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Abstract 

Heavy metals in the environment are of concern due to detrimental effects, which include 

disturbance of plant physiology. This paper presents an exploratory assessment of heavy metal 

contamination along the main highways in Mafikeng, and illustrates how spatial analyses of the 

contamination for environmental management purposes can be supported by GIS and Remote 

Sensing. Roadside soil and grass (Stenotaphrum sp.) samples were analysed for total content per 

heavy metal. Spatial patterns in soil metal concentrations were evaluated using IDW interpolation. 

Effects of the contamination on the vigour of roadside grass were assessed using NDVI transects 

within 30m of the roads, on a pan-sharpened 5m resolution SPOT 5 HRG multispectral image. The 

results showed that NDVI values increased with distance from roads (R2 0.508-0.965; p < 0.05), 

indicating that proximity to roads reduced grass vigour. Metal concentrations in grass tissue were 

lower than in soil by an average factor of nine, but varied as the soil concentrations. The 

concentrations of the heavy metals that are associated with motor vehicles along roads were in the 

order [Fe]>[Mn]>[Zn]>[Pb]>[Ni]>[Cu]>[Cr]>[Cd], but were much lower than in cities that 

have higher motor vehicle traffic. IDW interpolation of metal concentrations revealed traffic-

related spatial variations that can support environmental management. In this limestone 

mineralogy soil the relative abundance of Mn (range 2.4-11.4mg/kg) is attributable to lead 

replacement fuels that are in use, while the Pb concentrations (range 0.20-1.29mg/kg) indicate 

persistence of Pb in the urban environment some ten years after the phasing out of leaded petrol.  

 

1. Introduction 

Heavy metals in the environment, particularly as contributed by human activity in urban areas, 

are of concern globally because of their negative effects on environmental quality and human 

health. A number of studies globally highlight the concern about heavy metals (e.g. Loranger & 

Zayed, 1994; Binning & Baird, 2001; Lee et al., 2006; Islam et al., 2015; Maanan et al., 2015; 

Pons-Branchu et al., 2015). Heavy metals bio-accumulate, then their concentrations bio-magnify 

along the food chain, and can eventually end up in human food (Martin & Griswold, 2009). They 

can cause the destruction of soil microbiota, as well as decline or even death of the aboveground 

plants through physiological disturbances (Perfus-Barbeoch et al., 2002; Viard et al., 2004). A 
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number of heavy metals are detrimental to human health (Martin & Griswold, 2009). For example, 

Pb causes neurological problems (Kovarik, 2005), Cd and Ni cause genomic problems (Coen et al., 

2001). Quantifying the concentrations of heavy metals in the urban environment, therefore, 

contributes to assessments of environmental quality.  

One of the sources of heavy metals is motor vehicles. Motor vehicle-sourced heavy metals enter 

the food chain through the soil, from which they are taken up by plants (Galal & Shehata, 2015). 

Therefore, vegetation and soil in the vicinity of roads in urban areas are vulnerable to heavy metal 

contamination (Lytle et al., 1995; Garcia & Millan, 1998), although in soils heavy metals can occur 

naturally as derived from the parent rock minerals. The heavy metals that have been associated with 

motor vehicles as source along roads are mainly Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn (Lough et al., 

2005; Huber et al., 2016). To a lesser extent other metals like Al, As, Ba, Be, Co, Hg, Sb, Se, and V 

have been linked to motor vehicles in literature. Heavy metal contamination from motor vehicles 

along roads occurs through exhaust fumes (Cr, Cu, Fe, Mn, Ni, Pb, Zn), brake (Cd, Pb, Zn) and tyre 

rubber (Mn, Pb) wear. The contamination from exhaust fumes can occur up to 320m from 

highways, with the maximum contamination between 5 and 20m (Viard et al., 2004). Additionally 

surface runoff can wash the heavy metals from the vicinity of roads into water courses. Some heavy 

metals, such as Cu, Mn, and Zn, are essential as plant nutrients (Nada Kumar et al., 1995). There 

are, however, critical thresholds beyond which the metals become toxic to plants, for example 

125mg/kg for Cu; 400mg/kg for Zn (Garcia & Millan, 1998). Cadmium (Cd) toxicity, for example, 

causes plant wilting (Perfus-Barbeoch et al., 2002).  

Leaded fuel gradually began to be phased out globally, largely as a result of the detrimental 

effects of Pb (Nriagu, 1990). Alternative lead replacement fuels are being used instead, which 

contain other heavy metals like Mn (Geivanidis et al., 2003). South Africa achieved the total 

phasing out of leaded fuels in 2006. Roadside pollution is not the sole source of heavy metals but it 

contributes to the country’s heavy metal contamination problem in water courses, water being a 

scarce resource in South Africa. Studies have highlighted detrimental effects of heavy metals on 

aquatic organisms in terrestrial water bodies in South Africa (e.g. Van Aardt & Erdmann, 2004; 

Retief et al., 2006). The metals have also been detected in estuaries and the coastal marine 

environment (Binning & Baird, 2001; Jackson et al., 2005; Bosch et al., 2016).  

Given the spatially limited nature of observations obtained from soil sampling, spatial 

interpolation in a Geographic Information System (GIS) can establish continuous surface patterns in 

heavy metal contamination (e.g. Cicchella et al., 2008). Spatial interpolation in a GIS estimates 

values of a variable based on those determined at sampling points. The result is a raster (pixel) layer 

showing a continuous surface of values in the variable, from which spatial patterns can be 

established. There are a number of interpolation algorithms, one of the most widely used in soil 

analyses being the Inverse Distance Weighted (IDW) interpolator (Kravchenko, 2003; Robinson & 

Metternicht, 2006). The IDW equation is given as (Roberts et al., 2004): 

 

                                                                                                                 [1]                                                               
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where Z  is the estimated (unknown) value, Z  is the sample (known) value; and λi is the 

weighting value, which is quantified as (Roberts et al., 2004): 

 

                                                                                               [2] 

 

where  is the Euclidean distance between locations xi and xo, and p is a power value. The 

results of IDW interpolation will vary depending on the selection of the power value and the 

neighbourhood search strategy (Watson & Philip, 1985; Roberts et al., 2004). The power parameter 

(p in Equation 2) enables control of the significance of sample point values on the interpolated 

values based on their distance from the predicted point. With a higher power value more emphasis 

can be put on the nearest sample points and, thus, nearby data will have the most influence; and the 

resulting interpolated surface will have more detail (i.e. will be less smooth) (Watson & Philip, 

1985).  

Imagery from Remote Sensing, on the other hand, is useful in assessing vegetation vigour as 

affected by heavy metal contamination, using the Normalised Difference Vegetation Index (NDVI). 

The NDVI is a numerical indicator of vegetation vigour that makes use of the near infrared (NIR) 

and red (R) reflectance as in Equation 3 (Lillesand et al., 2014). 

 
NIR red

NDVI
NIR red






                                                                                                                [3] 

 

For a sensor that has NIR and R bands the NDVI values that result from Equation 1 range between   

-1 and +1, pixels with vigorous vegetation having positive values close to +1 (Lillesand et al., 

2014). Therefore, the more vigorous the vegetation is the higher the NDVI value. Under similar 

environmental conditions vegetation that is subjected to heavy metal contamination is, therefore, 

expected to have lower NDVI values than contamination-free vegetation due to the effects of heavy 

metals on plant physiology (Liu et al., 2010). Thus, Boluda et al. (1993) established strong 

correlations between NDVI values derived from Landsat 5 TM bands (NIR, Red) and available Cd, 

Cu, Ni, Pb and Zn in soil.  

This paper presents an exploratory assessment of the concentrations of heavy metals in roadside 

soil and grass at Mafikeng, South Africa (Figure 1a), and illustrates potential roles of GIS and 

Remote Sensing analyses in support of the assessment.  Being a rural town in a developing country, 

and without routine monitoring of the problem by the authorities, the hypothesis was that the soils 

and grass along the highways in Mafikeng were highly contaminated by heavy metals. Soil and 

grass samples were collected from the vicinity of the main highways in Mafikeng. The 

concentration of heavy metals in the samples was determined in the laboratory. Spatial patterns in 

the concentration of heavy metal concentrations in the soil were established using a spatial 
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interpolation algorithm in a GIS. The NDVI was used in assessing change in grass vigour with 

distance from the main highways.  

 

 
Figure 1. Location of Mafikeng in South Africa (a), and (b) the road network in Mafikeng town 

 

2. Material and Methods 

 

2.1 Study area 

Mafikeng is located in the North West Province of South Africa (Figure 1a) and is the 

administrative capital of the province. There are four main road inlets for motor vehicle traffic from 

other towns into Mafikeng: the N18 North to Ramatlabama and then West to Vryburg, the R49 to 

Zeerust and the R503 to Lichtenburg, all of which converge in the Central Business District, CBD 

(Figure 1b).  

The N18 North (to Ramatlabama) is also an international route, as one of the gateways from 

South Africa into the neighbouring country of Botswana. The R49 and R503 lead eastwards 

towards the economic hub of South Africa, Gauteng Province. Therefore, these roads handle 

international and inter-province traffic through Mafikeng in addition to the local traffic. In 2006 the 

N18 North was expanded from one to two opposite traffic lanes. In the context of this study these 
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road improvements are significant since they disturbed the accumulated heavy metals on the soil 

surface along the highway.  

There is a distinct rain season in the study area, starting in October and ending in April in the 

following year. The geology is predominantly limestone, which consists of calcite (CaCO3) and 

aragonite - (Ca, Sr, Pb, Zn)CO3, and the soils are petric calcisols. 

 

2.2 Soil and plant sampling 

For the analysis of heavy metal content in soil and plants, only the four major roads into 

Mafikeng were used since these highways handle larger traffic volumes than the suburban roads. 

Soil samples were collected at sampling points that were approximately 20m from the roadside and 

at intervals of 0.5-1km along the roads (depending on land use obstacles), avoiding the paved 

roadsides of the CBD (Figure 2a). The soil samples were collected from the 0-10cm depth range, 

using a soil auger. The coordinates of each sampling point were captured using a Garmin eTrex 

GPS that had location accuracy of 3m.  

At each sampling point a sample of grass tissue (leaves, stems) was also collected. For 

consistency the same species of grass was used, a Stenotaphrum sp. grass (Figure 2a, inset photo). 

All samples were then taken to the laboratory for analysis of heavy metal content. The samples 

were collected in April 2015, a largely rain free period. Both the soil and grass samples were air-

dried in the laboratory for a week. 

 

2.3 Laboratory analysis 

The soil and grass samples underwent acid sequence digestion in the laboratory prior to analysis 

for heavy metal content. The dried soil samples were disaggregated using a pestle and mortar and a 

2mm sieve was then used to remove large particles. From each sample 1g of soil was placed into a 

reaction vessel in which 3ml of 55% Nitric Acid (HNO3) and 9ml of 32% Hydrochloric Acid (HCl) 

were added, respectively.  

The grass samples were crushed using a pestle and mortar. From each sample 1g of crushed 

grass was placed in a crucible, and the crucible and grass placed in a furnace at 800°C for 16 hours 

to be ashed. For the digestion process, each sample was placed into a reaction vessel in which 8ml 

of 55% Nitric Acid and 2ml of 32% Hydrochloric Acid were added, respectively. 

The soil or grass sample mixture was then digested for 45 minutes in an Anton Paar Multiwave 

3000 Multiwave Reaction System, and then transferred to a distilled water-rinsed 100ml flask in 

which it was left to stand overnight to allow sediments to settle at the bottom. The mixture was then 

filtered into a centrifuge tube and then analysed for a suite of 25 metal elements using an ICP-OES 

(Inductively Coupled Plasma-Optical Emission Spectrometer), in triplicates from which average 

values were recorded. Therefore, in addition to heavy metals that are associated with motor vehicle 

traffic along roads (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn), the concentrations of a number of other metal 

elements was determined from the samples. Total content per metal was determined, as opposed to 

dissolved or plant available content in the case of soil samples. 
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2.4 GIS interpolation of roadside heavy metal concentration in soils 

For the interpolation of heavy metal concentrations from the roadside samples the Inverse 

Distance Weighted (IDW) interpolator was selected. IDW interpolation works well with ‘noisy’ 

data and is best suited to moderately dense sampling with regard to local variation, as was the case 

in this study (Figure 2a). 

ArcMap 10.3 was employed for the spatial interpolation of the soil heavy metal concentrations, 

using data from the sampling sites in Figure 2a. The interpolation was restricted to within 30m of 

the roads, by generating a 30m buffer using the Buffer Analysis tool in ArcMap 10.3. Limiting the 

interpolation to 30m was necessary because during field work it was observed that this was the 

maximum width of building-free space away from some of the roads.  

An output cell size of 5m was set. The power value (p in Equation 2) was set to 3, and the search 

radius was limited to two sample points. These power value and search radius settings were selected 

in order to limit the contribution by distant sampling sites in the interpolation of heavy metal 

concentration data values. This was because the heavy metal pollution was perceived as highly 

variable among the four highways, as well as between sampling points along the same highway. 

 

2.5 Remote sensing of impacts of heavy metals on grass vigour 

Two SPOT 5 (Systéme Pour l’Observation de la Terre 5) High Resolution Geometric (HRG) 

images of the area (scene reference K/J 128/402) acquired on 5 March 2013 (peak rain season) were 

obtained from the South African National Space Agency. They were a 5m-resolution panchromatic 

image (sensitive in the 0.48–0.71μm range) and a 10m-resolution multispectral image (sensitivity in 

green; 0.50–0.59μm, red; 0.61–0.68μm, and near infrared; 0.78–0.89μm). The peak rain season date 

of the image meant that the vegetation was at near peak vigour, which facilitated analysis of effects 

on its vigour by heavy metals. The vegetation along the highways is predominantly grass. 

Using ERDAS Imagine 2015 software the 10m spatial resolution of the multispectral image was 

enhanced to 5m by pan-sharpening it with the 5m panchromatic image. The technique of pan-

sharpening uses a high spatial resolution panchromatic image to improve the spatial resolution of a 

multispectral image. In the process the resolution merge technique was employed.  

Pan-sharpening helped improve the spatial resolution to make it suitable for comparison with the 

more detailed sampling data. The resulting multispectral image enabled the analysis of vegetation 

vigour at the higher spatial resolution of 5m compared to the original lower resolution of 10m. The 

pan-sharpened image was then projected to the UTM projection (zone 35S, WGS84 datum). An 

NDVI image (see Equation 3) was then generated from the pan-sharpened image. 
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(a) Sampling 
scheme 

 

   
r = 0.741, p > 0.05 r = 0.589, p > 0.05 r = -0.089, p > 0.05 

 (b) Highway N18 North 

   
r = -0.999, p < 0.01** r = -0.698, p > 0.05 r = -0.370, p > 0.05 

(c) Highway R503   

   
r = 0.083, p > 0.05 r = -0.473, p > 0.05 r = -0.159, p > 0.05 

(d) Highway R49   

   
r = 0.242, p > 0.05 r = 0.734, p > 0.05 r = -0.362, p > 0.05 

 (e) Highway N18 West   

Figure 2. Sample site layout (a), and ((b)-(e)) concentration of selected heavy metals (Mn, Pb, Zn) 

in soil and grass at the numbered sampling sites in (a) along the four main highways of the study 

area (correlation coefficient, r, and probability, p, values indicated below each graph). The inset 

photo in (a) shows the Stenotaphrum sp. grass that was sampled 
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The concentration of heavy metals has been shown to reduce away from the roadside (Lytle et 

al., 1995; Garcia & Millan, 1998; Galal & Shehata, 2015). Therefore, the change in NDVI values 

along transects radiating away from the highways was analysed in order to assess the effect of 

traffic-sourced heavy metals on grass vigour. These transects were perpendicular to the roads, and 

on one side only since that were rarely roadside locations that were buildings-free on both sides. 

They were restricted to a length of 30m (i.e. 6 pixels on the pan-sharpened image) due to the 

presence of buildings beyond 30m from some of the highways.  

The NDVI values for each 5m pixel along the 30m respective transects were obtained, and then 

statistically analysed for relationship with distance from the roadside (source of heavy metal 

pollution) using regression analysis. This analysis was not performed for transects at sampling 

points 9, 10, 14, 15, 16 and 17 (Figure 2a) due to the existence of buildings within 10m of the roads. 

 

3. Results 

 

3.1 Heavy metal concentrations in soil and grass 

For the same metal element there were variations in concentration along a given highway (e.g. 

Figure 2b-e), attributable to site specific factors such as proximity to highway runoff drainage 

canals. Table 1 shows the mean metal concentrations that were determined from the soil and grass 

samples. The very high Ca concentrations are reflective of the limestone underlying geology at 

Mafikeng. For the majority of the metals the concentration was higher in the soil than in grass at a 

given sampling point; the average was 9 times the concentration in grass tissue. The exceptions 

were K, Na and Sb, whose concentrations were higher in the grass tissue than in the soil (Table 1).  

The metal concentrations in grass tissue varied as the soil concentrations, though largely with 

statistically non significant associations. This suggests that heavy metal concentrations in soils can 

be used to infer concentrations in grass tissue. This association is illustrated in Figure 2b-e for Mn, 

Pb and Zn. The three metals were selected for the illustrations in Figure 2b-e because Mn occurs in 

lead replacement fuels, and Pb and Zn can occur as part of limestone’s mineral aragonite ((Ca, Sr, 

Pb, Zn)CO3). Ca and Sr, which can occur in aragonite, were excluded from the illustrations because 

the two metals are not associated with motor vehicles along roads. A possible reason for the low 

correlation between concentration values of the soil and the plants is leaching to deeper layers in the 

soil, as well as soil erosion. Both leaching and soil erosion could have resulted in low concentration 

values in the soil, while plant tissue had accumulated levels of the metals, resulting in low 

correlation. 

In the soil the concentrations of the motor vehicle related heavy metals Cd, Cr, Cu, Fe, Mn, Ni, 

Pb and Zn were in the order [Fe]>[Mn]>[Zn]>[Pb]>[Ni]>[Cu]>[Cr]>[Cd]. For Cd, Cr, Cu, Mn, Ni, 

Pb, and Zn the concentrations were well below the standards set by the Department of 

Environmental Affairs in South Africa (Table 1). Next to zero concentrations of Cd were detected 

in grass tissue, indicating that there was no Cd toxicity in this grass species.  
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3.2 Spatial patterns in roadside heavy metal concentration in soils  

Of the heavy metals that are associated with motor vehicles, the differences in mean 

concentrations of Cd, Cu, Mn, Ni, Pb and Zn were statistically significant between at least two 

highways (Table 2). For these metals the resulting IDW interpolations in Figure 3 show a pattern of 

higher heavy metal contamination along the highways in the south eastern sector of Mafikeng. The 

recently expanded N18 North highway had significantly lower Cd and Ni concentrations than the 

R503 in the south, and significantly lower concentrations of Cd, Cu, Mn, Ni, and Pb than highway 

R49 in the south east. The R49 also had a statistically significant higher mean concentration of Pb 

than the R503, and higher Cu and Ni concentrations than the N18 West. The R503 had significantly 

higher concentrations of Pb and Zn than the N18 West. 

The R49 highway had the highest concentrations of Cd, Cu, Mn, Ni, and Pb (Table 1), indicating 

that it had the most severe contamination by heavy metals. The second most contaminated was the 

R503 highway. The interpolated spatial patterns in Figure 3 depict these differences in levels of 

contamination, showing the R49 to have had the highest Cd, Cu, Mn, Ni, Pb and that the R503 had 

high Cd, Cu and Ni contamination. Both the R49 and R503 have high usage by traffic to and from 

Gauteng Province, South Africa’s economic hub. 

 

3.3 Effects of heavy metals on plant vigour 

The multispectral SPOT image of Mafikeng and its resulting NDVI image are shown in Figure 4. 

For six out of the eleven transects that were analysed, there were strong and statistically significant 

(p < 0.05) relationships between grass vigour as indicated by NDVI values and distance away from 

the roads. Figure 5 illustrates the change in NDVI values with distance from the highways for 

transects that yielded statistically significant relationships, and shows that NDVI values increased 

with distance from the roadside. The R2 values for the statistically significant relationships ranged 

between 0.508 (transect from point 7 in Figure 4b) and 0.965 (transect from point 6 in Figure 4b). 

Further indication that the heavy metals influenced the vigour of the grass is shown in Figure 6 in 

which NDVI values are plotted against grass tissue concentrations, for metals whose variations 

showed a direct relationship between soil and grass concentrations. [Pb] in particular influenced the 

NDVI (Figures 6a, c), though with a non-significant correlation (p > 0.05). However for [Zn] the 

correlation with NDVI values was statistically significant (r = 0.958, p < 0.05; Figure 6b). 

 

4. Discussion and conclusion 

The results provide evidence that there is heavy metal contamination along the roads in the study 

area. The contamination appeared to be related to traffic volumes, as indicated by the interpolated 

spatial patterns. The two south eastern highways that had higher contamination of Cd, Cu, Mn, Ni, 

and Pb (Figure 3) are the main inlets from the economic hub of the country, to the east. The high 

usage of these roads, for freight and passenger transport, accounts for the heavy metal 

contamination. The results also indicate some detrimental effects of the heavy metal contamination 

on vegetation along the highways, and that concentrations of heavy metals in soil may be used to 

infer the concentrations in grass tissue, depending on the grass species.  



South African Journal of Geomatics, Vol. 5. No. 3, November 2016 

402 

 

Table 1. Mean metal concentration values (mg/kg) along the four main highways in Mafikeng, from soil and grass samples at the sites in Figure 2a. 

Metal elements that are associated with motor vehicles along roads are highlighted. 

Metal_sample Highway SSV* 

 N18 North R503 R49 N18 West  

Al_soil 68.05 59.94 66.13 67.57  

Al_grass 2.54 5.41 8.34 4.18  

As_soil 0.45 0.83 0.55 0.33 5.8 

As_grass 0.38 0.50 0.05 0.06  

Ba_soil 0.68 1.33 1.61 0.83  

Ba_grass 0.07 0.10 0.15 0.13  

Be_soil 0.00 0.00 0.00 0.00  

Be_grass 0.00 0.00 0.00 0.00  

Ca_soil 354.92 663.83 209.82 357.10  

Ca_grass 44.21 50.36 56.57 61.00  

Cd_soil 0.01 0.04 0.05 0.02 7.5 

Cd_grass 0.00 0.00 0.00 0.00  

Co_soil 0.07 0.23 0.28 0.11 300 

Co_grass 0.00 0.00 0.00 0.01  

Cr_soil 0.41 0.27 0.34 0.41 6.5 

Cr_grass 0.03 0.02 0.07 0.04  

Cu_soil 0.24 0.45 0.52 0.23 16 

Cu_grass 0.03 0.04 0.06 0.06  

Fe_soil 232.12 254.79 286.04 252.66  

Fe_grass 4.41 5.84 9.28 5.52  

K_soil 17.78 19.59 18.50 17.42  

K_grass 27.76 29.71 40.82 26.51  

Li_soil 0.04 0.01 0.02 0.05  

Li_grass 0.00 0.01 0.01 0.16  
 

 Metal_sample Highway SSV* 

 N18 North R503 R49 N18 West  

Mg_soil 65.48 42.33 44.86 37.92  

Mg_grass 8.09 14.46 13.56 16.12  

Mn_soil 3.65 6.74 9.80 4.15 740 

Mn_grass 0.15 0.25 0.41 0.42  

Mo_soil 0.08 0.08 0.07 0.06  

Mo_grass 0.05 0.03 0.06 0.04  

Na_soil 0.01 0.03 0.00 0.01  

Na_grass 1.07 0.70 4.99 5.22  

Ni_soil 0.27 0.53 0.59 0.31 91 

Ni_grass 0.04 0.03 0.06 0.08  

Pb_soil 0.33 0.34 0.72 0.67 20 

Pb_grass 0.15 0.20 0.18 0.12  

Sb_soil 0.18 0.23 0.13 0.16  

Sb_grass 0.23 0.09 0.18 0.17  

Se_soil 0.40 0.10 0.00 0.00  

Se_grass 0.00 0.00 0.00 0.00  

Sr_soil 0.22 0.21 0.17 0.22  

Sr_grass 0.08 0.11 0.14 0.13  

Tl_soil 0.03 0.07 0.02 0.02  

Tl_grass 0.03 0.04 0.04 0.05  

V_soil 0.16 0.21 0.27 0.22 150 

V_grass 0.01 0.03 0.02 0.03  

Zn_soil 0.71 0.66 0.93 0.84 240 

Zn_grass 0.26 0.15 0.30 0.19  
 

*SSV = Soil Screening Value: a South African standard set for human and ecosystem health (Department of Environmental Affairs, 2012). 
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(a) Cadmium (Cd) (b) Copper (Cu) (c) Lead (Pb) 

   
 

(d) Manganese (Mn) 

 

(e) Nickel (Ni) 

 

(f) Zinc (Zn) 

Figure 3. Spatial patterns in concentrations of Cd, Cu, Mn, Ni, Pb and Zn in soil within 30m of the four main highways at Mafikeng, based on IDW 

interpolation of concentrations from the sampling sites shown in Figure 2a
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Figure 4. The pan-sharpened SPOT 5 HRG image of Mafikeng town (RGB:321) (a), and its 

resulting NDVI image (b). In both (a) and (b) the sampling sites (as in Figure 2a) that served as 

roadside origin points for NDVI profile transects (Figure 5) are indicated and numbered, their 

symbol sizes exaggerated for visibility 

 

 

The concentration of Mn in soil along the highways was generally higher than Pb (Table 1). The 

[Mn] range was 2.4-11.4mg/kg, while [Pb] ranged 0.20-1.29mg/kg. The higher [Mn] in the high 

traffic use south eastern sector highways can be attributed to the lead replacement fuels that are in 

use, given the limestone geology that is naturally Mn-free. Despite the aragonite ((Ca, Sr, Pb, 

Zn)CO3) mineralogy of limestone that can contain Pb, there were spatial variations in [Pb] (Figure 

3, Table 1). This indicates motor vehicle sourced Pb which has persisted in the environment some 

ten years after the phasing out of leaded petrol. There were, however, no historical records against 

which to compare the current levels of heavy metal contamination along these highways. 
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Table 2. Matrix of statistically significant (p < 0.05) differences in mean metal concentrations 

between highways, based on the student’s t test (for metals indicated in bold) 
  Highway (see Figure 2a) 

  N18 North R503 R49 
H

ig
h

w
ay

 

    

R503 Cd: t =3.30, p = 0.023 

Ni: t  = 0.368, p = 0.01 

 

  

R49 Cd: t  = 2.28, p = 0.042 

Cu: t = 2.47, p = 0.021 

Mn: t = 2.566, p = 0.025  

Ni: t  = 2.80, p =  0.01 

Pb: t = 2.402, p = 0.037 

 

Pb: t = 2.08, p = 0.04  

N18 West 

 

Ni: t = 5.15, p = 0.001 

Pb: t = 2.15, p = 0.04 

Zn: t = 2.14, p = 0.04 

Cu: t = 2.92, p = 0.016 

Ni: t = 2.80, p = 0.02 

 

 
Figure 5. Statistically significant relationships between distance from roads (heavy metal source) 

and NDVI values from the SPOT image in Figure 4b, along 5m pixel transects originating at the 

labelled sampling points in Figure 4 

 

 

 

   
NDVI versus [Pb], r = -0.015, p > 0.05 NDVI versus [Zn], r = 0.958, p < 0.05* NDVI versus [Pb], r = 0.522, p > 0.05 

 

(a) 

 

(b) 

 

(c) 

 

Figure 6. Relationship between NDVI values and heavy metal concentrations in grass tissue for the 

metals in Figure 2 whose concentrations in grass tissue varied as the soil concentrations 
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The concentrations of the heavy metals that are associated with motor vehicles (Cd, Cr, Cu, Fe, 

Mn, Ni, Pb and Zn) were much lower in Mafikeng than those reported in comparative studies in 

cities that have higher motor vehicle traffic (e.g. Lytle et al., 1995; Garcia & Millan, 1998; Viard et 

al., 2004; Lee et al., 2006; Huber et al., 2016). In the absence of official traffic census annual 

average daily traffic (AADT) data, traffic counts were made in June 2015 during peak hour at fixed 

points on Mafikeng’s main highways. The highest traffic frequency was 1 200 vehicles per hour. If 

this peak hour traffic frequency was maintained for 24 hours it would amount to an AADT value of 

28 800 vehicles per day. However, the actual AADT value is considerably less since peak hour 

volumes are not maintained for 24 hours. Therefore, the traffic frequency at Mafikeng is quite low 

compared to more developed countries with AADT values of over 15 000 vehicles per day.  

The concentrations of the heavy metals were also well below the standards set by the Department 

of Environmental Affairs in South Africa (Table 1). This indicates acceptable environmental quality 

at the time of this study, as affected by heavy metal pollution along highways. It is perhaps 

unexpected, for a developing country context. However, the cumulative effect of bioaccumulation 

along the food chain could be detrimental in terms of plant toxicity in the long term. The current 

levels of contamination could be the beginning of a higher pollution levels. The Molopo River 

drains through the Mafikeng area, and it is quite possible that negative impacts in the aquatic 

ecosystem could result from heavy metals being washed by surface runoff into the river. In a river 

whose catchment is just east of the Molopo’s head waters, Van Aardt & Erdmann (2004) reported 

Cd, Cu, Pb and Zn concentrations in fish. In the predominantly agriculture area of Mafikeng meat 

livestock graze near the highways, and could accumulate the heavy metals in their organs. 

Therefore, in addition to ecosystem effects the heavy metal contamination threatens human health 

and food security.  

Routine monitoring of heavy metal contamination along the highways by the local authorities is 

recommended. At the time of this study no routine monitoring was being conducted by the local 

authorities at Mafikeng. Time series analyses using imagery of higher spatial resolution than that 

used in this study would be a useful component of the routine monitoring. The imagery can include 

the 0.5m resolution aerial imagery that is occasionally acquired and is available at the National 

Geo-Spatial Information (NGI) in Cape Town.  As demonstrated in this study GIS and Remote 

Sensing analyses can be useful in support of the monitoring, through indicating the spatial patterns 

of the contamination and the effects of vegetation, respectively. 
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