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Abstract 

The transformation from natural to impervious surfaces in an urbanization process and the 

urban heat island (UHI) phenomenon is known to significantly compromise urban environmental 

quality and has been linked to climate change and associated impacts. Whereas the existence of 

UHI is common knowledge, the implication of urban land use land cover (LULC) gradient on 

intra-urban thermal characteristics is often poorly understood. A recent proliferation of remotely 

sensed datasets offer great potential in understanding the relationship between urban LULCs and 

their respective thermal characteristics, a critical basis for urban environmental management and 

designing climate change mitigation measures. This study explores the potential of multispectral 

remotely sensed dataset in determining the influence of rural/urban LULC gradient on urban 

thermal characteristics. A rectangular eleven band Landsat 8 image subset was delineated from 

the central business district to the rural periphery and classified into most dominant LULCs and 

a corresponding Landsat 8 thermal layer used to determine the LULCs thermal characteristics. 

Digitized point data was used to determine differences in land surface temperature (LST) over 

gradient's LULC types. Results showed that there was varied contribution of LULCs to the LST. 

As expected, the density of built up surfaces and LST decreased towards the city’s periphery while 

a decline in vegetation density from the periphery led to an increase in LST. These results provide 

valuable insights into the value of remotely sensed datasets in understanding the implication of 

intra-urban LULC gradient on LST characteristics. Specifically, the study demonstrates the value 

of remotely sensed data as aids to sustainable urban environmental planning. 
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1. Introduction 

Urbanization has been identified as a major influence to the transformation of land use and 

land covers (LULCs) and a key driver to environmental change (Kardinal et al., 2007; Xuejie et 

al., 2003). Typically, this transformations involve conversion of natural landscapes like wetlands, 

rivers, forests, grasslands and unused lands into built-up areas like tarred roads, concrete 

pavements and buildings (Buyadi et al., 2013; Deosthali, 2000; Radhi et al., 2013). According to 

Qian et al. (2006) and Oke (1987), such transformations are known to influence local, regional 

and even global climate.  

 

In urban landscapes, remnant natural landscapes and converted impervious LULC mosaics act as 

thermal sources and sinks respectively (Weng, 2001). Commonly, these mosaics influence urban 

Land Surface Temperature (LST)  as they determine a surfaces’ solar radiation and absorption, 

thermal capacity and heat conductivity (Qian et al., 2006). On a larger scale, the elevated urban 

LST is often distinct from the cooler peripheral and rural landscapes, a phenomenon referred to as 

the Urban Heat Island (UHI).  This phenomenon is known to significantly affect micro and macro 

climate, deteriorate urban environment and has been identified as a major influence to climate 

change and associated impacts (Timmerman and White, 1997). Whereas urban/rural thermal 

variability is now common knowledge, influence of urban LULCs gradient, which form the basis 

for the UHI, is often poorly understood. This can be attributed to, until recently, lack of appropriate 

integrative techniques that could be used to effectively determine the influence of urban LULCs 

on their respective thermal characteristics. Recently, remote sensing techniques and datasets have 

become valuable for spatial data acquisition, integration and analysis for environmental decision 

making (Mirzaei and Haghighat, 2010; Streutker, 2002). According to  Lillesand and Kiefer (2000) 

and Mirzaei and Haghighat (2010), a significant advantage of using remote sensing datasets and 

techniques is the ability to identify, standardize and improve data quality and to accurately derive 

required information. In concert with Geographic Information System (GIS), remote sensing 

provide unparalleled analytical abilities for assessing spatial environmental characteristics 

valuable in urban environmental planning, decision making and as aids to designing necessary 

mitigation measures. In this study, using remotely sensed datasets and GIS techniques, we seek to 

determine the influence of urban/rural LULC gradient on thermal characteristics around the city 

of Pietermaritzburg.  
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2. Data and methods 

The study was conducted in the city of Pietermaritzburg, Umgungundlovu District, KwaZulu-

Natal province of South Africa (Figure 1). To determine the LULC thermal variability, a digital 

urban/rural rectangular transect measuring 30 x 5 km was generated from the central business 

district (CBD) of Pietermaritzburg city towards the north westerly periphery (Figure 1). To 

minimise the influence of altitude on thermal variability, and to ensure representative transition to 

the periphery, the transect was selected based on least change in altitude and gradually changing 

LULCs.  

 

Figure 1: The general study area and Area of Interest (AOI). 

A cloud-free Landsat 8 Operational Land Imager (OLI) Level 1T (radiometric, geometric and 

terrain corrected image) row 80, path168 image captured on 23 March 2014 at 07:51 GMT was 

acquired for the study. Since the image is delivered pre-processed, no further pre-processing was 

required. All the scene’s bands were stacked and a rectangular area of interest (AOI) subset from 

the study area generated. An un-supervised classification was first used to gain an insight into the 
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existing LULC types within the study area.  A supervised classification scheme, using maximum 

likelihood algorithm, was then used to amalgamate the major LULC covers. Six major LULC 

classes within the AOI were identified – High density built up, Low density built up, High density 

vegetation, Low density vegetation, Water and Very low/no vegetation (Table 1).  

 

Table 1: Land features included in land use/land cover (LULC) classes. 

 

To validate the LULCs, 256 stratified random points were generated from an associated aerial 

photograph and the image’s higher spatial resolution panchromatic band. The points were then 

used to generate an error matrix and overall, user’s and producer’s accuracies and Kappa statistic 

generated.  

 

The OLI spectral band 10 was used to derive the LST for the LULC gradient. Equations 1 and 2 

were then used to convert the Landsat 8 Digital Numbers (DN) to LST. Equation 1 was used to 

convert Digital Numbers (DN) to spectral radiance while equation 2 was used to convert spectral 

radiance to brightness temperature. 

 

Lλ = MLQcal + AL                                                             [1]                           

 

Where: Lλ is the spectral radiance (Watts/( m2 * srad * μm), ML is the band specific multiplicative 

rescaling factor from the metadata (RADIANCE_MULT_BAND_10), Qcal is quantized 

calibrated standard product pixel values (DN) and AL is band specific additive rescaling factor 

from the metadata. 

    LULC                            Amalgamated LULC name 

    Industrial sites, sky rise buildings, central  

     business district 

High density built up 

    Single-storey residential area, homesteads                Low density built up 

 Forests, thick thickets                                                              High density vegetation 

 Cropland, grassland                                                                 Low density vegetation 

    Rivers, dams, lakes, ponds                                             Water 

 Bare land, sand                                                                        Very low/no vegetation 
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Where: T is at satellite brightness temperature in Kelvin (K), Lλ is spectral radiance 

(Watts/(m2*srad* μm), K1 is band-specific thermal conversion constant from metadata 

(K1_CONSTANT_BAND_10) and K2 is band-specific thermal conversion constant from the 

metadata (K2_CONSTANT_BAND_10).          

          

The brightness temperature was converted from Kelvin (K) to Degrees Celcius (C) using Equation 

3.  

 

oC = K - 273                                                             [3] 

 

Where: C is the temperature in Degrees Celsius and K is the temperature in Kelvin. 

        

To determine the influence of LULCs on the urban/rural variability, the classified LULC layer was 

vectorised into a polygon layer and a union function used to generate six polygons in the attributes 

table.  Within each of the six LULC classes, 200 random points (with 30 m minimum distance) 

were generated (Figure 2). The respective LULC random points were then used to extract LST 

values from the thermal layer. These values were added to output attribute table LULC class field 

and used for analysis.  

 

  T =  

  K2  

ln(  
K1 

 +1) 
Lλ 

[2] 



389 
 

 

Figure 2: Points representing the distribution of land use land covers within the Area of Interest 

(a) and respective thermal variability (b). The points have been exaggerated to show 

land use land cover variability and respective thermal values respectively. Central 

Business District (x) natural peripheral boundary (y). 

The overall urban/rural thermal variability from the urban core to the natural peripheral landscape 

was determined using sixty two points digitized along a straight line at approximately 50m 

intervals on the classified LULC layer (Refer to figure 2 a and b).  

 

3. Results and discussion 

Recent insights into urban heat island (UHI) and its implication on climate change has 

increased the need for an understanding of the influence of urbanisation transformation on urban 

thermal characteristics (Kardinal et al., 2007; Radhi et al., 2013; Weng, 2001; Zhang and Huang, 

2012). However, to date, the efficacy traditional techniques like surveys and in situ meteorological 

data have been impeded by among others lack of integrative and comparative capabilities at 

relevant spatial resolutions. Due to their relatively lower cost in addition to the above named 

limitations, remotely sensed datasets have recently become valuable in understanding the 

relationship of urban LULCs and their respective thermal characteristics  (Senanayake et al., 2013; 

Takeuchi et al., 2010; Xiao-Ling Chen, 2006).  

 

Using the Maximum Likelihood classification scheme, this study identified six major LULCs 

types. Figure 3 shows the classified land use land covers (a) and associated surface temperatures 

(b).  High density built up areas were mainly concentrated at the southern end of the study area, 
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with the Low density built ups surrounding the High density built up areas, diffusing outwards. 

There was a general increase in natural LULC (High and Low dense vegetation and Water) towards 

the study area's periphery. The city of Pietermaritzburg is characterised by High density built up 

region that also forms the core zone of economic activity (Central Business District). The city is 

also characterised by Low density built up areas around the CBD and an outward gradual increase 

in areas with vegetation and vegetative biomass per unit area. This finding is consistent with the 

general concept urban transformation on natural landcapes characterised by gradual transition from 

urban built up areas like tarred roads, concrete pavements and buildings to natural and greenery 

landscape  like wetlands, rivers, forests, grasslands and unused lands (Buyadi et al., 2013; 

Deosthali, 2000; Radhi et al., 2013; Takeuchi et al., 2010; Weng 2001). 

 

         

Figure 3: Land use/land cover types over study area (a) and land surface temperature over 

study area (b). 

 

Results in this study show the potential of remotely sensed data in relating urban LULCs to 

respective thermal characteristics. The success of the Landsat8 used in this study can be attributed 

to its relatively higher spatial resolution (30m), which allows for adequate detection of finer 

differences in urban LULC types. In this study, there was a 73.85% overall classification accuracy 

and 0.67 overall kappa statistics (Table 2), which was above the minimum (70%) threshold 

recommended by Takeuchi et al. (2010) and Weng (2001). However, the classification accuracy 
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differed widely between LULC groups. The user’s accuracy of High density built up for instance 

was lower (46.43%) compared to the other LULC types. This can be attributed to a wide range of 

features within the built up landscape, reducing the separability of spectral signatures from other 

LULC types. Conversely, due to high surface homogeneity, High Density Vegetation had a higher 

user’s accuracy (89.47%). The uniformity of the surface of Very Low/No Vegetation and clear 

distinction from other LULC types account for the highest producer's accuracy of 94.44%. 

 

Table 2: Accuracy Assessment – Error matrix (Totals). 

 

 

There were clear LST variations over the study area (refer to Figure 3b above). Generally, higher 

LST values (High density built up) were in lower end of the study area and lower LST (High and 

low density vegetation) were found in the upper end of the study area (Figure 3). Generally, there 

was a clear relationship between built-up density and thermal intensity (Figure 3 and 4).  

 

Class Name 

 

Reference 

Totals 

Classified 

Totals 

Number 

Correct 

Producer's 

Accuracy (%) 

User's 

Accuracy (%) 

High Density Built Up 15 28 13 86.67 46.43 

High Density Vegetation 67 57 51 76.12 89.47 

Low Density Built Up 49 51 31 63.27 60.78 

Low Density Vegetation 86 75 63 73.26 84.00 

Very Low/No Vegetation 18 29 17 94.44 58.62 

Water 25 20 17 68.00 85.00 

Totals 260 260 192     

Overall Classification Accuracy = 73.85%     

Overall Kappa Statistics = 0.67       
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Figure 4: Land surface temperature above different LULCs extending from the Pietermaritzburg 

Central Business. 

 

Based on an urban/rural transect (refer to Figure 2), there was a clear decline in temperature from 

the CBD to the periphery (Figure 5). There was a general decrease in thermal values from the High 

density built up, Low density built up, Low density/no vegetation to High density vegetation 

respectively (Figure 5). In consistency with Deosthali (2000) and Dousset and Gourmelon (2003), 

the highest LST was at the CBD, characterised by  built impervious surfaces and therefore low 

albedo (Qian et al., 2006; Sobrino et al., 2004; Weng, 2001). According to Jin et al. (2005), such 

built up areas absorb high amounts of electromagnetic radiation and releases high amounts of heat 

energy and therefore a major thermal source within an urban landscape.  The lowest LST was 

found at high density vegetation and water bodies. These green spaces act as heat sinks, as they 

tend to be porous and assimilate local heat. Such porous surfaces absorb heat energy from the 

atmosphere to percolate, which reduce the LULCs respective LST. Generally, green spaces are 

characterised by higher albedo than built up areas, therefore, LST tends to decrease as you move 

from the urban CBD to the rural periphery (Senanayake et al., 2013; Streutker, 2002; Takeuchi et 

al., 2010; Xuejie et al., 2003).  
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Figure 5:Land surface temperature profile across different land use/land cover regions, with 

regression line. (High density built up – HDB; Low density built up - LDB; Very low/no 

vegetation VL/NV; Low density vegetation – LDV; High density vegetation and Water 

– HDV and WAT). Central Business District (x) to the natural peripheral boundary (y). 

 

Results in this study demonstrate the potential of remotely sensed dataset in understanding the 

implication of urban LULC transformation on urban thermal characteristics. Specifically, these 

results demonstrate the potential for quantification of urban LULCs vis-à-vis urban thermal 

characteristics, valuable for designing and implementation of urban environmental management 

plans. Techniques and datasets used in this study are particularly valuable in urban environmental 

management, including mitigation of climate change and associated impacts.  

 

Conclusions 

This study used Landsat8 imagery to determine the distribution of major LULC types, 

temperature variability, and the influence of LULC change on LULC on Pietermaritzburg's LST. 

The following conclusions were drawn: 

 Multispectral data from Landsat8 sensor has a great potential for studying the variability 

in LST over urban LULC change. 



394 
 

 Using the maximum likelihood algorithm, an overall classification accuracy of 73.85% was 

obtained, demonstrating the reliability of the algorithm on the multispectral remotely 

sensed Landsat 8 for urban LULC classification. 

 From the central urban areas to the rural periphery, the density of built up surfaces 

decreased while the density of vegetation surfaces increased.  

 Land surface temperature decreased from the central urban areas to the rural periphery. 

 Generally, LST values decreased from built-up urban core to the natural landscape at the 

periphery.  
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