorithm is inspired by the

movement of a group of birds [14]. Its principle is based on a set of potential solutions evolving

to approach a convenient solution. The aim is to find the global optimum. At each iteration, the

movement of each solution considers the previous position, the environment and the previous

environment position. PSO-ANN is a combination of PSO and ANN that allows to get the best

out of these two powerful algorithms [15].

Adaptive neuro-fuzzy inference system: (ANFIS) is an artificial neural network algorithm type

that is based on Takagi–Sugeno fuzzy inference system. Its inference system corresponds to a set

of fuzzy if-then rules that have training capability to approximate nonlinear functions. A recent

study compared the application of ANFIS with ANN to estimate the corrosion rate of nano-

ceramic layers of zirconium [16]. Genetic Algorithm GA has been popularized by John Holland

[17]. The principle is based on finding the extrema of a function defined on a data space. The

combined GA-ANN algorithm has a great potential to handle problems such as optimization in

complicated nonlinear systems [18], it can determine the best parameters for the ANN.

Also In a recent study on concrete reinforcement data predictions were made by combining ANN,

ANFIS and GA [19]. Classification Tree (DT) and Regression Tree (RT) method has been

developed by Leo Breiman [20] for classification or regression purpose depending on the

response variable which is either categorical or numerical. A recent study mixing various

algorithms among them classification tree has been conducted for pitting corrosion detection

[10]. Kernel Basis Pursuit (KBP) algorithms introduced by V. Guigue, A. Rakotomamonjy, S.

Canu [21] is also a fast parameter-free method that allows to estimate non-uniform-sampled

functions, it gives good results on artificial and real data.
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2. EXPERIMENTAL

All the electrochemical investigations were carried out on a carbon steel whose chemical

composition is given in Table 1. The analysis has been made by X-ray fluorescence technique

(XRF).

Table 1: Chemical composition of the steel

Elements C Mn Si P Ti Ni Cu Mo

% mass 0,18 0,52 0,22 0,009 0,003 0,039 0,63 0,015

In the experimental program, we planned 419 electrochemical experiments. With each experience

we prepare a solution containing some amount of NaCl. Chloride plays the role of the pitting

corrosion initiator. We add another quantity of one of the inhibitors: Na2WO4, Na2MoO4,

NaHCO3, Na2CO3, Na3PO4, Na2HPO4, NaH2PO4 or SiO3. Then we complete by an amount of the

oxidizing agent KIO3. As we have shown in a previous paper [5], the oxidant should enhance the

efficiency of the inhibitor.

Once the solution prepared, we note its pH and its ionic conductivity. All the electrochemical

experiments were performed in an aerated cell containing three electrodes: the working electrode

made of carbon steel, the auxiliary electrode made of a platinum sheet and a saturated calomel

electrode (SCE) used as a reference electrode. We used a PAR273A potentiostat connected to a

computer controlled by SoftCorr III software. Each experiment consists in tracing a

voltammogram of the working steel in the prepared solution by sweeping its potential from -0.8

to 1 V/SCE at a scan rate of 1 mV/s.

At the end of the experiment, the pitting potential is determined from the voltammogram. It

corresponds to the potential at which the current density increases sharply.

At the end of the experimental program we compiled a table of 419 X 13. Each experience is

described by a row. The columns from 1 to 12 correspond respectively to ionic conductivity, pH,

NaCl, KIO3, Na3PO4, Na2HPO4, NaH2PO4, Na2CO3, NaHCO3, Na2MoO4, Na2WO4 and

SiO3 concentrations. In one experiment, we cannot use more than one inhibitor, and the last

column (13) is reserved to the experimentally obtained pitting potential Epit-exp.
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Mathematical processing of the experimental table was made in Matlab 8.1. Matlab possesses

multiple algorithms or pre-programmed functions and it is also possible to integrate additional

tools through a toolbox. All the algorithms have been executed through M-files that contain

specific instructions for each algorithm.

Each algorithm considers the first 12 columns of the experimental table as input data to calculate

a pitting potential Epit-cal. The performance of the algorithm is then estimated by a correlation

coefficient R which takes into consideration the difference between Epit-cal and Epit-exp. Before the

mathematical processing, the experimental table is divided in two parts. Each algorithm exploits

two third of the data table for training and the remaining part for the test.

3. RESULTS AND DISCUSSION

3.1. Experimental reading of the pitting potential

In an electrochemical study the only way to measure the performance of a pitting corrosion

inhibitor remains the value of the pitting potential. However, relying on this indicator has two

major problems: the difficulty in expressing this parameter from the knowledge of the

physicochemical properties of the solution and also taking the exact numerical value from a

voltammogram. In order to show this difficulty to get experimentally the pitting potential we

superimposed on Figure 1 several voltammograms.

Fig.1. Various shapes of the experimental current-potential curve and the difficulty in

determining the pitting potential.
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The current sensitivity is 1 µA . With this limitation it is difficult to observe currents due to

metastable pits that are much lower. On another side pitting initiation can be followed by

repassivation phenomena if the pH of the solution is not too low. This usually results in a lower

slope of the current density through which it is difficult to decide on the exact value of the pitting

potential. In the following, we consider that the pitting potential is reached when we observe a

sharp increase in the current.

3.2.Effect of pH on the pitting penitential:

Many studies show that pH has an important role in pitting resistance [22, 23]. If we admit that

the pitting process is carried out in four phases: passive film formation, passive film breakdown,

metastable pits apparition, irreversible evolution of pits [24], it becomes clear that increasing the

pH will supply hydroxides that promotes the formation of iron hydroxides which precipitate and

reinforce the passive film.

Fig.2. Effect of pH on the pitting potential.
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conductivity are parameters which affect Epit value. Due to the diversity of effects of these

reagents as well as the synergy they must have with the oxidant, it would be useful to have a

mathematical tool that would consider all the experimental parameters in a multidimensional

vector and would be able to predict the pitting potential value.

3.3. Predictive modeling with Artificial intelligence

In this study, we were interested in different algorithms used with varying degrees of success in

the field of data mining. These algorithms are similar in the fact that they consider two phases. In

the first phase called training phase a fraction of the experiments is considered. Experimental

parameters are considered as input and the pitting potential is taken as the output. During this

phase, the algorithm adjusts its own parameters in order to match the input data to the output.

During the second phase, the parameters of the algorithm are kept constant and by considering

the remaining experiments, for each vector of experimental input data the algorithm calculates an

output Epit-cal which is compared to the experimental Epit-exp. The quality of the training and

prediction are appreciated by either the correlation coefficient R or the normalized mean square

error NMSE, which in the ideal case approach respectively 1 and 0.

In the following Figure 3, we can see the distribution of the calculated pitting potential versus the

experimental pitting potential. For each algorithm, we have two figures: one corresponding to the

training phase and the other to the testing phase. R and NMSE are reported on each figure.
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(h)

(i)
Fig.2. Calculated Epit versus experimental Epit during training and testing: (a) GA-ANN; (b)

LSSVM; (c) PSO-ANN; (d) ANN; (e) ANFIS; (f) KNN; (g) KBP; (h) RT; (i) LDA
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distribution of the points corresponding to Epit-exp = 1 V/SCE. KNN and ANN are more efficient

in predicting a no-pitting situation.

3.4. Comparison between algorithms:

The need to compare all the algorithms, and at the same time to estimate for each algorithm the

predictive capacity during training and testing phases led us to draw the following figure. In

Figure 4, we can visualize for each algorithm the relationship between the correlation coefficient

obtained during the test phase versus that obtained during the training phase.

Besides the obvious weak performance of LDA, the performance of other algorithms is relatively

comparable. We can also see that a better training does not necessarily lead to a better

performance during the test. KNN has always presented the best correlation coefficient during

training as it is illustrated on figure 3 where all the points are located on the identity line.

However for testing the algorithm is not the best one.

Fig.3. a 2D graphic indicating the performance order of algorithms for training and testing

phases.

3.5. Formatting of input data

We also realized that the way by which the input data are presented to the algorithms allow a

more or less successful pitting potential prediction. Figure 5 illustrates through histograms

correlation coefficients R obtained with each algorithm during each phase when the

concentrations of the reactants are presented in normal, square root or logarithmic form.

LS-SVM
GA-ANNANFIS

PSO-ANN
ANN

KBP

RT

KNN

LDA

0.89

0.91

0.93

0.95

0.97

0.99

1.01

0.89 0.91 0.93 0.95 0.97

R 
tr

ai
ni

ng

R test



Y. Boukhari et al. J Fundam Appl Sci. 2017, 9(1), 308-322 319

Fig.4. Histograms compiling correlation coefficients for all the algorithms, during training and

testing and whether the concentrations of the reactants are taken in square root, normal or

logarithm.

The histograms allow to clearly confirm the poor performance of LDA algorithm we mentioned

above. We can also state that if KNN trains well, whatever the manner in which the chemical

concentrations are presented, its generalization capabilities remain modest. Now regarding the

way by which concentrations are presented, and except for LDA, all algorithms give a better

correlation coefficient by considering the square root of the chemical concentrations.

4. CONCLUSION

Pitting corrosion and its inhibition remain microscopic phenomena that cannot be measured only

by macroscopic means and observables such as the pitting potential. The difficulty to rigorously

getting the pitting potential value is also enhanced by a probabilistic distribution around a mean

value and that distribution is influenced by many parameters.

The evaluation of the performance of the algorithms considered in this study rejects clearly the

LDA algorithm for this kind of phenomena. Although KNN remains the best algorithm during
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the training phase, in the testing phase the order of performance is: GA-ANN > LS-SVM > PSO-

ANN > ANN > ANFIS > KNN > RT > KBP > LDA.

The manner by which the input data is presented to an algorithm has visibly an influence on the

prediction performance. Considering the square root of the concentrations generally leads to a

better correlation coefficient.
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