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Abstract  
Accessibility to higher resolution earth observation satellites suggests an improvement in the 

potential for fine scale image classification. In this comparative study, imagery from three optical 

satellites (WorldView-2, Pléiades and RapidEye) were used to extract primary land cover classes 

from a pixel-based classification principle in a suburban area. Following a systematic working 

procedure, manual segmentation and vegetation indices were applied to generate smaller subsets to 

in turn develop sets of ISODATA unsupervised classification maps. With the focus on the land cover 

classification differences detected between the sensors at spectral level, the validation of accuracies 

and their relevance for fine scale classification in the built-up environment domain were examined. 

If an overview of an urban area is required, RapidEye will provide an above average (0.69 κ) result 

with the built-up class sufficiently extracted. The higher resolution sensors such as WorldView-2 

and Pléiades in comparison delivered finer scale accuracy at pixel and parcel level with high 

correlation and accuracy levels (0.65-0.71 κ) achieved from these two independent classifications. 

1. Introduction 
Since 1999, with the launch of the first 1m panchromatic ground sample distance (GSD) 

commercial earth observation satellite, IKONOS, the potential for fine scale classification from 

satellite imagery improved significantly. Very high resolution (VHR) earth observation satellites 

cover the dominant solar-reflectance electromagnetic spectrum values, especially in the visible 

(0.4µm – 0.7µm) and near infrared (NIR, 0.7µm – 1.1µm) ranges.  Traditional multispectral 

satellites such as IKONOS (4m), QuickBird (2.4m) and now Pléiades (2m) provide four spectral 

bands within the visible and NIR range. DigitalGlobe, operator and owner of the WorldView-2 

(2m) satellite introduced a total of eight multi-spectral bands within the visible and NIR spectrum 

range. Modern remote sensing (RS) technology – as opposed to costly and time consuming in-field 

observations and surveys – for the classification and extraction of thematic information such as land 

cover/land use (LC/LU) within urban environments, has shown great promise over this past decade 

(Brito and Quintanilha, 2012).  
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Other than the unique nature of remotely sensed imagery (spectral composition, GSD, etc.), it is 

also the availability of suitable training samples, the choice of classification method and the 

definition of the desired target classes that are the main factors that may affect the accuracy of 

remotely sensed data classification (Lu and Weng, 2007). In principle, three types of classification 

methods exist, namely unsupervised, supervised and hybrid. Unsupervised classification clusters 

pixels in a dataset based on statistics only, without any user-defined training classes. The most 

commonly used unsupervised LC/LU classifier is the Iterative Self-Organizing Data Analysis 

(ISODATA) classification algorithm (Tou & Gonzalez, 1974). It is used to create a user-defined 

number of clusters or classes in an image that must later be labelled by the analyst to create geo-

information, e.g. a thematic map. On the other hand, several types of statistics-based supervised 

classification algorithms have been developed and are included in various remote sensing (RS) 

software systems and geographic information systems (GIS) today. Examples of the more popular 

classifiers (in increasing complexity) are parallelepiped, minimum distance, maximum likelihood 

(MLC), and Mahalanobis distance (Richards, 1999; Xiang et al., 2005). With supervised statistical 

classification algorithms the analyst must first locate and define samples (training areas) in the 

image for each specified class. The algorithm then compares each pixel in the image with the 

different training areas to determine which training area best correlates to the pixel in question and 

once discovered, the image pixel is labelled with the corresponding class. Hybrid methods can 

combine the advantages of manual, parametric and non-parametric methods in various 

combinations to optimise the classification process (Lu et al., 2010). 

As an alternative to parametric classifiers, other research has made use of non-parametric 

methods such as artificial neural networks, binary decision trees (DT) and discriminant analysis 

(DA) to produce functional land cover products (Heinl et al., 2009; Fröhlich et al., 2013; Li et al., 

2013). Baraldi et al. (2010) demonstrated that an operational automatic pixel-based near-realtime 

four-band IKONOS-like Spectral Rule-based decision tree Classifier (ISRC) is eligible for use in 

operational VHR spaceborne measurement systems such as those envisaged under the on-going 

international programs such as Global Monitoring for the Environment and Security and Global 

Earth Observation System of Systems. Geographic object-based image analysis (GEOBIA), as 

opposed to pixel-based image processing, is also emerging as a popular classification method 

(Thunig et al., 2011; Tehrany et al., 2013). The process involves segmentation during which the 

pixels in an image are grouped into homogeneous interlocking regions as resolved by a specific 

segmentation algorithm (Myburgh and Van Niekerk, 2013).  The segmented image can then be 

classified at the segment level instead of the pixel level. Its ability to incorporate contextual 

information and ancillary data (e.g. elevation/height models) makes GEOBIA suitable for the 

integration of various additional features for image classification (Wurm et al., 2009; Aguilar et al., 

2012; Salehi et al., 2012). To improve accuracy even further with regards to urban land cover 

classification, some researchers successfully combined a pixel-based classifier with GEOBIA as 

another type of hybrid method (Bouziani et al., 2010; Elsharkawy et al., 2012). For example, LC 

classification in a complex urban-rural landscape with Quickbird imagery was performed by Moran 
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(2010) using Extraction and Classification of Homogeneous Objects (ECHO), a multistage spectral-

spatial classifier that combines spectral and spatial/textural features (Biehl and Landgrebe, 2002) 

that also incorporates MLC, followed by segmentation-based classification. Huth et al. (2012) 

introduced the concept and implemented a methodology to classify multi-spectral and multi-

temporal RS imagery within an automated processing environment, named TWinned Object and 

Pixel based Automated Classification Chain (TWOPAC). Available as an Open Source application, 

TWOPAC adopted classification routines founded on both pixel-based classification and object-

based characteristics (e.g. shape parameters), as well as object statistics, by following a novel DT 

approach. 

With the advantage of available (archived) temporal datasets and by means of the integration of 

RS and GIS techniques it is possible to analyse and classify the changing pattern of land cover over 

different periods (Kennedy et al., 2009). This in turn allows the analyst to better understand the 

dynamic changes that have occurred during that time within the area of interest. Change detection 

analysis can basically be grouped into two categories: (1) those detecting binary change/non-change 

information and (2) those detecting a detailed ‘from-to’ change trajectory (Lu et al., 2004). The first 

group of techniques can include using image differencing, vegetation index differencing, and 

principal component analysis (PCA), whereas the second group can make use of the post-

classification comparison (map-to-map comparison), multidate classification (image-to-image 

comparison) and hybrid change detection methods (Lu et al., 2010). In the first case, simple raster 

calculations between the specific imagery of different dates using the spectral or derived pixel 

values are normally performed. PCA is a mathematical technique for reducing the dimensionality of 

a data set (Jackson, 1983) and two PCA approaches to RS can be used in change detection 

(Muchoney & Haack, 1994). The first, merged data transformation, is an approach that registers and 

treats all the bands from the n-dimensional multi-temporal image data set as a single N-dimensional 

data set as input to the PCA (Munyati, 2004). Independent data transformation analysis, the second 

approach, uses PCA to spectrally enhance each individual image in a multi-temporal dataset and 

then classify each image separately for use in post classification change detection (Gholami et al., 

2012). Post-classification comparison allows the analyst to determine the difference between 

independently classified images from each of the dates in question, making it the preferred method 

in which “from” and “to” classes can be calculated automatically for each changed pixel (Serra et 

al., 2003). The application of landscape metrics (using FRAGSTATS software, for example) is also 

useful to measure and analyze the temporal urban land cover changes and urban sprawl 

phenomenon from the classified images (Alexakis et al., 2012; Fichera et al., 2012). 

The built environment domain is a complex field where the dynamics between rural and 

urbanised areas require fine scale geo-information to determine micro elements of importance to 

town planning. Aggregated land cover and/or land use classes could result in the misinterpretation 

of that spatial landscape and the actual area coverage of dominant classes. VHR imagery holds the 

potential to distinguish specific land cover types within a stand parcel as the smallest administrative 

unit in the cadastre boundary. As the basis for categorisation, a systematic pixel-based classification 
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technique utilizing the spectral pattern that characterises the data per pixel (Martinfar et al., 2007) 

was applied in this work. The focus was on the land cover classification differences detected 

between three selected sensors at spectral level, the validation of classification accuracies, and the 

relevance of this fine scale classification, mainly within the built environment.  This paper therefore 

attempted to answer three research questions: 

i. How does the unique nature of commercial spaceborne VHR imagery influence their 

capacity to extract urban land cover classes effectively? 

ii. In an unsupervised pixel-based land cover classification procedure, is there a significant 

variation in accuracy results between three selected VHR sensors?  

iii. Is change detection analysis feasible between different VHR sensors and their 

classification products? 

2. Study Area, Data and Methods 

2.1  Study area 

To ensure that an assortment of settlement types was included, a diverse area of 15km x 10km in 

the eastern Tshwane Municipal Area was selected as the overall area of interest (AOI), as illustrated 

in Figure 1. Other than transport features (roads and railway), the AOI included high and low 

density residential properties, commercial and industrial zones, open public spaces, quarries and 

agricultural plots as the dominant land uses. 

 

Figure 1:  Geographical study area in the City of Tshwane 
(Map compiled by the Unit for Geoinformation and Mapping, University of Pretoria) 
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2.2  Data selection and preparation 

In this investigation we applied a systematic approach towards the classification of primary land 

cover classes from a trio of VHR electro-optical satellites, Pléiades, WorldView-2 and RapidEye. 

Resolution for these sensors ranges between 5m and 2m multi-spectral, representing various 

spectral bands within the visible to NIR spectrum as illustrated in Figure 2.  

   

Figure 2:  Spectral ranges represented in the band combinations of three VHR satellites 

Note the band overlaps within the two top RS platforms (mixed/darker areas in the colour bar) 

and combinations between all three satellites. The data used were ordered as ortho-rectified imagery 

directly from the satellite operators. The pre-processing systems used by these satellite operators are 

well advanced, producing acceptable radiometric as well as geometrical accuracies without ground 

control points (GCPs). The relevant specifications and accuracies are listed in Table 1, including the 

particular acquisition dates of each image used. 

Table 1: Product specifications and acquisition dates of imagery used 

Sensor 
Acquisition 

Date 
Product Resolution 

(MSS) 
Geometric Accuracy 

(without GCPs) 
Pixel 

Depth 

WorldView-2 11/03/2011 2m 5.0m (CE90)* 11 bit 

RapidEye 22/03/2012 5m 4.6m (CE90) 12 bit 

Pléiades 24/03/2012 2m  3.0m (CE90) 12 bit 

* Specification at nadir on flat terrain 

Subsets encompassing the study area were created to maintain the same analytical geographical 

extent in all images. The subset area was used to align all three datasets geometrically with each 

other. A polynomial geo-referencing procedure improved the geometrical registration of all the 

different images since the original pixel alignment between the images was not acceptable. Due to 

its superior geometric accuracy (3m), the Pléiades image was used as the master image to co-

register the WorldView-2 and RapidEye image using the AutoSync module of the Erdas Imagine 

software (ERDAS, 2012).   
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2.3  Hierarchical land use classification 

Land cover refers to the type of physical cover or feature on the earth’s surface, while land use is 

characterized by the human and/or economic activities associated with a particular area (Lillesand 

et al., 2004). As introduced in the South African National Land Cover 2000 programme (Van den 

Berg et al., 2008), classified land cover classes may be converted to land use by applying a typical 

hierarchical principle (tree structure) to guide the researcher. Figure 3 demonstrates this concept of 

hierarchical urban land use classification with three primary classes (A1-A3), with only the non-

vegetated land cover class (A3) expanded upon towards Level III.  

 

 

Figure 3: Illustrated example of a possible land cover to land use classification hierarchy for non-
vegetated areas in urban and semi-urban environments 

In such a land cover tree, Level I represents the primary land cover classes, Level II a further 

sub-class of land cover and at Level III downwards the associated land use classes.  

2.4  First stage unsupervised classification using vegetation indices 

The primary classes extracted at the onset of this analysis consisted of three land cover types: 

water, vegetation and non-vegetated areas. The subset area of each image was used to generate a 

Normalized Difference Vegetation Index (NDVI), a standard RS technique for identifying 

vegetation. The rationale for this step is to determine the spectral potential of each sensor based on 

the NIR and Red (R) bands from a standardised algorithm: 

NDVI = (NIR-R)/(NIR+R)  [1] 

The NDVI result was used to separate water bodies, non-vegetated and completely vegetated 

areas. The selection of these primary land cover classes in the cases of Pléiades and RapidEye was 

based on the histogram values generated by the NDVI calculation and the resulting natural breaks 

that represent specific dominant classes. Water bodies would have a particular negative threshold 

NDVI value, the remaining negative values up to zero indicate bare earth and impervious surfaces, 

whereas the positive values indicate that vegetation is present.  To fully exploit the eight spectral 

bands on offer, supplementary investigations into the extraction of the water and non-vegetated 
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layer from the WorldView-2 image followed multiple NDVI-type calculations using various band 

combinations as indicated in Table 2.  

Table 2: NDVI algorithm used to extract primary land cover classes from the WorldView-2 image 
using different band combinations 

NDVI function Associated land cover extracted 

RED EDGE & GREEN   (1) 
(Red Edge – Green)/( Red Edge + Green) 

 
Water body 

NIR1 & YELLOW   (2) 
(NIR1 – Yellow)/(NIR1 + Yellow)  

  
Water body 

NIR2 & RED   (3) 
(NIR2 – Red)/(NIR2 + Red) 

 
Water body 

NIR2 & RED EDGE   (4) 
(NIR2 – Red Edge)/(NIR2 + Red Edge) 

 
Water body & Non-vegetated area 

YELLOW & COASTAL BLUE   (5) 
(Yellow – Coastal Blue)/(Yellow + Coastal Blue) 

 
Non-vegetated area 

RED EDGE & RED   (6) 
(Red Edge – Red)/(Red Edge + Red) 

 
Non-vegetated area 

 

The selection of the most significant histogram values associated with water and non-vegetated 

areas was achieved through finding the optimal band combinations in this case. The threshold value 

for extracting water bodies was -0.33 with lesser values recoded as 1 and the rest as zero. The 

summation of the results (1+2+3+4) provided a >95% pixel selection over the associated water 

features when investigated visually. To find the non-vegetated areas, the water body values were 

recoded as NoData and the remaining pixel values divided into two classes based on the natural 

breaks (Jenks) algorithm in ArcGIS 10.1 (2012), summed and appropriately recoded 

(NDVI+4+5+6), as for the water body class before. The remainder then constituted the vegetated 

areas and, together with the non-vegetated primary land cover classes, served as sub-AOI input 

layers during the ISODATA classification processes after manual segmentation. 

2.5  Manual segmentation 

In order to improve the interpretation of the pixel based classification, expert knowledge was 

used in a manual segmentation procedure which in essence ‘clusters’ the spectral values associated 

with a particular dominant land use, as located within the study area. The unique nature of South 

African town planning history, with distinctly segregated residential and economic development, 

simplifies this zoning approach, making it possible to delineate most of the determinant land use 

classes along major transport routes. A road mask generated in ArcGIS 10.1 (2012) – representing 

freeways, major roads and streets – further ensured that no pixel classifications over road areas 

(including traffic) were included during classification. This, in turn, rendered this layer a suitable 

‘edge’ when the land cover results within each segment were finally reassembled for the complete 

study area mosaic. The seven dominant land use zones (polygons) based on the manual 

segmentation procedure that applied were (1) mining areas, (2) clustered estates (upmarket gated 

residential areas), (3) residential areas, (4) rural zones, (5) smallholding/agriculture zones, (6) 

township areas (peripheral underdeveloped urban developments) and (7) industrial areas. After 



South African Journal of Geomatics, Vol. 2, No. 4, August 2013 

 
 

316

creating these zones, only the vegetated and non-vegetated land cover classes within each zone type 

were clipped to produce the final input AOI files for the unsupervised classification routine. 

2.6  ISODATA Classification and post-processing 

Since ‘between sensor’ quality is the focus of this paper and not a comparison of the various 

classifiers, the classification technique used was centred on the pixel-based unsupervised 

ISODATA classification module from the Erdas Imagine 13.0 (2012) image processing software. 

Unlike the more complicated and time-consuming non-parametric object orientated classifiers, 

unsupervised classifiers iteratively assign pixels to a selected number of groups (classes) by 

locating clusters in the data space. Adding meaning (class names) to each group is left to 

interpretation by the analyst (Adams and Gillespie, 2006). For each of the previously described final 

AOIs a signature file (based on 48 classes and allowing up to 99 iterations) was produced for each 

satellite image. The generated signature file was then used in the interpretation and merging of 

associated classes within each of the final AOIs. The vegetated areas were further divided into short 

and tall vegetation, while the non-vegetated classes were sub-divided into built-up and bare soil 

classes. These classification results were imported into a thematic recode function to allocate a 

specific numeric numbering code per class type. For the WorldView-2 image two coding structures 

were applied, the original result containing eleven classes (Table 3), and an adjusted result as a 

comparable structure to the six defined  classes (water, built-up, tall vegetation, short vegetation, 

bare soil and shadows) extracted from the other two sensors.  

Table 3: Urban land cover coding and classes used in the study 

  

Post-processing was necessary to deal with the ambiguous shadow class and the typical ‘salt-

and-pepper’ effect of pixel-based classifiers and VHR imagery. Neighbourhood functions are 

specialized filtering functions suitable for use on thematic layers (Yee et al., 1986; Dost, 2001). 

After mosaicking the classified AOIs for each of the three sensor types into three resultant image 

files (one for each sensor) and recoding shadow pixels as NoData, a 5x5 majority filter was run to 

effectively fill previous shadow cells with adjacent LC classes. The initial LC raster was then 

mosaicked back on top of this (the target raster) to retain the original class values. Finally a 3x3 
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majority filter was applied to ‘smooth’ the classification results by eliminating isolated pixels and 

very small pixel groups. 

2.7  Verification and accuracy assessment  

For verification of the classification results a stratified random sample was taken of on the 

classified layers. Fifty-eight point-locations were created by the ArcGIS 10.1 (2012) random point 

generator using the manually segmented zones as strata. Land cover types as identified by in-situ 

field observations at a selection of 25 points, and interpreted using Google Earth imagery for the 

remaining 33 points, were used in combination for the validation process. In the RS environment 

the actual pixel classification end result is thus compared to the field work observations and often 

interpreted via confusion matrices (Myburgh and Van Niekerk, 2013). Classification accuracy was 

calculated per sensor using the well-known Kappa coefficient, as well as overall and class specific 

accuracy statistics. Frequently exploited to summarize the results of an accuracy assessment used to 

evaluate land use or land cover classifications derived from RS products (Fitzgerald and Lees, 

1994; Kokaly et al., 2003; Munyati et al., 2013; Sexton et al., 2013), Cohen's Kappa (κ) refers to 

the pair-wise agreement coefficient between two observers who each classify a number of items 

into a specific number of mutually exclusive categories (Cohen, 1960). This agreement coefficient 

for each of the three sensors was calculated by using the native Kappa coefficient from the proc 

FREQ procedure in SAS 9.3 (2012).  

2.8  Change detection analysis 

Due to the time difference of just over a year between the WorldView-2 and Pléiades imagery 

the possibility existed of detecting significant changes that occurred during this period. Image 

differences were calculated with the “Image Difference” tool available in the Erdas Imagine 13.0 

(2012) software, using a parameter setting of 10% increase and decrease values respectively. A 

post-classification comparison was also performed using the classified Pléiades and RapidEye land 

cover products, since their acquisition dates were only two days apart and should represent the same 

land cover scene. To achieve this task, the Pléiades map was first resampled to 5m using a nearest 

neighbour (NN) algorithm  and co-registered (using NN) with the RapidEye raster. Standard GIS 

and statistical procedures were then used to calculate the correlation between the Pléiades land 

cover codes with those of RapidEye. The last-mentioned sensor acted as the predictive master raster 

due to its marginally superior classification accuracy as discussed in the following section that 

reviews the study results.  

3. Results and Discussion 

This research intended to examine and spatially compare urban land cover information obtained 

from a systematic routine that classified images from three different optical satellite VHR sensors. 

Roughly similar to Lu et al. (2010), a hybrid method based on stratification, unsupervised pixel 

based classification and manual editing for mapping urban land cover distribution was implemented 
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in this study. Additional thematic enhancements, the validation of the overall classification results 

and land cover differences/changes were explored. Three research questions were stated earlier in 

this paper and will now form the basis of presenting the results.  

i. How does the unique nature of commercial spaceborne VHR imagery influence their 

capacity to extract urban land cover classes effectively? 

NDVI derived classification results from all three sensors provided clear differentiation between 

the three primary classes, i.e. water bodies, non-vegetated, and vegetated areas. The manual 

segmentation approach (to create smaller more homogeneous land use zones) followed by an 

ISODATA classification contributed to the extraction of four additional subclasses (short and tall 

vegetation, built-up and bare soil) that, together with water bodies, defined the five fundamental LC 

classes obtained in this study (Figure 4). 

   

 

Figure 4: Zoomed in true colour images of (I) RapidEye, (II) Pléiades and (III) WorldView-2, with 
their respective (IV, V & VI) classified land cover results. Results of (VII) post-classification 

analysis between Pléiades and RapidEye, and (VIII) image differencing between WorldView-2 and 
Pléiades are indicative of urban-rural fringe dynamics and some seasonal effects. 
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The WorldView-2 image, based on its eight bands as input provided a more precise and 

distinctive visual result compared to Pléiades and RapidEye, especially with the newly introduced 

coastal and yellow bands. The significance thereof is embedded within its potential to further 

distinguish a primary class into its relevant sub-classes, as shown by the extended list of detectable 

classes earlier (Table 3). As close inspection of Figure 4 (VI) will show, noteworthy improvements 

were made with the accurate classification of certain rooftops or modern building materials as part 

of the built-up class, due to WorldView-2’s additional spectral bands, compared to Pléiades (V) for 

example. 

ii. In an unsupervised pixel-based land cover classification procedure, is there a significant 

variation in accuracy results between three selected VHR sensors?  

The 58 validation points generated were geographically well distributed throughout the AOI and 

well represented within all the different class types except for water bodies, with only one location 

intersecting a small stream. The classification of the defined land cover classes between the three 

sensors in question offered an overall good result and was relevant for the built environment 

domain. As listed by the statistics in Table 4, the sensor with the best overall agreement mainly due 

to the mentioned 8-band advantages was WorldView-2 (overall accuracy of 0.79 and 0.71κ). 

RapidEye results showed a high overall accuracy (0.78) that marginally surpassed the overall 

result of Pléiades (0.74), notwithstanding the coarser 5m pixel resolution. With regards to the built-

up areas alone though, Pléiades delivered the best classification accuracy from both a producer’s 

(93.3%) and consumer’s (82.4%) perspective, compared to the other two sensors. 
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Table 4. Confusion matrices with statistics indicating the class accuracies for three sensors 

WorldView-2 Observed LC Class (Field & Google)

LC Class Water Body Built-Up Tall Vegetation Short Vegetation Bare Soil TOTALS
Producer's 

accuracy (%)

Water Body 1 0 0 0 0 1 100.0
Built-Up 0 12 1 0 4 17 85.7
Tall Vegetation 0 0 9 2 2 13 90.0
Short Vegetation 0 0 0 21 0 21 87.5
Bare Soil 0 2 0 1 3 6 10.3
TOTALS 1 14 10 24 9 58
User's accuracy(%): 100.0 70.6 69.2 100.0 50.0
Overall Accuracy: 0.79
Overall Kappa: 0.71

Pléiades
Water Body 0 0 0 1 0 1 0.0
Built-Up 0 14 0 0 3 17 93.3
Tall Vegetation 0 0 10 2 1 13 71.4
Short Vegetation 0 0 4 14 3 21 82.4
Bare Soil 0 1 0 0 5 6 10.3
TOTALS 0 15 14 17 12 58
User's accuracy(%): 0.0 82.4 76.9 66.7 83.3
Overall Accuracy: 0.74
Overall Kappa: 0.65

RapidEye
Water Body 0 0 1 0 0 1 0.0
Built-Up 0 13 0 4 0 17 86.7
Tall Vegetation 0 0 12 1 0 13 75.0
Short Vegetation 0 0 3 17 1 21 73.9
Bare Soil 0 2 0 1 3 6 10.3
TOTALS 0 15 16 23 4 58
User's accuracy(%): 0.0 76.5 92.3 81.0 50.0
Overall Accuracy: 0.78
Overall Kappa: 0.69  

 

iii. Is change detection analysis feasible between different VHR sensors and their classification 

products? 

A post-classification comparison at 5m GSD using the classified Pléiades and RapidEye land 

cover products revealed between them a moderate overall accuracy of 0.59, but poor Kappa 

coefficient (0.41), as indicated in Table 5.  
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Table 5. Confusion matrix with statistics indicating the class accuracy between two sensors 

Pléiades RapidEye LC Class

LC Class Water Body Built-Up Tall Vegetation Short Vegetation Bare Soil TOTALS
Producer's 

accuracy (%)

Water Body 8867 377 395 225 1114 10978 70.0
Built-Up 2196 969483 44940 167342 304475 1488436 61.8
Tall Vegetation 906 36826 743880 454443 38101 1274156 66.9
Short Vegetation 542 527657 317504 1623549 459841 2929093 70.1
Bare Soil 156 34363 5074 70492 167245 277330 4.6
TOTALS 12667 1568706 1111793 2316051 970776 5979993
User's accuracy(%): 80.8 65.1 58.4 55.4 60.3
Overall Accuracy: 0.59
Overall Kappa: 0.41  

Water displayed the best user’s accuracy (80.8%), followed by the built-up class (65.1%) and 

less encouraging results for the rest. From a producers point of view, only water and short 

vegetation was adequately (>70%) extracted, but typical confusion between the two vegetated 

classes and between impervious surfaces (61.8%) and bare soil (4.6%) in particular, existed. The 

overall class agreement – simplified and illustrated in Figure 4 (VII) earlier – disclosed that only 

about 59% of the classified pixels fully matched within the entire AOI.  

Annual change detection by means of image differencing was possible and results highlighted 

various land cover/land use changes within the study area.  Confirming the phenomenon of urban 

densification, various newly introduced land use activities were identified and matched with the 

calculated image differences when inspected closely. As depicted in Figure 4 (VIII) earlier, about a 

quarter of the AOI revealed no significant change, but ten percent (5km2) accounted predominantly 

for settlement expansions to new industries in the ‘increasing’ (red) classes. Area-wise the seasonal 

vegetation adjustments made up almost two thirds of the remaining areas, as represented mainly by 

the ‘decreasing’ (blue) class values. 

4. Conclusion 
VHR sensors such as WorldView-2 and Pleiades delivered finer scale accuracy at pixel level 

when compared to RapidEye. However, RapidEye exhibited excellent potential to extract very 

useful urban land cover classes if a high-level overview of the larger metropolitan area is required at 

application level, as opposed to a detailed sub-urban synopsis. If the required result is an accurate 

fine scale map, then Pléiades and/or WorldView-2 VHR imagery becomes recommendable, with 

the additional bands available from WorldView-2 proving more versatile when extracting various 

sub-classes.  In this study however, as also noted by Elsharkawy et al. (2012), this added capability 

of WorldView-2 introduced significant uncertainty (noise) at a pixel-based classification level. 

Because of its fine spectral distinction between specific spectral values, it may cause an impervious 

(built-up) surface to end up in the “Bare Soil” class, or vice versa – a common confusion in RS 

classification. These challenges may be addressed through enhanced segmentation techniques 

and/or GEOBIA (Fröhlich, et al., 2013), since by simply adding texture to objects (Martinfar et al., 

2007) higher accuracy potential can be attained. The selection between these three sensors remains 
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an assessment of the detail required within the application/deliverable, as well as the financial 

investment available. 
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