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Abstract 

Invasive alien plants are considered one of the major threats to biodiversity conservation 

worldwide. Hence, understanding their distribution and abundance is important in order to assess the 

impact on native ecosystems. It is particularly important to be able to track the spread of invasive 

species across landscapes; a task best achieved using remotely sensed imagery. The availability of 

high resolution data, combined with efficient classification methods, can potentially improve early 

detection of invasive alien species thereby enhancing their management. This study aims to classify 

woody species with a focus on Melia azedarach (Meliaceae) trees in a moderately invaded coastal belt 

valley on the east coast of South Africa using WorldView-2 (WV-2) satellite imagery, and to compare 

the commonly used pixel-based classification with object-oriented approaches. The results show that 

object-oriented approaches are more suitable for classifying woody species, as well as other land 

cover classes when using high-resolution WV-2 imagery. The overall accuracy was 90% by object- 

oriented classification, while the pixel-based classification gave an overall accuracy of 78%. For 

Melia, a producer accuracy of 92% and user accuracy of 91% was obtained by object-oriented 

classification and a producer accuracy of 85% and user accuracy of 83% was obtained by pixel-based 

classification. Hence the combined use of new generation sensor imagery and the employment of 

object-oriented image classification techniques provided more accurate information on Melia invasion 

in the study area. This is an encouraging result given the high degree of intermingling of Melia with 

other plants at the study site. In particular, the vegetation maps produced from this study would aid in 

gathering accurate knowledge about the distribution and spreading status of Melia, a major invasive 

species over large areas of South Africa and elsewhere in the world.  
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1. Introduction 

Invasive plant species are now viewed as a significant component of global change with impacts 

across multiple scales, and have become a serious threat to natural communities (Huang and Asner, 

2009; Pyšek and Richardson, 2010; He et al. 2011). They can profoundly modify the structure and 

function of invaded ecosystems, alter biotic interactions, and homogenize diverse plant and animal 

communities at large spatial scales, ultimately resulting in a loss of genetic, species and ecosystem 

diversity (Qian and Ricklefs, 2006).  

Climate change is likely to enhance the capability of alien species to invade new areas, by 

simultaneously decreasing the resistance to invasion of natural communities and by disturbing the 

dynamic equilibrium maintaining them (Thuiller et al. 2007). Understanding the distribution of 

invasive non-native species is essential for gaining insights into the dynamics of ecosystem-level 

invasion, formulating effective conservation policies, and developing control measures (Bradley and 

Mustard, 2006). The spatial mapping by remote sensing tools of invasive plant species at fine scales 

should inform predictions about future population densities to provide insights into the mechanisms 

that facilitate invasion (Wilfong et al. 2009). With recent developments in spatial and spectral 

resolution, and more advanced data processing techniques, detailed classification maps for vegetation 

communities and individual species can be produced to provide a better source of information for a 

variety of management decisions and ecological applications (Arenas-Castro et al. 2013). These 

advances in remote sensing and processing techniques have opened up new opportunities for the 

development of operational mapping and monitoring of small features such as individual tree crowns 

(Levin et al. 2007, Rocchini, 2007, Stow et al. 2008, Peerbhay et al. 2016). Promising results have 

been obtained elsewhere on tree species mapping with WorldView-2 data (Omar, 2010; Immitzer et al. 

2012). However, mapping tree species by remotely-sensed imagery is a difficult task because of the 

high spectral variation within species (Lucas et al. 2008). Some researchers proposed various 

approaches using recent very high spatial resolution satellite data e.g. (He et al. 2011; Laba et al. 

2008). Current and accurate maps of woody species using remote sensing techniques could provide 

useful information on the spatial distribution of invasive species occurrence, before they become 

problematic (Hantson et al. 2012).  

Object-based image analysis of high-resolution imagery has been successfully used for vegetation 

mapping and such methods have obtained better classification results than with a traditional pixel-

based classification for mapping invasive woody species (Hantson et al. 2012). Laliberte et al. (2004) 

used this method specifically for shrub encroachment mapping over time, and Smith et al. (2008) 

studied the process of juniper encroachment over a period of 59 years. (Hantson et al. 2012) study 

revealed that the object-based classification increase the classification accuracy by 25% and delivers 

detailed maps of the woody species that are useful for management and evaluation of alien and 

invasive species in dune ecosystems. 
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It is a well-established fact that invasive plant species are causing severe environmental and 

ecological impacts. As an example, the spread of non-native plant species, especially those capable of 

rapid invasion, is already causing considerable negative impacts on the biodiversity and functioning of 

ecosystems in South Africa. Tree invasions have been well documented in South Africa, where they 

have resulted in major ecosystem alterations, particularly in areas that did not have an indigenous tree 

flora, such as grasslands and the species hyper-rich Cape fynbos (Rundel et al. 2014). In many of these 

cases, the invaders are pines and gums (Pinaceae: Pinus; Myrtaceae: Eucalyptus), both of which have 

been extensively studied country-wide (Procheş et al. 2012; Richardson et al. 2014). Nevertheless, 

there are a number of other woody invaders in the country, receiving comparatively little attention. 

Melia azedarach (Meliaceae) hereafter ‘Melia’ (and locally, but incorrectly known as ‘syringa’), is one 

of the most serious alien invasive tree species, with rapid colonising ability that has been linked to its 

dispersal by indigenous birds and bats (Voigt et al., 2011). Melia has been listed as one of the most 

invasive plants in South Africa and the savanna biome is the most extensively invaded by this species 

(Thuiller et al. 2006). Originating from southern Asia and Australia, Melia was introduced to North 

and South America, the Mediterranean Basin and Africa (Voigt et al. 2011). In some of the savanna 

and biome mosaic areas, this species is taking over areas originally occupied by native vegetation, and 

could become the dominant species in a new emerging vegetation type in near future . To the best of 

our knowledge, there is no information available on the use of remote sensing in mapping Melia in 

South Africa. Therefore, the present study was carried out to evaluate the potential of using 

WorldView-2 (WV-2) satellite imagery through supervised classification (maximum likelihood) and 

object-oriented classification for discriminating and mapping woody species, with a special focus on 

Melia in a study area located within the eThekwini (Durban) Municipality, South Africa. The aim of 

this paper was to address two key questions: (1) can the use of object-oriented increase the accuracy of 

the woody species detection? And (2) can remote sensing-based methods deliver information on 

specific invasive alien woody species that is useful for monitoring and management? 

2. Materials & Methods 

2.1 Study area  

The study area is the valley of the Mbongokazi stream, a tributary of the Palmiet River, which is in 

turn a tributary of the Umgeni River, the largest water course in Durban, South Africa (Figure 1).  
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Figure 1. Map of the study area, (a) South Africa (b) eThekwini Municipality (c) the valley of the 

Mbongokazi stream, in Westville. 

The valley covers approximately 66 hectare and is located in the Westville North area of Durban, 

South Africa (29°48’58.53”S, 30°56’12.25”E), at an altitude of approximately 180 m above sea level. 

The valley contains coastal valley forest grading into thicket and (on the ridges, which fall outside the 

study area considered here) into savanna and grassland. Some of the indigenous overstorey woody 

species are Albizia adianthifolia, Acacia robusta, Acacia sieberiana, Acacia nilotica, Bridelia 

micrantha, Dalbergia armata, Dalbergia obovata, Clerodendron glabrum, Combretum molle, Croton 

sylvaticus, Cussonia spicata, Rhus chirindensis, Faurea saligna, Ficus capensis, Ficus natalensis, 

Heteropyxis natalensis, Hippobromus pauciflorus, Protorhus longifolia, Sclerocarya birrea, and 

Zizyphus macronata. Alien tree species that are either invasive or locally naturalised include 

Jacaranda mimosifolia, Litsea glutinosa, Mangifera indica, Melia azedarach, Morus alba and Tecoma 

stans. While some tree species occur in clusters, most are interspersed among individuals of other 

species, creating a heterogeneous top layer in the vegetation. The area is challenging to analyse due to 

overlapping tree crowns which seems to modify the vegetation’s spectral signatures.  

 

2.2 Remotely sensed image  

One cloud-free WV-2 scene acquired on 09 October 2011 was obtained from the South African 

Remote Sensing Agency at no cost. WV-2 data is characterized by high spatial resolution in a 

panchromatic (with a spatial resolution of 0.5 m) and eight multispectral (with spatial resolution of 2 

m) bands, and Radiometric resolution of 2048 (i.e. 11-bit digital numbers (DN)). It has an average 

revisit time of 1.1 days with a swath width of 16.4 km at nadir. The target species (Melia) flowers 
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b 
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mainly in the October which coincides with the cloud-free condition in the study area; in winter it is 

leafless, exposing the bare ground underneath. So the selection of an early October image was made 

taking these points into consideration. To meet the study’s goals, the WV-2 imagery was pre-processed 

to at-sensor radiance values, and to geometrically correct. The image was converted from DN to at-

sensor radiance values (μW cm-1 sr-1 nm-1) through ENVI service Pack 2. The geo-rectification of the 

WV-2 image was verified using ground control points. The study area has relatively flat terrain, so a 

second-order polynomial method was chosen to geometrically correct the image, and the nearest 

neighbour was selected as a resampling method. A total of 45 ground control points were collected 

using a Trimble JUNOTM GPS device throughout the study area for this purpose, and a root-mean-

square error of 0.41 pixels was obtained.  

 

A panchromatic band with 0.5m spatial resolution and eight multispectral bands with 2m spatial 

resolution were fused through an Intensity, Hue, and Saturation (IHS) transformation with a band 4 

(0.59µm-0.63µm), band 3 (0.51µ - 0.58µm), and band 2 (0.45 – 0.51µm) combination for RGB colour. 

The HIS fusion method converts a colour image from the red, green and blue (RGB) space into the 

IHS space. The intensity band in the IHS space is replaced by a high resolution pan image and then 

transformed back into the original RGB space. A fused pan-sharpened image was then used for object-

oriented image analysis (OBIA) classification, while the eight multispectral bands were used for 

maximum likelihood classification. Object-oriented classification performs well at high spatial 

resolution, while pixel-based classification works better at intermediate spatial resolution (Bernabé et 

al. 2014). Consequently, we used different resolutions for the object-oriented classification and pixel-

based classification (0.5m and 2m respectively).  

2.3 Field observations and training samples 

Field surveys were conducted during May-June and September-October 2012 to allow the seasonal 

match with the satellite image acquisition and to identify and locate selected classes on the ground for 

collecting ground truth data and training signatures. The one-year interval between remotely-sensed 

data and field observation is considered sufficiently brief to avoid any misinterpretation (the area is not 

subject to fire; windfall is minimal, and the rate of expansion of the study species and other alien 

plants, while yet to be accurately quantified, appears not to be fast enough to bias our interpretation). 

Thus, based on field investigation, the study determined eight ground cover classes including Albizia 

adianthifolia, Acacia robusta, Dalbergia obovata, Melia azedarach, Mangifera indica, bare ground 

and built-up. An additional class simply called “other vegetation” (hereafter other class) typically 

represented dense vegetation without a peculiar spectral signature. The season and month under 

consideration enabled us to delineate Melia (in its flowering stage, thereby easily separate associated 

from other species; Figure 2). As the species is deciduous (leafless in winter, in most cases still leafless 

when flowering), any point under Melia identified as either Melia or bare ground was considered 

correctly assigned. 
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Figure 2. During peak flowering (October 2011), Melia is easily distinguished from surrounding 

vegetation (numerous trees in photo, a few indicated by arrows). 

Firstly we selected training samples spread evenly over the area, corresponding to the classes A. 

adianthifolia, A. robusta, M. azedarach, D. obovata, M. indica, other, bare ground and built-up areas 

using a Leica GPS and knowledge of the area. This procedure ensured that the spectral signal in the 

samples corresponded to the same ground target. Every effort was also made to locate the individual 

class from the satellite imagery using photographs specifically taken as a visual reference. A true color 

digital aerial photograph was obtained from eThekwini Municipality which was also used to identify 

training/test samples. The area was randomly sampled for locating and delineating woody species 

including Melia and other classes on the composite image. The location of individual classes was 

recorded and this totaled 120 locations across the study site. Sample size was 30 for Melia, 20 for A. 

robusta, A. adianthifolia and D. obovata, 15 for M. indica, 20 for other class and 5 samples for bare 

ground and built-up. This information helped in identifying the distinct tone and texture for different 

classes. The field data was separated randomly within each class as 70% for training purposes and 

30% for validation. Based on field observation estimates of tree species composition in the overstorey 

canopy and their density were also made in September-October 2012.  

 

2.4 Image classification and accuracy assessment 

 

The WV-2 multispectral image was classified using a conventional pixel-based classification with a 

maximum likelihood classifier. As a parametric classifier, the maximum likelihood classification 
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method (equation 1), calculates the probability that a given pixel belongs to a specific class and assigns 

the pixel to the class having the highest probability (Richards, 1999). Supervised maximum likelihood 

classification was conducted in ERDAS Imagine ver. 10.  

 

P (iǀɷ) = P (ɷǀ i) P (i)  / P(ɷ)…………………………………………………………………..Equation 1 

 

where: P (ɷǀi) is the likelihood function, P(i) is the a priori information, i.e., the probability that 

class i occurs in the study area and P(ɷ) is the probability that ɷ is observed. A detailed description of 

maximum likelihood classifier is available in Ahmad (2012). 

  

Object-based image analysis (OBIA), a classification method that deals with objects (i.e. groups of 

pixels that are generated by image segmentation) was then performed by segmenting the pan-

sharpened image to meaningful objects. eCognition Professional ver. 8.7 was used for this purpose. 

Object-based segmentation (Blaschke, 2010) was performed using different scale parameters. By 

testing different segmentation parameters such as scale, shape/colour, and smoothness/compactness, 

according to visual comparison and ground-truth and personal knowledge, a set of segmentation 

parameters were tested until a reasonable segmentation result was achieved and those parameters were 

selected. Based on the selected parameters, the segmentation was performed. The results from 

eCognition were classified by an extensive variety of features that include colour, texture, form, and 

context properties in several forms. This was done using a standard nearest neighbour classifier, which 

describes the class by user-defined sample objects. A more detailed description of image segmentation 

and classification is given in Gao et al. (2006). In order to compare the accuracy of the classification 

result created by the two approaches (i.e. pixel-based and object-oriented), the same set of ground truth 

data was used and the classification feature created in eCognition was exported into ArcGIS ver. 9.3. 

Classified images were then cross-validated with the ground-truth map (test area). Correspondence 

metrics including producer’s and user’s accuracies, overall classification accuracy, and kappa statistics 

were calculated for the classification. The accuracy assessment of the two methods was compared 

using the error or confusion matrix. The error matrix relates the accuracy of the classification on a 

class to class basis and also provides the accuracy of the classification compared to the reference 

image. 
 

3. Results and Discussion 

The classification accuracy for the WV-2 image, classified using a conventional pixel-based 

classification and object-oriented classification are listed in Table 1.  

 

Table 1. Accuracy assessment results from pixel-based and object-oriented classification. 
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Class name Pixel-based classification Object-oriented classification 

 Producer’s 

accuracy 

(%) 

User’s 

accuracy 

(%) 

Kappa  Producer’s 

accuracy 

(%) 

User’s 

accuracy 

(%) 

Kappa  

Melia azaderach 85.7 83.2 0.8 92.5 91 0.9 
Albizia adianthifolia 50 100 1 87.5 95.4 0.9 
Mangifera indica 85.7 75 0.7 92.5 88 0.8 

Acacia robusta 50 100 1 83 95 0.9 
Dalbergia obovata 66.7 66.7 0.6 92.5 90 0.9 
Other  83.3 62.5 0.5 83 82 0.8 
Built-up 100 100 1 100 100 1 
Bare ground 100 100 1 100 100 1 

Overall classification accuracy: 78% Overall classification accuracy: 90% 
Overall kappa: 0.7 Overall kappa: 0.8 

 

The overall classification accuracies for pixel-based classification and object-oriented classification 

are 78% and 90% respectively. Part of the high classification accuracy appeared to be due to the 

employment of object-oriented classification method which uses segmentation approach for a better 

spatial and spectral identification of ground features on a very high spatial resolution imagery. Our 

results support the statement that object-oriented classification may result in increased accuracy, a 

more appropriate and realistic representation of the environment (Wicks et al., 2002). Table 1 indeed 

indicates that in our study object-based approach performed consistently well across all classes, while 

land cover classes were generally well identified by pixel-based supervised classification (Figure 3). 

Object-oriented classification provided better results in terms of distinguishing Melia trees (Figure 4).  
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Figure 3. (a) Map produced from the supervised maximum likelihood classification of 

WV-2 imagery showing all eight classes (b) Target class Melia with indigenous Dalbergia 

(c) Target class Melia. 
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b 

a 



 

294 

 

  
 

Figure 4. (a) Map produced from the object-oriented classification of WV-2 imagery showing all eight 

classes (b) Target class Melia with indigenous Dalbergia (c) Target class Melia. 
 

Using pixel-based classification, the target species Melia had a user’s accuracy of 85% and a 

producer’s accuracy of 83%. However, the user’s accuracy increased to 91% with object-oriented 

classification. Therefore, it can be concluded that the object-oriented classification method performed 

better in detecting Melia in the study area. Recently, IKONOS imagery has been used for mapping an 

c 

b 
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invasive woody plant, Pittosporum undulatum, and authors found that segmentation-based approach 

was most appropriate to separate this species from other land-cover/vegetation classes (Gil et al., 

2013). The object-oriented approach, by contrast, accurately identified such features (Figure 4b). A 

possible explanation for the confusion of Melia with other classes is that during the months of 

September and October, the spectral response of bare ground is influenced by the presence of dry 

grass, matching to some extent Melia flowers.  

In the pixel-based classification method producer’s accuracies for A. adianthifolia and A. robusta 

were relatively low (50%) due to large variation of spectral signatures. However, the object-oriented 

classification method worked well in identifying these species with good producer’s and user’s 

accuracies. Producer’s accuracies of over 65% were achieved for all classes except for A. adianthifolia 

and A. robusta, which were misclassified most frequently as the common D. obovata. The highest 

user’s accuracy was for the A. adianthifolia, A. robusta and M. azedarach classes. In present study 

only dominant woody species present at the study site was considered and this lowered the possibility 

of a greater level of spectral overlap to occur between all of the species present. Among the differences 

that can be observed between Fig. 3a and Fig. 4a, most notably some areas classified as Acacia and 

Mangifera in the pixel-based classification simply appear as “other vegetation” in the object-oriented 

classification. 

The ability to differentiate invasive species based on remotely sensed data is increased when plants 

have unique phenological stages relative to the surrounding vegetation (McGowen et al., 2001; Joshi et 

al., 2004). Some invasive plants flower or green up at a different time compared to the surrounding 

vegetation. In Idaho, four-band multispectral imagery captured from fixed wing aircraft and with very 

high spatial resolution that coincided specifically to flowering events aided in the detection of 

Centaurea solstitalis (Lass et al., 1996). In New Mexico grasslands, Gutierrezia sarothrae was 

differentiated from surrounding grassland species because of its distinct phenological characteristics 

(Peters et al., 1992). Similarly, in the present study, Melia was easier to tell apart from other trees 

because it flowers when most of other trees are not in flowering, although, as mentioned, this caused 

other cases of misclassification, albeit arguably more limited and easier to correct. In this context, 

information on the trees' age at first flowering should be factored in for future studies, particularly in 

cases of rapid range expansion. 

The information on the distribution of Melia trees obtained from the interpretation of satellite data 

in conjunction with ground data can be used to strengthen the ongoing management of the invasive 

plant species in the study area. As a further research topic, it would be interesting to investigate the 

improvement in the accuracy of the results of the present study if LIDAR data are also included for 

canopy structural analysis for Melia. It was assumed that both the higher spatial resolution and the 

additional spectral bands of WV-2 had improved the classification of target Melia trees. The derived 

map also provided estimates of woody species composition that showed good agreement with the 

field-based estimates. As from Table 2, it is evident that the most abundant indigenous woody species 
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for the area are A. adianthifolia, A. robusta and D. obovata. The most dominant alien tree species is by 

far Melia.  

In order to use remotely-acquired data in invasion management, the type of analysis performed here 

would have to ideally be performed across areas, and repeated temporally. Distributional information 

currently available for alien species, even in the case of woody plants which are relatively well 

mapped, is often restricted to data at the quarter-degree square scale. Such coarse data, even if 

regularly updated, could create the impression that the spread of an alien species has slowed down or 

even stopped, when in fact the species is increasing dramatically in cover at the local scale. Identifying 

the areas where this is indeed happening could help focus control efforts, and studies such as ours are 

needed in refining the tools towards species identification. 

 

Table 2. Woody species in the overstorey canopy, their approximate density and Total Basal Area 

(TBA) in the study area.  

Species 

 

Family Origin Density 
(ha-1) 

TBA   
(m2 ha-1) 

Acacia robusta 

 

Fabaceae 

 

Native ca.40  2.43 
Acacia nilotica   Fabaceae Native ca. 20 0.15 

Acacia sieberiana Fabaceae Native ca. 10 0.05 
Albizia adianthifolia Fabaceae Native ca. 50 2.36 
Bridelia micrantha Euphorbiaceae Native ca. 10 1.07 

Clerodendron glabrum Verbenaceae Native ca. 10 0.08 
Combretum molle Combretaceae Native ca. 10 2.03 

Croton sylvaticus Euphorbiaceae Native ca. 20 0.10 
Cussonia spicata Araliaceae Native ca. 10  0.04 

Dalbergia obovata Fabaceae Native ca. 40  0.28 
Faurea saligna Proteaceae Native ca. 10 1.02 

Ficus capensis Moraceae Native ca. 10 0.03 
Ficus natalensis Moraceae Native ca. 10  1.05 
Heteropyxis natalensis Heteropyxidaceae Native ca. 10  0.06 

Hippobromus pauciflorus Sapindaceae Native ca. 10 0.04 
Jacaranda mimosifolia Bignoniaceae Tropical America ca. 10 0.08 

Litsea glutinosa Lauraceae Tropical Asia ca. 10 0.01 
Mangifera indica Anacardiaceae Tropical Asia ca. 40  5.21 

Melia azedarach 

Meliaceae Tropical Asia, 

Australia ca. 120 14.98 
Protorhus longifolia Anacardiaceae Native ca. 10 2.03 

Sclerocarya birrea Anacardiaceae Native ca. 10 3.02 

Searsia chirindensis Anacardiaceae Native ca. 10  0.04 

Zizyphus mucronata Rhamnaceae Native ca. 10 0.02 

36.18 

Total    
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4. Conclusions 

Remote sensing provides a tool for generating important information on distribution of plant species 

over time which is more cost, labour, and time efficient relative to field based monitoring (Ozesmi & 

Bauer, 2002). Such a tool is crucial to successfully discriminate, map and monitor rapidly spreading 

alien invasive plants such as Melia azedarach.   

This study showed the power of WorldView-2 data in individualising tree species at detailed scale. 

Besides mapping the alien target species, WV-2 imagery is also very useful in the mapping of 

indigenous tree species. In our study area, taking these efforts further and using different types of 

imagery, it would be useful to map indigenous trees over larger forest areas. Especially, the scarp 

forests with their small patch size are rich in flora and fauna, and trees that exhibit their own 

peculiarities in terms of population structure, growth habit and distribution. These species-diverse 

scarp forests are being recognized as a diverse habitat of high importance for conservation, sensitive to 

climate change and habitat fragmentation, but fine-scale information on distributions and patterns of 

tree species diversity are still lacking. The ability to map a specific tree species over large and diverse 

areas from remotely sensed imagery would, therefore, be a major step forward in understanding the 

fine-scale heterogeneity in vegetation, species coexistence and the spatial distribution of tree species 

diversity. 
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