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Abstract 

The reality of climate change continues to influence the intensity and frequency of extreme weather 
events such as heat waves, droughts, floods, and landslides. The impacts of the cumulative interplay 
of these extreme weather and climate events variation continue to perturb governments causing a 
scramble into formation of mitigation policies. However, national scale composites of climate 
hotspots remain a bottle neck to this policy formation.  This paper therefore, modelled the spatially 
explicit extreme weather and climate events indicators into a Uganda-national extreme weather and 
climate events composite hotspot indicator model. The hotspot model was mapped into decomposable 
sub-indicators based on the Geon concept. A spatial indicator framework was developed through 
literature review and expert knowledge. The resulting indicators were weighted using Principal 
Component Analysis (PCA) /factor analysis and then normalized. They were aggregated using Multi 
Criteria Decision Analysis (MCDA) tools in an Object Based Image Analysis (OBIA) environment. 
Sensitivity analysis was carried out to ascertain the influence and significance of the indicators in 
the resultant model. A cumulative climate change index model was hence analysed and mapped. The 
mapping provides spatially explicit information regarding climate extremes at national scale, 
consequently addressing its growing demand among public and private institutions. Further 
research, into the complex interactions of cumulative climatic factors and external components like 
ecological systems and anthropogenic biomes will go a long way in boosting climate information. 
This coupled with easy access to open web availability; if adopted, will readily inform national 
climate change policy at national level and greatly improve decision making within development 
sectors, hence mitigating the advance effects of climate change. 

1. Background 

Climate change is a global reality, and Uganda is no exception. Although developed nations 
contribute higher levels of greenhouse gases (GHG), developing nations like Uganda that have had 
miniscule contribution to global warming are feeling the impacts of climate change first and worst 
(Oxfam, 2008). According to Hepworth (2010), if the GHG emissions are not reduced, climate 
models consistently show an increase in global temperatures of up to +4.30C, and +3.20C in East 
Africa by 2080. Similar consistence is observed in the models projecting a 7% increase in wetter 
conditions in the same period. These variations are likely to mean; increased food insecurity, soil 
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erosion and land degradation, flood damage to infrastructure and settlements, shift in spread of 
diseases like malaria and shifts in agricultural productivity and natural resources. Such consequences 
of climate change inherently make Uganda highly vulnerable to the impacts of climate change 
(ACCRA, 2010).  

Lavell et al., (2012) propose that, extreme weather and climate comprise the main facet of climate 
variability under stable or changing climate. They further define extreme events to mean the 
occurrence of value of a weather or climate variable above or below a threshold value of the range of 
observed values of the variable. Similarly, the IPCC, (2012) summary to policy makers argues that 
managing the risks of extreme events and disasters to advance climate change adaptation is best 
approached by assessing the scientific literature on issues that range from the relationship between 
climate change, extreme weather and climate events to their implications for society and sustainable 
development. Therefore, as much as the character and severity of impacts from climate extremes 
depend not only on extremes but also on exposure and vulnerability, this study explored and focused 
on the weather and extreme climate events that provide assessment concerns to a policy maker as a 
result of the interaction of climatic extremes with environmental and human factors triggering impacts 
and disasters. 

Of recent, Climate change has forced itself on the agenda among Ugandan government ministries 
and agencies and is perceived as a ‘hot topic’ consequent to weather extremities of the 2007 floods, 
landslides, high temperature spells and repeated drought (Hepworth and Goulden 2008).  Inevitably, 
government bodies and forums have scrambled into developing climate change related adaptation 
and mitigation policies. This is intended to shift the disaster management paradigm from the 
traditional emergency response focus to one of prevention and preparedness (Kaggwa et al., 2009). 
The climate assessments that associate national policy development deal with several spatial climate 
related indicators. However, these are often availed at global scale rather than national scale; and at 
single indicator and not composite indicator interaction level. The rarely resultant hotspot composites 
are also not often decomposable to sub-indicators and open accessibility to them remains a challenge. 
This creates a problem of non-precise national climatic composite assessments. Availing a framework 
for a regionalized decomposable and national climate hotspot index, will thus go a long way in easing 
access to climate index information and informing policies for effective climate change adaptation 
and mitigation among vulnerable communities across the country. This paper therefore, uses 
geospatial technologies to develop a spatially explicit tool anchored on climate change hotspot object-
based regionalization models for Uganda whilst utilizing the geon concept (Lang et al., 2010). This 
approach adopted by related research (Hagenlocher et al., 2013 and Kienbeger &Hagenlocher 2014) 
provides not only an iterative but a continuously evolving process of climate resilient pathways to 
manage change within these complex systems. This in turn avails decomposable deliverables that 
make sustainable development the ultimate goal in national policy formation and considers mitigation 
as a way to keep climate change moderate rather than extreme. 
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2. Study Area 

Climate change in Uganda has started manifesting itself through increased frequency of extreme weather 

events, i.e. droughts, floods and landslides, pausing a serious threat to the country`s natural resources, social 

and economic development (NAPA, 2007). This research was therefore carried out within the spatial domain 

of the Republic of Uganda represented in Figure 1 for spatial delineation of extreme weather and climate 

change hotspots. 

Figure: 1 Location map of Uganda 

3. Methodology 

Spatially explicit climate hotspots are direct derivatives of the integration of proxy 
multidimensional phenomena. The combination of the different dimensions of phenomena is 
achieved by applying the spatial composite index formation methodologies (Salzman et al., 2003; 
Mazziotta and Pareto, 2012). The construction of a composite index is a complex methodological 
flow based on phases, with each phase involving several alternatives and possibilities that have an 
effect on the quality and reliability of the results (Mazziotta and Pareto, 2013). Upon development of 
a theoretical framework and selection of variable, Trogu, (2014) spatialized the Organisation for 
Economic Co-operation and Development (OECD), (2011) general composite index construction as 
implied in Table 1. This study adopted the spatial methodology workflow to cope with the geospatial 
nature of the datasets. 

 

  



South African Journal of Geomatics, Vol. 7. No. 1, AARSE 2017 Special Edition, January 2017 

93 

Table: 1 Spatial Index construction workflow 

OECD/JRC 
Methodology 

 Spatial Methodology 

Definition of the theoretical framework 
Definition and analysis of spatial indicator framework 

Data analysis 
Multivariate analysis 
Data normalization 

 Data modelling and indicator 
processing 

Data normalization 

 Weighting and 
aggregation 

Sensitivity analysis 
Data Visualization 

 

3.1. Spatial Indicator framework 

Indicators that relate to extreme climate and weather events, were conceptualized through expert 
opinion and validated against literature review.  Upon conceptualization, identified indicators were 
obtained from data custodian organizations that include; Uganda meteorological services, 
climatology analysis software like GeoClim of USGS/ FEWSNET (Famine early warning systems 
network), and DFO (Dartmouth flood inventory). Ideally, the indicators were adopted relative to their 
relevance, temporal scale, spatial scale, accessibility and soundness. Consequently, an indicator 
framework for extreme climate and weather events was developed (Table 2). The indicators with their 
respective proxies were evaluated and detailed in the same table. The framework is inclusive of 
indicators that had sufficient data over the cumulative time series subject to validation. The indicators 
also give the best spatial representation across the study area. 

 

Table: 2 Extreme weather and climate events indicators and sources 

Dataset Proxy Available time series Source 

Temperature Temperature 1981-2015 UMA,USGS/FEWSNET-GeoCLIM 

Precipitation Average rainfall 1981-2014 UMA,USGS/FEWSNET-GeoCLIM 

Co-efficient of variation of rainfall 1981-2014 UMA,USGS/FEWSNET-GeoCLIM 

Drought Standardized Precipitation Index(SPI) 1992,1997, 2002 USGS/FEWSNET -GeoCLIM 

Flood events Flood frequency 1961-2015 UNEP/DFO 
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3.2. Data Modelling and Indicator Processing 

3.2.1. Data processing 

Precipitation related data was generated with aid from the GeoClim Climatology analysis tool. 
GeoClim is a tool that facilitates climatological analysis of rainfall and temperature data developed 
by United States Agency for International Development (USAID), United States Geological Survey 
(USGS) / (FEWS NET). GeoClim runs with climate Hazards Group Infra-Red Precipitation with 
(Station) (CHIRPS) data. The station data is added after calibration using in-situ / station data. The 
tool builds on approaches of ‘smart’ interpolation techniques, high resolution, and long period of 
record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. 

The CHIRPS GeoClim tool comes with BASIICS (Background-Assisted Station Interpolation for 
Improved Climate Surfaces) component algorithm. The algorithm was used to blend the gridded 
datasets (CHIRP satellite data) with the station data obtained from the Uganda Meteorological 
Authority (UMA).  The blending is done using a modified inverse distance weighting (IDW) approach 
that borrows from the concepts of kriging. The algorithm extracts values from the grid at all locations 
where the ground station data has valid values. The program then carries out least squares regression 
between the collocated point and the extracted grid values. It then out puts the R-squared (R2) value 
in a statistical diagnostic file. The resultant satisfactory calibration product (CHIRPS) was then 
interrogated and rainfall, co-efficient of variation of rainfall, temperature and drought (SPI) proxy 
data generated. The already pre-processed flood data is generated by DFO. It is derived from news, 
government, institutional, and various remote sensing sources like Landsat and MODIS.  

3.2.2. Indicator Pre-Processing 

In order to facilitate further analysis, images must have similar properties such as; spatial extent, 
coordinate system and pixel size. To achieve this, the data obtained was subjected to conversion, 
resampling and aggregation, interpolating and transforming surface processes as shown in Figure 2. 

 Figure:2 Indicator processing methodology flow chat 
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3.3. Surface Data Normalisation 

The identified indicators required normalization to render them comparable. Several normalization 
techniques exist for example, ranking, min-max transformation, and standardization (Freudenburg, 
2003; Jacobs et al., 2004). However this study adopted the min-max method. This is because the min-
max method has the ability to widen the range of indicators lying within a small interval (OECD, 
2011) and further preserve relationships with in the data. 

OECD (2011) handbook on constructing composite indicators details the min-max normalization 
as; - Each indicator 𝑥𝑥𝑞𝑞𝑞𝑞𝑡𝑡  for a generic country c and time t is transformed in; 

 𝐼𝐼𝑞𝑞𝑞𝑞 
𝑡𝑡 = 𝑥𝑥𝑞𝑞𝑞𝑞𝑡𝑡 −𝑚𝑚𝑚𝑚𝑚𝑚𝑞𝑞(𝑥𝑥𝑞𝑞𝑡𝑡 )

𝑚𝑚𝑚𝑚𝑥𝑥𝑞𝑞�𝑥𝑥𝑞𝑞𝑡𝑡�−𝑚𝑚𝑚𝑚𝑚𝑚𝑞𝑞(𝑥𝑥𝑞𝑞𝑡𝑡 )
……………………..1 

Where 𝑚𝑚𝑚𝑚𝑚𝑚𝑞𝑞�𝑥𝑥𝑞𝑞𝑡𝑡� and 𝑚𝑚𝑚𝑚𝑥𝑥𝑞𝑞�𝑥𝑥𝑞𝑞𝑡𝑡� are the minimum and maximum value of 𝑥𝑥𝑞𝑞𝑞𝑞𝑡𝑡  across all countries 
c at time t. In this way, the normalized indicators 𝐼𝐼𝑞𝑞𝑞𝑞 have values lying between 0 (laggard,𝑥𝑥𝑞𝑞𝑞𝑞𝑡𝑡 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑞𝑞�𝑥𝑥𝑞𝑞𝑡𝑡�) and 1 (leader, 𝑥𝑥𝑞𝑞𝑞𝑞𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑥𝑥𝑞𝑞�𝑥𝑥𝑞𝑞𝑡𝑡�). 

3.4. Indicator Mapping 

The application of the above techniques resulted into the mapping of temperature (A), Rainfall 
(B), Flood (C), drought (D) Co-efficient of variation of rainfall (E) as individual indicators 
represented in Figure 3. The scale is on a continuum of red to green, with red representing the area’s 
most susceptible to extremities of the corresponding weather and climate indicator. The green 
represents the area’s least susceptible to natural extremities of the corresponding weather and climate 
indicator. 

 Figure: 3 Mapped extreme weather and climate events indicators 

3.5. Weighting 

This was accomplished using Principle Component Analysis (PCA) as statistical weighting 
technique due to its ability to group together individual components which are collinear. PCA was 
carried out and Eigen values and vectors for the input indicators obtained as an ingredient for 

A B C D E 
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obtaining factor loadings in factor analysis. Table 3 shows the results from PCA based on factor 
analysis rotation matrix obtained using the varimax rotation method.  

The rotation covered eleven iterations. The rotation involved re-distributing the values’ 
commonalities so that a clearer pattern of loadings emerges. The idea was to find an arrangement in 
which test values load high on one factor and low on others. In this study, four factors with Eigen 
values greater than one are observed for extraction, the percentage of variance represents how much 
of the total variability is accounted for by each of the factors. And also, the rotated sums of the squared 
loadings accounts for the factors that met the cut- off criterion. 

 

Table: 1 Normalized indicator weight 

Component 

Initial Eigenvalues Rotation Sums of Squared Loadings   

Total % of Variance Cumulative % Total % of Variance Cumulative % 

Normalized 

Weight 

1 1.810 36.200 36.200 1.611 32.220 32.220 1.000 

2 1.032 20.648 56.848 1.132 22.645 54.865 0.424 

3 1.010 20.198 77.046 1.109 22.186 77.051 0.408 

4 .689 13.773 90.820       0.170 

5 .459 9.180 100.000       0.000 

Results show that factor 1 accounts for 32.220% of the variability in all 5 variables. Factor 2 
accounts for 22.645%, factor 3 accounts for 22.186%. Thus the first three factors account for 77.051% 
of the total variance. 

The loadings through a rotated component matrix obtained show that the first principal component 
were heavily loaded on rain and drought, the second component loaded on temperature and co-
efficient of variation of rainfall and the third component loaded on the flood as shown in Table 4 

 

Table 4 The rotated component matrix indicating the actor loadings for each indicator 
Rotated Component Matrix 
  Component 

1 2 3 
Temperature .465 .470 -.420 
Flood .019 -.050 .961 
Rain .996 .068 .022 
Drought .928 -.053 -.062 
Coefficient of variation of rainfall -.021 .949 -.069 
Indicator Weight 1.000 0.424 0.408 
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3.6. Multi Criteria Decision Analysis (MCDA) 

With the weights for the sub indicators determined through principal component analysis, the 
weighted linear combination (WLC) was adopted to aggregate the spatial variables for the subsequent 
calculation of the CCCI. This approach multiplies normalized criteria scores by relative criteria 
weights for each sub indicator (Geldermann & Rentz 2007: Nyerges & Jankowski 2010). Drobne et 
al., (2009) further guides that the total score is obtained by multiplying the importance weight (w) 
assigned to each sub indicator (x) by the scaled value given for that into the alternative and then 
summing the products over all sub indicators(S) as indicated in Formula 𝑆𝑆=wixi  ………..2 

𝑆𝑆 = ∑𝑤𝑤𝑚𝑚𝑥𝑥𝑚𝑚   ……………………..3 

The Formula 𝑆𝑆=wixi  ……………………..2: achieves the data integration of the CCCI hotspot in 
an object based image analysis (OBIA) environment. However there was need for concepts adding 
value to these strands of data by extracting meaningful information (Lang et al, 2010). To address 
this challenge, Kienbeeger et al. (2008), proposes the adopted geon concept; a generic concept to 
reduce complexity on successive levels of intervention. For each unit, an index of cumulative climate 
change (CCCI) was calculated. Any given delineated object with cumulative sub indicators 
(𝑠𝑠1 … … . . 𝑠𝑠5) had the CCCI calculated and the magnitude of the resulting vector output in a 
multidimensional space as;- 

|𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼| = �𝑠𝑠1 +  𝑠𝑠2 + 𝑠𝑠3 + 𝑠𝑠4 + 𝑠𝑠5……………………..4 

The final vector value depicts the distance and position of each unit within the feature space. This 
reflects the notion of the regionalization. The result vector was mapped as shown in Figure 4 to 
represent decomposable extreme weather and climate events hotspots for Uganda 

 Figure: 4 Unit based cumulative national extreme weather and climate hotspots 
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3.7. Sensitivity Analysis 

Whereas these Spatial composite indicators are increasingly being used for bench-making 
countries performances (Saisana & Tarantola 2002), there are doubts often raised about the robustness 
of the resulting index rankings and about the significance to the associated policy message (Saisana 
et al, 2004). In this case, sensitivity analysis was undertaken to assess the robustness of the composite 
indicator in terms of; mechanism for including or excluding an indicator, the normalization scheme, 
the imputation of missing data, the choice of weights and the aggregation method (OECD, 2011).  

Variance based methods of sensitivity analysis have assessed themselves as versatile and effective 
among the various available techniques for sensitivity analysis of model output (Annoni et al., 2010). 
Unlike experimental weighting, where the effects of factors are over estimated, variance based 
methods look at the entire factors distribution, using customarily Monte Carlo methods of various 
sophistication (Archer et al., 1997).  Annoni et al., (2010) further asserts that the number of terms in 
the analysis of variances (ANOVA) decomposition of the variance of a model k grows as 2k. This 
makes it customary to compute just two sets of index; the k ‘first order’ and k ‘total’ effects (Saltelli 
et al., 1999).  According to Annoni et al., (2010), for a given model of the form 𝑦𝑦 = 𝑓𝑓(𝑥𝑥1 , 𝑥𝑥2, … . 𝑥𝑥𝑘𝑘), 
with 𝑦𝑦 a scalar, a variance based first order effect for a generic factor 𝑥𝑥𝑚𝑚 can be written as;- 

𝑣𝑣𝑥𝑥𝑖𝑖(𝐸𝐸𝑥𝑥~𝑚𝑚(𝑦𝑦|𝑥𝑥𝑚𝑚)) ……………………..5:0 

Where 𝑥𝑥𝑚𝑚 is the 𝑚𝑚-th factor and 𝑥𝑥~𝑚𝑚 denotes the matrix of all factors but 𝑥𝑥𝑚𝑚. The meaning of the 
inner expectation operator is that the mean of 𝑦𝑦 is taken over all possible values of 𝑥𝑥~𝑚𝑚 while 
keeping𝑥𝑥𝑚𝑚. The associated sensitivity measure (first order sensitivity co-efficient) written as: 

𝑆𝑆𝑚𝑚 =
𝑣𝑣𝑥𝑥𝑖𝑖(𝐸𝐸𝑥𝑥~𝑖𝑖�𝑦𝑦�𝑥𝑥𝑚𝑚�)

𝑣𝑣(𝑦𝑦)
……………………..5:1 

Where 𝑣𝑣(𝑦𝑦) =  𝑣𝑣𝑥𝑥𝑖𝑖(𝐸𝐸𝑥𝑥~𝑚𝑚(𝑦𝑦|𝑥𝑥𝑚𝑚) + 𝐸𝐸𝑥𝑥𝑖𝑖(𝑣𝑣𝑥𝑥~𝑚𝑚(𝑦𝑦|𝑥𝑥𝑚𝑚)) ……………………..5:2 

𝑠𝑠𝑚𝑚 is a normalized index, as 𝑣𝑣𝑥𝑥𝑖𝑖(𝐸𝐸𝑥𝑥~𝑚𝑚(𝑦𝑦|𝑥𝑥𝑚𝑚))  varies between zero and 𝑣𝑣(𝑦𝑦). 𝑣𝑣𝑥𝑥𝑖𝑖(𝐸𝐸𝑥𝑥~𝑚𝑚(𝑦𝑦|𝑥𝑥𝑚𝑚)) 
measures the first order (e.g. additive) effect of 𝑥𝑥𝑚𝑚 on the model output, while 𝐸𝐸𝑥𝑥𝑖𝑖(𝑣𝑣𝑥𝑥~𝑚𝑚(𝑦𝑦|𝑥𝑥𝑚𝑚)) is 
customarily called the residual. 

The total effect order variance based measure is the total effect in index: 

𝑠𝑠𝑇𝑇𝑚𝑚 =  𝐸𝐸𝑥𝑥~𝑖𝑖(𝑣𝑣𝑥𝑥𝑖𝑖�𝑦𝑦�𝑥𝑥~𝑚𝑚�)
𝑣𝑣(𝑦𝑦)

= 1 −  
𝑣𝑣𝑥𝑥~𝑖𝑖 (𝐸𝐸𝑥𝑥𝑖𝑖�𝑦𝑦�𝑥𝑥~𝑚𝑚�)

𝑣𝑣(𝑦𝑦)
 ……………………..5:3 

𝑠𝑠𝑇𝑇𝑚𝑚 Measures the total effect, i.e. first and higher order effects (interactions) of factor 𝑥𝑥𝑚𝑚. One way 
to visualize this is by considering that 𝑣𝑣𝑥𝑥~𝑚𝑚 (𝐸𝐸𝑥𝑥𝑖𝑖(𝑦𝑦|𝑥𝑥~𝑚𝑚)) is the first order effect of 𝑥𝑥~𝑚𝑚, so that 𝑣𝑣(𝑦𝑦) 
minus 𝑣𝑣𝑥𝑥~𝑚𝑚 (𝐸𝐸𝑥𝑥𝑖𝑖(𝑦𝑦|𝑥𝑥~𝑚𝑚)) give the contribution in of all terms in the variance decomposition which 
include 𝑥𝑥𝑚𝑚.  This qualitatively determines the indicators that have the most influence on site ranking 
.This accounts for the rank robustness of the climate change hotspot model. 

The indicators were each subjected to a minimum weight string of 0.01 and a maximum weight 
string of 0.9 and run through ten thousand (10,000) Monte Carlo simulations. Consequently the global 
sensitivity analysis average shift in ranks indices S ‘first order’ and ST ‘total effect’ were extracted 
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as shown in Table 5. Table.5 presents the GSA results in percentile format. The first order sensitivity 
index (s) represents for indicators that, if fixed independently, would reduce the variance shift in 
ranks most. This accounts for influence of indicators. The total effect index (ST) represents the 
significance of the indicators to the composite. 

 

Table 5; Global sensitivity analysis percentile influence and significance 
Factor %S %ST 

Drought 40.7 44.5 
Temperature 14.7 11.9 
Mean_Rain 13.3 16.3 
Mean_Flood 9 8.1 

Mean_Cov_Rain 13.6 19.2 
NONL 9.7 

 

4. Results and Discussion 

4.1. Static extreme weather and climate events hotspot Identification 

The result hotspot map was mapped as shown in Figure 4 to represent decomposable extreme 
weather and climate events hotspots for Uganda .Areas that are highly susceptible to extreme climate 
and weather events are indicated on the continuum of red to green. Red represents the most 
susceptible (hot spots) and thins down to green which represents the less susceptible (cold spots). In 
general, Figure 4 shows high CCCI hotspot values in the administrative regions of Eastern Uganda, 
south western Uganda, parts of western central and the far north. Furthermore, homogenous units of 
weather and climate extremes were explored and their sub-indicators decomposed into their percentile 
contribution to respective units as shown by the pie charts in Figure4 

4.2. Web Visualisation Tool 

With the emersion of this spatially based extreme weather and climate hotspots static map, open 
access to the same becomes essential. This visualization tool has been designed to allow for the 
decomposition of the identified hotspots into their underlying sub-indicators and for open access as 
well as interrogation of extreme weather and climate hotspots data in Uganda as shown in Figure 5. 
The tool was developed using ArcGIS online. It is furnished with abilities to, print visualized output, 
view individual layer indices independently, analyse and extract the attribute table, ability to change 
base maps, measure distances and areas, scale, search places and pick the coordinates. 
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Figure: 5 ArcGIS online based visualization extreme weather and climate events hotspot tool 

5. Conclusions and Recommendations  

This study set out to model decomposable climate change hot spots representing the extreme 
weather and climate events aggregated in a Cumulative Climate Change Index (CCCI). This was to 
allow one decompose a given hotspot unit into contributing sub indicators. Conclusively, the 
modelled national extreme weather and climate events hotspot bring forward a holistic view of 
decomposable spatially based indicators. The research also provides an additional understanding of 
the complex interplay of the contributing underlying weather climatic events and their spread in terms 
of influence and intensity in various regions.  

The research recommends to policy makers, to not only decompose the identified hotspots into the 
underlying sub indicators but also prioritize intervention areas. Additionally, this provides additional 
information to yield informed policies for effective climate change adaptation procedures to be used 
in mitigating the impacts among vulnerable communities in the country. To researchers, initiation of 
this work provides room for time series assessments, this will enable stakeholders monitor spatial 
shrinkage and expansion of related hotspots. Researchers will so be able to avail projections of future 
hotspot behaviour under this arrangement. 
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