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ABSTRACT 

Crop yield estimation is a very important aspect in food production as it provides information to 
policy and decision makers that can guide food supply not only to a nation but also influence its 
import and export dynamics. Remote sensing has the ability to provide the given tool for crop yield 
predictions before harvesting. This study utilised canopy reflectance from a multispectral sensor to 
develop vegetation indices that serve as input variables into an empirical pre-harvest maize (Zea 
mays) yield prediction model in the north eastern section in Free State province of South Africa. Some 
fields in this region that were grown of maize under rain-fed conditions were monitored and the grain 
harvested after 7-8 months with actual yields measured. The acquisition of suitable medium 
resolution SPOT 5 images over this area was in March and June before the grains were harvested in 
July of 2014. A number of well known spectral indices were developed using the visible and near 
infrared bands. Through the random forest algorithm predictive models, maize grain yields were 
estimated successfully from the March images. The accuracies of these models were of an R2 of 0.92 
(RMSEP = 0.11, MBE = -0.08) for the Agnes field and for Cairo the R2 was 0.9 (RMSEP = 0.03, 
MBE = 0.004). These results were produced by the SAVI and NDVI respectively for both fields. It 
was therefore evident that the predictive model applied in this study was site specific and would be 
interesting to be tested for an optimal period during the plant life cycle to predict grain yields of 
maize in South Africa. 

Keywords: maize, non-linear regressions, prediction, random forest, spectral indices, SPOT 5, 
variable importance, yield 

1. Introduction 

1.1. Background to study 

Crop yield prediction is production estimates that are made a couple of months or weeks depending 
on the crop in question before the actual harvest. This is frequently done through computer 
programmes that utilize agro-meteorological data, soil data, remotely sensed and agricultural statistics 
to describe quantitatively the plant-environment interactions (Zere et al., 2004). In some instances, 
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meteorological data is included to run some of the yield models. The meteorological data is usually 
generated from weather stations and cover a given area. Hence, crop yield can be described as 
involving the effect of biotic and abiotic factors cumulatively which could however vary not just 
across fields but among fields and seasons alike (Bullock, 2004). 

The traditional methods turn to be time-consuming and cannot consider yield variations over a 
field or space; therefore they are prone to large errors due to incomplete ground observations, leading 
to poor crop yield assessment and crop area estimations or predictions (Reynolds & Yittayew, 2000; 
Sau et al., 2004). In the light of these limitations, remote sensing methods were introduced (Mo et 
al., 2005). While remote sensing methods seemed to have responded to the above challenges, they 
were not without problems among which availability of suitable satellite data is enlisted. These 
challenges have led to the continuous seeking of improvements in yield estimation through either 
repeated application of already existing methods in different fields with different satellite data and 
crop types (Ngie et al., 2014). 

Over the years remotely sensed data has proven worthy through its extracted spectral information 
to give information that relates statistically to crop yields and mapping of the spatial variability across 
regions as well as fields (Sun, 2000; Li et al., 2007). The frequently researched field crops have 
included wheat (Singh et al., 2002; Thenkabail, 2003; Bullock, 2004; Kastens et al., 2005; Ren et al., 
2008), potatoes (Al-Gaadi et al., 2016) rice (Casanova et al., 1998; Noureldin et al., 2013), soybeans 
(Kastens et al., 2005; Li et al., 2007, You et al., 2017) and maize (Lewis et al., 1998; Shanahan et 
al., 2001; Baez-Gonzalez et al., 2002; Ferencz et al., 2004; Baez-Gonzalez et al., 2005; Kastens et 
al., 2005; Kogan et al., 2005; Mkhabela et al., 2005; Li et al., 2007; Inman et al., 2007; Salazar et 
al., 2008; Panda et al., 2010; Bognár et al., 2011). Most of these studies made used of the normalised 
difference vegetation index (NDVI) generated from the coarse resolution sensors such as the 
Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS) to model yields. The use of these sensors was instrumental since the 
research focus was mostly at regional or county levels. Among the above cited studies, Singh et al. 
(2002) and Thenkabail (2003) worked on wheat fields at local levels and for the maize, only Inman 
et al. (2007) used a handheld sensor to collect remotely sensed data at field level for yield estimation. 
However, the listed studies above can only show the trend and importance to maize yield predictions 
which cannot be overemphasized as the crop is relevant not just for food security but other economic 
sectors like energy. 

The use of remote sensing to estimate biological crop yields is being explored in many countries 
such as the United States, China and India, and likely will become the keystone of agricultural 
statistics in the future (Zhao et al., 2007). The fact that crop productivity vary greatly across climatic 
regions since it depends on agroclimatic conditions, the application of remote sensing in this field 
would be necessary to show the differences. The variability of these conditions warrants models to 
be developed based on the conditions of different areas where the crops are planted. Moreover, there 
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is room to improve on methodologies and principles such as applying non-linear statistical 
algorithms. 

South Africa is among the top ten maize producers in the world and a major player on the African 
continent, which makes it necessary to monitor productivity through quick and reliable methods such 
as remote sensing. The medium resolution Satellite Pour l’Observation de la Terre (SPOT 5) images 
were accessed through the South African Space Agency (SANSA). This study also sets out to test a 
non-linear statistical method in analysing canopy reflectance values for precise or fairly accurate 
prediction of maize grains models for crops grown under field conditions. 

2. Materials and methods 

2.1. Description of study area 

The fields cultivated with maize in the 2011/2012 farming season by the farming group with which 
collaboration was reached were around Sasolburg and Parys. The latter is the major town in the 
Metsimaholo local municipality (Metsimaholo LM) and the former is of the Ngwathe local 
municipality (Ngwathe LM), all in the northeastern section of the Free State province of South Africa 
(Figure 1). However, the two fields for this study where access was granted by the farmer were located 
within the Ngwathe local municipality (Figure 1). This area is located within the “Maize Triangle” 
of South Africa that is seated within two other provinces being the North West and Gauteng. 

This region where the fields were located is fairly flat with an altitude of less than 1500 m above 
sea level and mostly covered by the grassland ecosystem. The area is well watered by some of the 
main river systems of South Africa such as the Vaal and Orange Rivers. Rainfall (500 mm per annum) 
over this region is during the summer months (October to April) followed by the winter season which 
can get frosty.1 It is made up of rich soils and greatly covered by commercial farms in grains (maize, 
soybeans, sunflower and sorghum). The Cairo field was made up of 97.83 hectares and the Agnes 
was 109.89 hectares. 

2.2. Satellite image acquisition and pre-processing 

The SPOT 5 L3 data set of path/row 133/404 acquired in March and June 2012 was obtained from 
the fundisa disc provided to universities by the South African National Space Agency (SANSA). The 
multispectral digital imagery has a 10 m pixel value with the green band range of 500 - 590 nm, red 
band range of 610 - 680 nm, near infrared (NIR) band range of 780 - 890 nm and the shortwave 
infrared (SWIR) band range of 1.58 -1.75 nm. The green and red bands make up the visible region of 
the electromagnetic spectrum for this sensor. For this study, the interest was with the visible and NIR 
bands which are vital in measuring the vigour or photosynthetic capacity of the plants. 

                                                 
1 http://www.fallingrain.com/world/SF/03/Parys.html Accessed 18/10/2017 
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Figure 1: Map of study fields Cairo and Agnes within the local municipalities (LM) in the Free 

State province of South Africa. The maize fields indicated here were only those cultivated by the 
farming group that the researchers collaborated with for this study (Insert image from GoogleEarth 

8/5/2014) 

2.3. Field data acquisition 

Field visits were conducted firstly to ascertain accessibility to farms with proper harvesting 
systems that record the yields across the fields. Secondly, the visits to the identified fields were to 
ascertain the conditions of the plants as well as the plots. The fields were planted with maize and 
treated under the normal field conditions for maximal production as marketed by the seed company. 
After maturity, the plants were left on the field to lose over 90% of its moisture to enable grain harvest 
and storage. The fields were harvested using a combine harvester that recorded the grain weight per 
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hectare within 20 m X 20 m ranges at (kg/ha). The harvester has an onboard system with a GPS and 
records the coordinates of the plots against the dry weight of the harvested grain. 

In order to avoid the effects from the field boundaries, only plots that were completely within the 
fields were selected for the extraction of reflectance values from the developed indices (Thenkabail, 
2003). The demarcated polygons were comprised of 4 pixels each to correspond with the harvest area 
of 20 m X 20 m plots. The reflectance value from the polygons was an average of the 4 pixels and 
the value per polygon served as sample observation (n) for the yield prediction models. The sampling 
of plots across the field was crucial since spatial variability was evident and replicates at other 
locations were considered based on the actual yield provided by the farmer after harvest. The plots 
were randomly chosen but considering areas of high and low actual grain weight. 

3. Data analysis 

3.1. Spectral vegetation indices 

The principal reason for using spectral vegetation indices in crop studies has been to compensate 
the effects of factors of disturbance between the spectral reflectance measured from the vegetation 
and its characteristics such as canopy biomass or vegetation type (Bouman, 1995). The indices 
obtained from optical sensors have been valuable in crop production estimates through leaf 
interception media being mainly the leaf area index (LAI) (Tucker, 1979). The main index from which 
this interception medium is derived is the NDVI thereby making it a building block towards crop 
yield estimation using remote sensing. However, this relationship between the NDVI and the LAI is 
not without vices as it saturates with fully covered plant canopy (Pontailler et al., 2003).  

There are some disturbing factors such as soil background to measured-reflectance where other 
distance-based vegetation indices were included to this analysis such as the Soil adjusted vegetation 
index (SAVI) (Huete, 1988) to overcome. The SAVI has the ability to completely cancel or reduce 
the effect of soil brightness wherever pixels have a combination of soil and vegetation reflectance 
(Huete & Jackson, 1988). It is a calibration factor in the NDVI equation that accounts for the first 
order soil-vegetation optical interactions and its potential has been successfully proven (Huete, 1988). 
All the spectral vegetation index images were recreated from the identified indices (Table 1) in the 
Environment for Visualizing Images (ENVI) software (v. 5.0, ITT Visual Information Systems, 2012) 
and had the various areas of interest (AOI) as the 4-pixels identified. The average reflectance value 
for the 4-pixel plots from each index served as samples for the statistical modelling. 
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Table 1: Spectral vegetation indices used in this study 

Index 
acronym 

Name and Description Formula Reference 

NDVI Normalised difference index: related to 
changes in amount of green biomass: 
pigment content and water stress 

(RNIR–
RRED)/(RNIR+RRED) 

Rouse et al., 
1974 
 

TNDVI Transformed normalised difference index 
relates to the green leaf material or 
photosynthetically active biomass in the 
plant canopy 

(NDVI+ 0.5)1/2 Tucker (1979) 

RDVI Re-normalised difference vegetation index is 
used to  linearise relationships between the 
index and surface parameters that tend to be 
nonlinear 

(RNIR –RRED)/(RNIR 
+RRED)1/2 

Roujean & 
Breon (1995) 
 

SR Simple ratio which relates to changes in the 
amount of green biomass, pigment content as 
well as leaf water stress 

RNIR /RRED Rouse et al. 
(1974) 
 

Sqrt SR Square root of simple ratio that relates 
primarily to the green leaf area or biomass 

(RNIR /RRED)1/2 Tucker (1979) 
 

MSR Modified simple ratio that de-linearises 
relationships between the index and 
biophysical parameters 

(RNIR/RRED-
1)/(RNIR/RRED)1/2+ 1 

Chen (1996) 
 

GVI or 
NDVIgreen 
or GNDVI 

Green vegetation index which determines 
nitrogen influences from the green colour of 
the leaf through green reflectance 

(RNIR–
RGREEN)/(RNIR+RGREEN) 

Gitelson et al. 
(1996) 
 

GRDI Green red difference index which is the 
visible light normalised index and can relate 
to plant pigment content 

(RGREEN–
RRED)/(RGREEN+RRED) 

Gianelle & 
Vescovo (2007) 
 

VI Vegetation index is sensitive to the green leaf 
material or the photosynthetically active 
biomass in plant canopy 

RNIR–RRED Tucker (1979) 
 

GDI Green difference index which is a non-
normalised index. Could therefore be used 
when the impact of factors such as slope and 
aspect is not pronounced 

RNIR+RRED+RGREEN Gianelle & 
Vescovo (2007) 
 

SAVI Soil adjusted vegetation index is used to 
reduce soil brightness in vegetation 
reflectance 

(RNIR+RRED)(1+L2) 
(RNIR+RRED+L) 

 

Huete (1988) 
 

3.2. Random forest (RF) algorithm 

The RF operates on the principle of constructing through recursive partitioning to split data into 
homogenous regression trees independently to maximum size without pruning and averages the 
results of all trees. There are two important parameters in the construction of the RF algorithm 
namely: the number of trees (ntree), and number of variables randomly chosen at each split (mtry) 
(Breiman, 2001). The robustness of the RF causes it to fit against the challenge of over-fitting that is 
experienced in linear models (Prasad et al., 2006; Palmer et al., 2007). The RF regression algorithm 
operates through bootstrapping samples from randomly divided original data set into the two third 
                                                 
2 L is a canopy background adjustment factor (a correlation factor for soil line between red and near infrared reflectance) 

set at 0.5 in this study. 



South African Journal of Geomatics, Vol. 7. No. 1, AARSE 2017 Special Edition, January 2017 
 

17 
 

(2/3) training sample and one third (1/3) testing sample. There was a variation of the values for the 
ntree and mtry parameters accordingly. Liaw and Weiner (2002) in their study recommended the 
optimum number of mtry to be defined by one third of the total number of the input variables (32 for 
Agnes and 36 for Cairo). Meanwhile the ntree was regularised through the model for selection from 
500 up to 2500 at 500 intervals (Prasad et al., 2006). The algorithm was performed for each growth 
stage (March and June) for the two fields being calibrated on training sample, n = 64 for Agnes field;  
n = 72 for Cairo and testing sample with n = 32 for the Agnes; n = 36 for Cairo fields. The calibration 
was evaluated through the root mean square error of calibration (RMSEC). The same sample plots 
were used for both the March and June sample dates or growth stages of the maize plants. 

3.3. Selection of variables (vegetation indices) 

The RF algorithm also has the ability to calculate variable importance (varimp) (Breiman, 2001). 
This function has been critiqued for its bias nature of selecting variables (Strobl et al., 2007) which 
would be able to extract relevant indices to maize yield prediction. The conditional forest (cforest) 
has been proposed for such variable selection analysis. The cforest function reduces the level of biased 
selection of variables in individual classification trees unlike the variable selection embedded in the 
original RF by Breiman (2001) (Strobl et al., 2008; Strobl et al., 2009). The cforest is included within 
the development of the regression script for the RF algorithm to run simultaneously. 

The RF ensemble uses the out-of-bag (OOB) error estimates to rank variables and is derived by 
predicting the data that are in each tree being considered (error of prediction). Prasad et al. (2006) 
then describes the variable importance as an evaluation of how worse the prediction becomes when 
the data for a variable were randomly permuted. 

For the evaluation of different variables (selected spectral vegetation indices from varimp) in the 
performance of the RF regression algorithms, the predicted and actual or measured maize grain yields 
were related in one-to-one sets. During the relationship match, the coefficient of determination (R2), 
root mean squared error of prediction (RMSEP) and the mean bias error (MBE) were calculated for 
every model run with the selected variables (spectral vegetation index). 

4. Results and discussion 

4.1. Measured maize yields 

The actual or measured yields of the maize grains from the Agnes and Cairo field for 2012 
harvesting season from the combined harvester were recorded. The descriptive analysis indicated the 
Cairo field more productive with a higher mean yield of 4077.26 kg/ha (4.08 t/ha) as opposed to the 
3207.1 kg/ha (3.21 t/ha) for the Agnes field (Table 2). 
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Table 2: Descriptive statistics of the actual yields (kg/ha) for both fields 

Description Agnes field Cairo field 

Total Area (ha) 110.45 97.83 

Count (number of quadrants) 2936 2597 

Minimum yield 983.69 2745.1 

Maximum yield 4569.82 5457.59 

Sum 9416046.2 10588637.84 

Mean 3207.1 4077.26 

Standard Deviation 542.45 522.05 

4.2. Spectral index of importance selection 

The RF prediction models for maize grain yield including all the developed spectral vegetation 
indices in this study proved successful through the varied values of the parameters. The optimum 
performing parameter values were identified (Table 3). However, the contribution of the various 
spectral vegetation indices to the success would have varied according to their relationships with the 
grain productive parameters of the maize plants such as chlorophyll content, water content and others. 

 
Table 3: Summary results of the RF prediction models for maize with all indices showing validation 

parameters 

Field Data period ntree mtry R2 RMSEC 
Agnes March 500 11 0.79 4.18 

1000 11 0.35 31.82 
1500 11 0.42 13.38 
2000 11 0.38 29.34 
2500 11 0.27 34.24 

June 500 11 0.49 8.54 
1000 11 0.23 37.09 
1500 11 0.34 32.09 
2000 11 0.21 38.19 
2500 11 0.18 42.63 

Cairo March 500 12 0.76 3.06 
1000 12 0.82 2.48 
1500 12 0.42 12.35 
2000 12 0.48 8.04 
2500 12 0.39 26.32 

June 500 12 0.51 10.42 
1000 12 0.47 8.91 
1500 12 0.19 42.83 
2000 12 0.24 36.02 
2500 12 0.19 41.58 
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The ntree value of 500 generally outperformed the others (up to 2500) by the higher R2 values and 
lower RMSEC for both images (March and June). The evaluations of accuracy for both images 
showed the March image with higher R2 and lower RMSEC values. The spectral vegetation indices 
were input into the model as independent variables and in running the variable selection function 
reported on their contribution through the OOB error estimates. The results once again showed the 
mid cropping growth stage (March for maize in this region) to be the relevant period for assessing 
crop vigour towards yields. Hence, the indices that relate most to chlorophyll concentrations were 
selected as contributing the most to the error of predictions or show of importance. The selected 
indices ranked at top three included NDVI, SAVI and GVI (Figure 2; Figure 3). 

 
Figure 2: The importance of spectral vegetation indices for predicting maize grain yield (ton/ha) in 

the Agnes field (a.) March and (b.) June 

The ranking of individual spectral vegetation indices according to their importance in predicting 
maize yield from the March image were recorded (Figure 2). The importance of a spectral vegetation 
index in predicting maize yields could have depended on the growth stage or period that the satellite 
images were acquired. This is proven by the higher OOB errors registered by the selected indices in 
March than for the June images (Figure 2; Figure 3). The larger error relates to the importance of the 
variable when left out of the permutation or better still it shows how bad the algorithm perform with 
that specific variable. 
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Figure 3: The importance of spectral vegetation indices for predicting maize grain yield (ton/ha) in 

the Cairo field (a.) March and (b.) June 

The observed results with the NDVI as variable of importance in both fields, was in confirmation 
of its importance in relating the chlorophyll concentration. This is through the absorption levels of 
the red light and reflection levels in the NIR region of the electromagnetic spectrum of healthy plants 
(Rouse et al., 1974). The GVI was among the top three selected indices by the cforest which confirms 
its importance in maize yield estimation as reported in previous studies (Shanahan et al., 2001) where 
it highly correlated with maize grain yields. The relevance of the SAVI in maize yield predictions 
was also confirmed to Panda et al. (2010) where it was considered successful at 95.04% (R2 of 0.53) 
equally with the NDVI. It should be clear that as the maize plants matured towards harvesting of the 
grains, soil background had a significant effect on the maize spectral features. Then it accounts for 
identification of the SAVI as an important index to maize yield prediction at such growth stage.  

4.3. Random forest regression algorithm for maize yields using selected indices 

The results of the selected indices showed marked increase of the R2 values and relatively lower 
RMSEP values as well as the MBE for the corresponding growth stages (March or June) (Figure 4; 
Figure 5; Figure 6; Figure 7). Once again, results from March images showed significantly better 
results than those from the June images for both fields. The results could be attributed to the fact that 
the visible and NIR regions of the electromagnetic spectrum mostly relates to the chlorophyll light 
absorption feature in plants. According to Rouse et al. (1974) the concentration of this pigment 
dictates the amount of reflectance measured. With the maize plants being greener in March than in 
June not just because of the distinctive summer and winter seasons but also growth stages where 
March was the vegetative stage and June the reproductive stage. The NDVI which is developed from 
the difference of the region of maximum chlorophyll absorption (red region) and the corresponding 
region of maximum reflectance of incident light (NIR) has proven successful in all maize yield 
estimation studies applying remote sensing (Ngie et al., 2014) and this study was not left out. It 
proved to be the best out of the indices for both growth stages though with varying accuracies as well 
as the two fields. 
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Figure 4: One-to-one relationship between predicted and measured maize yields from March images 
over Agnes using individual selected indices for Agnes with (a) = NDVI, (b) = SAVI and (c) = GVI 

The accuracies of predictions obtained for this study however, do vary from previously recorded 
studies (Ngie et al., 2014) which could be accounted for by the different sensors used which ranged 
from coarse to medium and to fine resolution satellite images. The choice of the sensor also depends 
on the spatial extent of the study area. In some situation also where the same sensor was used, other 
factors such as soil characteristics, climatic conditions, cultivar types and the growth stage at which 
the yields were predicted varied, thereby causing discrepancies in the accuracy. For instance the 
results of this study which comprised of the same cultivar planted under same field conditions and 
monitored with the same sensor as well as dates did not provide the same accuracies in yield 
predictions. The difference in accuracies with R2 of 0.91 and 0.89 for Agnes and Cairo fields obtained 
from NDVI in March (Figure 4; Figure 6) was however slightly lower but looks insignificant. 
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The NDVI and SAVI variables performed better in the model than the GVI which has problems 
of underestimation and overestimation. The GVI even though resulting with a high R2 (over 70%) 
and a low RMSEP (0.18) overestimated the grain yield at higher grain output (Figure 4 (c)) which 
could be a challenge to stakeholders requiring adequate information for financial planning. 

  

 

Figure 5: One-to-one relationship between predicted and measured maize yields from June images 
over Agnes using individual selected indices for Agnes (a) = NDVI, (b) = SAVI and (c) = VI 

The June images resulted in maize grain yields that were either underestimating or overestimating 
at both the low and high productivity. The results illustrated that the June images could not be used 
to establish the vigour in the plants since the crops were at an advanced stage of maturity. Hence, the 
model would have required other parameters to strengthen its predictive ability. 
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Figure 6: One-to-one relationship between predicted and measured maize yields from March images 
over Cairo using individual selected indices for Cairo in March (a) = NDVI, (b.) = SAVI and (c) = 

GVI 

Once again in the Cairo field, the model was more precise with the NDVI and SAVI variables than 
the GVI which was challenged with overestimation as the productivity increased (Figure 6).  
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Figure 7: One-to-one relationship between predicted and measured maize yields from June images 

over Cairo using individual selected indices for Cairo (a) = NDVI, (b) = SAVI and (c) = VI 

The Cairo field also experienced a poor performance of the model with variables (indices) 
developed from the June images which could be explained as above with the Agnes field. In validating 
the performance of the regression algorithms in maize grain predictions for the selected spectral 
vegetation indices, there was a general improvement in the accuracies from the ones ran from all the 
indices (Table 3). The evaluation of the accuracies was noted through the lower RMSEP and MBE, 
and the increased R2 values for both fields as well as the growth stages (March and June). 

There was an improvement in the performance of the yield prediction algorithms that was as a 
result of using the random forest selection function to identify relevant indices (variables of 
importance). These results illustrated a good performance of this algorithm in prediction and feature 
selection analysis as earlier noted by Prasad et al. 2006. The selected spectral vegetation indices 
related to the amount of green materials (NDVI, GVI or VI) in the maize plants (Rouse et al., 1974; 
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Tucker, 1979). Spectral vegetation indices that are responsive to the green pigments are excellent 
indicators for vegetation quantity and status or vigour (Salazar et al., 2008), and confirms the selection 
of the GVI in the top three indices as ranked by the OOB error estimates in this study as relevant to 
maize grain yield prediction.  

The results from the two dates of data acquisition illustrated March as a period of better grain yield 
prediction for maize in this area of South Africa than the June. Even though a more robust study 
would need to be conducted to ascertain the optimum period of yield estimates or predictions with 
more monitoring dates throughout the growing season, the March period which was about four 
months to harvest (mid cropping season for maize in this region) was in conformity to another study 
in the United States of America (USA) where at 3-4 months before harvest predictions resulted in an 
estimation error of 3% (Kogan et al., 2012). In another previous study, it was 2-3 weeks before and 
after tasseling (Kogan et al., 2005) that was identified as optimum growth stage for yield predictions. 
Meanwhile an 8-leaf stage was optimal for predicting maize grain yields and the 3-leaf stage was 
optimal for biomass estimations for Islam et al. (2011). According to Panda et al. (2010), the mid 
cropping season of maize was ideal growth stage to predict grain yields of the crop in North Dakota. 
These discrepancies therefore suggest that optimal growth stage depends on the geographical region 
as well as the cultivar type being investigated as some might have a longer life span. 

The observed inconsistency in maize grain yield predictability in the different fields (Agnes and 
Cairo in this study) (Appendix A) could also have been explained by the complexity in crop yield 
that depends on other non-imagery factors, such as nutrient stresses, or water availability. These 
factors were not considered in developing the random forest regression algorithms used in this study. 
High performance in crop yields could be obtained if their production parameters remain consistent 
throughout the season until harvest (Panda et al., 2010) which is hardly the situation and therefore 
contribute to discrepancies in crop yield estimate results. Hence, these algorithms are site specific 
and applying them to other areas might not produce same accuracies but should still perform well 
considering all parameters. 

5. Conclusions 

In-field maize yield estimation or prediction using multispectral satellite imagery of medium 
resolution over rain-fed fields proved successful through the use of vegetation spectral indices. The 
spectral indices derived from SPOT 5 imageries were used as input variables into the random forest 
algorithm for regression analysis in predicting the grain yield by weight of maize across both fields 
with a good accuracy of high coefficient of determination (R²) values and low RMSEP as well as 
MBE values. However, the prediction was more accurate earlier on in the season (vegetative growth 
stage in March) than later for the reproductive stage in June. This could be attributed to the fact that 
the green pigment in maize leaves is largely responsible for its yields through photosynthetic 
activities. The NDVI was amongst the most important indices relating to maize yields for this study 
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as proven through the random forest non-linear regression algorithm and selected by the cforest 
ranking them through the OOB errors. 

It would be of interest for future research to engage in the optimisation of the grain prediction 
period in maize over the “Maize Triangle” of South Africa to ascertain in a timely manner the 
production of this important grain. Also as a result of the climatic challenges in obtaining real-time 
satellite optical data during the growing season, the potential of radar data such as Sentinel 1 could 
be exploited in monitoring crop productivity. There could also be the possibility to integrate climatic 
factors essential for maize productivity such as rainfall and temperature, and linking with soil nutrient 
data together with the vegetation spectral indices for a mechanical predictive model in future research. 
In that way, climatic-related periods of critical development that controls productivity would be 
established thereby providing information for decisive measures to be taken. 
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Appendix A 

 

 
Spatial variation of maize grain yields across the (a) Cairo (b) Agnes fields (red is lowest and purple is 

highest) 

(a) 

(b) 
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