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Abstract  Article Information 
The magnitude and frequency of extreme rainfall events are required for planning, design and 
operation of many hydrological and water resources projects. Design rainfall depth is often 
used to estimate the severity and rarity of floods in areas where flow records are not sufficient 
enough to warrant direct flood estimation. The design of hydraulic structures on un-gauged 
streams and creeks, such as bridges, culverts, spillways, water harvesting and flood defense 
mechanisms depends upon proper estimation of extreme rainfall events. Quantification of 
design rainfall is generally done by using information contained in Depth-Duration-Frequency 
(DDF) relationships. Depth Duration Frequency relationships are currently constructed based 
on at site frequency analysis of rainfall data separately for different durations. These 
relationships are not accurate and reliable since they depend on assumptions such as 
distribution selection for each duration; they require a large number of parameters, 
experience intensive equations and regionalization is also very poor and coarse. In this study 
a DDF model with gridded set of parameters is developed for estimation of point rainfall 
frequencies for a range of duration for any location in Oromia regional state. A DDF model 
was fitted to series of annual maxima and its parameters were determined by a least squares 
method and these parameters were interpolated and mapped on a 1km grid. The model 
allows for a parsimonious and efficient parameterization of DDF relationships, and its 
performance is shown to improve the reliability and robustness of design storm predictions as 
compared with those achievable by interpolating the quantile predictions of extreme rainfall 
data for specific durations. Moreover, design rainfall estimates found from the scaling DDF 
model are comparable to estimates obtained from traditional techniques; however, the scaled 
approach was more efficient and gives more reliable estimate compared with the observed 
rainfall depth at all stations. 

 Article History: 

Received   : 02-10-2014 

Revised     : 17-12-2014 

Accepted  : 26-12-2014 

 Keywords: 

Scaling Properties  

Depth Duration Frequency 

Oromia Regional State 

Ethiopia 

Rainfall Depth Series 

Frequency relationships 

Hydrologic cycle 

 

*Corresponding Author: 

Megersa Tesfaye 

 

E-mail:  

megersatesfaye@gmail.com   Copyright@2014 STAR Journal. All Rights Reserved.  

 

INTRODUCTION 

Since rainfall is an integral component in the 
hydrologic cycle, engineers must be able to quantify 
rainfall in order to design structures impacted with or 
dealing with the collection, conveyance, and storage of 
excess water. Quantification of rainfall is generally done 
by using information contained in Depth-Duration-
Frequency relationships. Depth-Duration-Frequency 
relationship is an essential tool used by engineers for 
planning, design and management of safe and cost 
efficient hydro-system infrastructures for certain amount of 
risk that the capacity may be exceeded. Depth-Duration–
Frequency relationship of precipitation can be defined as 
the amount of precipitation accumulated over a time 
period and how often that amount is recorded. Tortoreli et 
al. (1998) explained that the Depth–Duration-Frequency 
relationship of precipitation is taken in to account in the 
design of drainage structures for storm drains or 
roadways, parking lots and culverts. Depth-Duration-

Frequency information is also useful for rainfall-runoff 
models whose information is crucial for designing safe 
structures in flood prone areas. This paper focuses on the 
development of rainfall Depth-Duration-Frequency 
relationship for Oromia regional state with gridded set of 
parameter values summarizing the relationship, and there 
by enable the production of consistent estimates of point 
rainfall frequencies over duration of interest. For this 
purpose the hourly rainfall depth series from fifty five 
stations in the study region were collected and analyzed. 
Statistical parameters and properties of time scale 
invariance of rainfall are examined. Then, a model 
summarizing Depth-Duration-Frequency relationship of 
extreme rainfall depth series with gridded set of 
parameters which allows for the estimation of point design 
rainfall frequencies for a range of duration for any location 
within the region were developed. 
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MATERIALS AND METHODS 

The materials used for this research were, Hourly 
extreme rainfall depth series, Arch GIS software, 
Spreadsheet/MS Excel 2007 for data analysis and Surfer 
software 
 
Methodology 

Fifty five first-class automatic recording stations with 
sufficient length of record and believed to represent 
different climatic characteristics within the region were 
selected to retrieve rainfall depth from available charts. 
These include forty-seven stations located within the 
Oromia regional state and eight stations were added from 
peripheral regions. (i.e. SNNPRS, Amahara, Benshangul-
Gumze, Afar, and Somalia regions). From the data base 
of these first class stations with automatic rainfall 
recording gauges, annual maximum rainfall values for 
0.5hr, 1hr, 2hr, 3hr, 5hr, 6hr, 12hr, and 24hr having a 
record of 30 years(1980-2012) were collected by applying 
fixed duration data collection technique. The stations are 
assumed to be representative of different climatic regions. 
Rainfall frequency analysis assumes that the statistical 
estimation of extreme rainfall value is established on the 
assumption that the extreme rainfall data samples are 
homogeneous, stationary, independent and identically 
distributed. In other words, any systematic change in the 
statistical properties of the extreme rainfall events would 
not exist through time and the extreme rainfall data 
samples are not significantly auto-correlated. Owing to 
this all the collected data series for all stations were 
checked for consistency, using double mass curve 
method. The data were also tested for independence and 
stationarity by a fortran programme based on lag-one 
serial correlation coefficient test and Wald-Wolfowitz (W-
W)  respectively. 

 
Statistical analysis based on product moments and 

probability weighted moments was employed to 
summarize the extreme rainfall data series and to 
investigate the scaling properties of extreme rainfall depth 
series in the study region. Based on the scale invariance 
and the assumption of the power law dependence of all 
statistical moments on the scale of aggregation, a scaling 
DDF model that best robustly explains the rainfall depth 
duration frequency relationships with gridded set of 
parameters in the region was developed. The model was 
fitted to series of annual maxima and the parameters of 
the model were estimated by least square method, and 
these were also interpolated and mapped on 1km grid by 
ordinary kriging. The model was applied in the study 
region and its efficiency was tested against quantile 

estimate from logEV1 distribution, observed hourly rainfall 
depth and empirical IDF estimates previously developed 
for the region.  
 

RESULTS AND DISCUSSION 

Model Development  

For many hydrological analyses, planning or design 
problems, reliable rainfall depth (intensity) estimates are 
necessary. Rainfall depth duration frequency relationship 
comprises of the estimate of rainfall depth at different 
durations and recurrence intervals. The rainfall fields 
exhibits a high temporal variability which generates a 
large degree of uncertainty in modeling the process, thus 
causing lack of accuracy in many key hydrological 
problems such as the forecasting of flood and the 
management of water resources. The large amount of 
literature produced in the last three decades about this 
issue, deals with the development of stochastic models 
able to represent non-linearity and intermittence of rainfall 
observed or forecasted at large scales. Traditionally, 
these models are based on point processes based on 
both the time (Waymire and Gupta., 1981) and the space 
time domain (Radriguez et al., 1986). Although this 
approach is cluster based so as to model physical 
structure of rainfall, its application may involve an 
inconvenient mathematical complexity and a large number 
of parameters, leading to the several problems in 
parameter estimation. Another approach to this problem is 
based on the empirical detection of same regularities in 
hydrological observations, such as scale invariance- 
properties of rainfall (Lovejoy and chertzer, 1985). Models 
following this approach are based on the assumption of 
the power law dependence of all statistical moments on 
the scale of aggregation. That means scaling properties 
can provide simple relations to link the statistical 
distribution of the rainfall processes at different temporal 
scales in the range of which the power law assumptions 
can be verified (Marani, 2003). Based on the second 
approach which assumes the power law dependence of 
all statistical moments on the scale of aggregation, 
techniques for developing the depth duration frequency 
model for Oromia Regional State in this study was 
conducted as follows. Extreme rainfall depth series from 
fifty five (55) stations were collected and plotted on a 
logarithmic scale against duration, for several return 
periods for all stations. The increase of rainfall with 
duration for various return periods are represented by a 
line without a slope change at all stations in the study 
region. For illustration purpose sample plots are given for 
Addis Ababa station in Figure 1. 

 
 
 

 

Figure 1: Logarithmic plot of annual maximum rainfall depth versus duration at Addis Ababa station. 
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The log-log plot of the annual maximum rainfall depth 
series versus the respective durations (Figure 1) revealed 
that the logarithm of extreme rainfall depth series (logR) is 
a linear function of the logarithm of duration (logD) for 

different return periods. The intercepts and slopes of 
these linear relationships between logR and logD vary 
with return periods as clearly seen from Figure 1 and 
Table 1 below. 

 
Table 1: slopes and intercepts at different return periods for (logR) versus (logD) plot of Addis Ababa station 
 

Return 
period 

Gumbel 
Reduced Variate 

[a(T)]=Slope of logR vs. logD 
at different return periods 

[b(T])=Intercept of logR vs. logD 
plot at different return periods 

R square 

2 0.366513 2.3617 24.6 0.9984 

50 3.901939 8.3458 36.4 0.9873 

100 4.600149 9.5276 38.73 0.9901 

1000 6.907255 13.433 46.42 0.8974 

 
It is convenient to represent the return period in terms 

of a reduced variate of the most simple and common 
distribution function. Therefore, the intercepts and slopes 
of the logR and logD linear equations are fairly explained 
as a function of the EV1 reduced variate (YT). Hence, the 
rainfall DDF relationships for the study region can be 
given by: 

 

DyaybR TT log)()(log 
                                 (1) 

 

If the fitted distribution is expressed in the form of its 
cumulative density function, which is given by

)()( xXPXF  , which is the probability of non-
exceedence; hence 

 

T
xXPXF

1
1)()( 

                                                (2) 

The problem with F(X) is that, when plotted on linear 
scale, x is a non-linear function of F(X). This is the reason 
why special graph papers that linearise the relationship 
are available for many of the more widely used standard 
frequency distributions. However, the need for special 
graph papers can be avoided completely if an alternative 
variable, say y that is a linear function of X is defined as; 

aycx  . Where a and c are parameters of the 
distribution of x, and y is referred to as the standardized or 
reduced variate. Following the same principle, a graphical 
investigation of the intercepts and slopes of log-log plot of 
rainfall depth series versus duration at all stations were 
made (figure 2 for illustration) and the result confirmed 
that both variables are linear functions of the reduced 
variate. 

     
Figure 2: Linear Plot of intercepts and slopes of logR versus logD plot against their reduced variates at Addis Ababa 

station 
 
When f, e, d and c are parameters of the distribution 

which controls the slopes and intercepts of the logR-logD 

lines and their relation with return periods. Since the 
intercepts and slopes of the logarithmic plots of extreme 
rainfall depth versus duration for different recurrence 
intervals are linearly related to the EV1 reduced variate,  
b(T) and a(T) are further expressed as: 

  

TeyfTb )(                                              (3) 
and 

    TcydTa )(                                                            (4) 
Hence, 

  )log()log( DcydeyfR TT                                 (5) 
 

From this the final form of the DDF model is given as: 
 

)log()log()log( DcyDdeyfR TT 
             (6) 

 

Where yT, is the EV1 reduced variate, D is duration 
and c, d, e, f, are parameters of the model. 

 
Furthermore, equation (6) could be re-arranged by 

bringing the return period (EV1 reduced variate) terms 
together as; 

    TyDceDdfR )log()log()log(                      (7) 
 
The above equation is equivalent to the logEV1 

distribution with location parameter of {f+log(D)} and scale 
parameter of {e+log(D)}. The rainfall DDF relationship can 
be further simplified as: 

 

   c
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From the above equation e
f
 and e

e
 are constants 

which are equivalent to the natural logarithm of the model 
parameters f and e Therefore it is possible to assign a 

constant values  and   for e
f
 and e

e
 respectively. Hence 

the above equation is simplified as: 

        
TT cydy

DR


                                                      (8) 
 

This is very similar to the Depth Duration Frequency 
relationship derived from the scaling property of the 
extreme rainfall depth series (equations 9) and Depth 
Duration Frequency relationship developed from 
logEV1distribution(equations 10). 
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Therefore the DDF model developed has satisfied the 
requirements of both distribution function and scaling 
property. 
 
Estimation of Model Parameters 

Recall that the DDF model has the form of 
 

DcyDdeyfR TT logloglog   
 
This is equivalent to the coefficient matrix Formulation 

of multiple regressions explained as; y=xb  where; 
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In formulation of matrix regression above the variables 
y, x, and b are often termed as; vector of criterion scores, 
augmented row score matrix and vector of regression 
coefficients respectively. Following the same principle, the 
terms in the DDF model are equivalently expressed in the 
form of multiple regression matrixes as; 









































































c

d

e

f

DyDy

DyDy

DyDy

DyDy

R

R

R

R

nn TT

TT

TT

TT

n
loglog1

....

....

loglog1

loglog1

loglog1

log.

.

.

log

log

log

33

22

11

3

2

1

 
 

Accordingly, the four parameters (f, e, d, and c) of the 
rainfall DDF model are estimated simultaneously by least 
square method by solving the above multiple regressions 
matrixes at each station and the results are found to be 
acceptable with a minimum coefficient of determination of 
70%. Moreover, all the parameters were highly significant 
in the sense that they have very small standard errors. 
The estimated values of the model parameters along with 
their standard errors of estimates at all stations are shown 
in table 2. 

Table 2: Estimated values of the model parameters with their standard errors and efficiency of estimation 
 

Station 
DDF 

Parameters 
Value 

Standard 
error 

R
2 

Station 
DDF 

Parameters 
Value 

Standard 
error 

R
2
 

Addis Ababa 

c 0.00441 0.0039 

0.93 Zeway 

c 0.034225 0.0091 

0.89 
d 0.13888 0.0053 d 0.111087 0.0118 
e 0.19664 0.0069 e 0.276368 0.0158 
f 3.20121 0.0092 f 3.126924 0.0205 

Abomsa 

c 0.03671 0.0159 

0.82 Yabelo 

c -0.00669 0.0129 

0.90 
d 0.12125 0.0196 d 0.106321 0.0151 
e 0.24398 0.0277 e 0.29037 0.0225 
f 3.23582 0.0342 f 2.90835 0.0263 

Agaro 

c 0.00297 0.018 

0.7 Wolliso 

c -0.03191 0.0098 

0.82 
d 0.15421 0.023 d 0.218827 0.0125 
e 0.25683 0.031 e 0.167653 0.0171 
f 3.02518 0.040 f 3.215475 0.0218 

Ambo 

c -0.00635 0.007 

0.93 Sinana 

c -0.01529 0.0132 

0.90 
d 0.22274 0.009 d 0.268379 0.0165 
e 0.24570 0.013 e 0.320128 0.0231 
f 2.71913 0.017 f 2.94052 0.0288 

arjo 

c 0.03447 0.014 

0.88 Shambu 

c 0.007278 0.0055 

0.95 
d 0.20303 0.016 d 0.190327 0.0071 
e 0.17811 0.024 e 0.206303 0.0097 
f 3.32462 0.029 f 3.285899 0.0124 

Arsi-Adele 

c 0.00953 0.0071 

0.95 Sokoru 

c -0.01198 0.0043 

0.94 
d 0.15670 0.0087 d 0.132242 0.0056 
e 0.23165 0.0123 e 0.201067 0.0075 
f 2.94271 0.0152 f 3.329610 0.0096 

Arsi-Robe 

c 0.00858 0.0066 

0.94 Negele 

c 0.010135 0.0097 

0.86 
d 0.10039 0.0085 d 0.082536 0.0116 
e 0.28846 0.0115 e 0.165095 0.0168 
f 3.23715 0.0148 f 3.294786 0.0202 

Asossa 

c -0.01936 0.0173 

0.79 Nedjo 

c 0.029358 0.0070 

0.95 
d 0.19465 0.0208 d 0.205373 0.0088 
e 0.22563 0.0302 e 0.182884 0.0122 
f 3.22570 0.0362 f 3.234249 0.0154 

Awasa 

c 0.01258 0.0121 

0.72 Adama 

c 0.009295 0.0074 

0.94 
d 0.07894 0.0162 d 0.153634 0.0092 
e 0.25724 0.0211 e 0.241219 0.0128 
f 3.4369 0.0283 f 3.165781 0.0160 

Ayira 
c -0.00358 0.0078 

0.92 Moyale 
c -0.02319 0.0186 

0.87 
d 0.20576 0.0100 d 0.172119 0.0212 
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e 0.22930 0.0136 e 0.235958 0.0264 
f 3.39847 0.0174 f 3.350277 0.0301 

Bale Robe 

c 0.01163 0.0093 

0.87 Mirab-Abaya 

c -0.00568 0.0073 

0.93 
d 0.12925 0.0118 d 0.170731 0.0094 
e 0.20139 0.0163 e 0.278438 0.0128 
f 3.10046 0.0205 f 3.161785 0.0164 

Begelle 

c 0.00641 0.0043 

0.94 Miesso 

c 0.025544 0.0067 

0.96 
d 0.15341 0.0056 d 0.049318 0.0083 
e 0.15971 0.0078 e 0.28657 0.0117 
f 3.29199 0.0098 f 3.27315 0.0144 

Bekoji 

c -0.0098 0.0063 

0.92 Metehara 

c -0.02547 0.0067 

0.91 
d 0.11948 0.0082 d 0.148368 0.0086 
e 0.27443 0.0110 e 0.261162 0.0116 
f 3.32261 0.0143 f 3.154645 0.0150 

Bishoftu 

c 0.00341 0.0127 

0.81 Mega 

c 0.025620 0.0204 

0.87 
d 0.12946 0.0163 d 0.142514 0.0239 
e 0.27126 0.0222 e 0.332655 0.0356 
f 3.13138 0.0284 f 2.962074 0.0417 

Ciro 

c 0.03467 0.0127 

0.93 Kulumsa 

c 0.007216 0.0080 

0.86 
d 0.19958 0.0152 d 0.121039 0.0106 
e 0.27358 0.0221 e 0.285903 0.0139 
f 3.24190 0.0265 f 3.100605 0.0185 

Debre Marikos 

c 0.01159 0.0070 

0.93 Konso 

c 0.00904 0.0134 

0.75 
d 0.14388 0.0092 d 0.103977 0.0175 
e 0.29374 0.0123 e 0.215509 0.0234 
f 3.11623 0.0161 f 3.238733 0.0304 

Debre Birehan 

c 0.00783 0.0074 

0.90 Kachise 

c -0.01668 -0.0068 

0.85 
d 0.18421 0.0097 d 0.144921 0.0088 
e 0.24391 0.0129 e 0.172105 0.0119 
f 2.91982 0.0169 f 3.294603 0.0154 

Deder 

c 0.01774 0.0109 

0.89 Jimma 

c -0.00598 0.0037 

0.94 
d 0.14585 0.0135 d 0.151466 0.0049 
e 0.23219 0.0191 e 0.175367 0.0065 
f 3.23666 0.0236 f 3.307588 0.0086 

Degehabour 

c -0.00251 0.0049 

0.96 
Humuru 

c -0.00709 0.0077 
0.93 d 0.08694 0.0062 d 0.177943 0.0096 

e 0.25923 0.0086 e 0.233927 0.0134 
f 3.26038 0.0109  f 3.274882 0.0167  

Dembidolo 

c 0.00085 0.0081 

0.83 Hurso 

c -0.00335 0.0124 

0.74 
d 0.12711 0.0104 d 0.106769 0.0151 
e 0.16676 0.0142 e 0.160340 0.0251 
f 3.24809 0.0181 f 3.327964 0.0263 

Didessa 

c 0.00317 0.0149 

0.84 Hunte 

c 0.003796 0.0143 

0.86 
d 0.13792 0.0186 d 0.153427 0.0167 
e 0.31072 0.0260 e 0.207049 0.0249 
f 3.19936 0.0324 f 3.094403 0.0291 

Dilla 

c 0.00969 0.0094 

0.88 Haramaya 

c -0.0291 0.0050 

0.93 
d 0.11309 0.0120 d 0.135763 0.0050 
e 0.24877 0.0163 e 0.218810 0.0065 
f 3.41112 0.0208 f 3.371481 0.0088 

Diredawa 

c -0.01799 0.0048 

0.89 Hagere Mariam 

c 0.002847 0.0090 

0.90 
d 0.000084 0.0063 d 0.184492 0.0114 
e 0.218216 0.0083 e 0.221043 0.0157 
f 3.147466 0.0113 f 3.046226 0.0200 

Ijaji 

c 0.013314 0.0074 

0.93 Gore 

c 0.000599 0.0032 

0.95 
d 0.169308 0.0091 d 0.097213 0.0043 
e 0.163449 0.0128 e 0.206285 0.0056 
f 3.109883 0.0159 f 3.376289 0.0075 

Fiche 

c -0.00608 0.0071 

0.85 Goba 

c -0.03319 0.0083 

0.89 
d 0.160206 0.0094 d 0.189448 0.0108 
e 0.208717 0.0125 e 0.282183 0.0145 
f 3.262654 0.0164 f 2.915577 0.0188 

Garba-Guracha 

c -0.00993 0.0059 

0.70 Ginnir 

c 0.053223 0.0073 

0.94 
d 0.059577 0.0076 d 0.107668 0.0093 
e 0.10992 0.0104 e 0.224670 0.0127 
f 3.365064 0.0133 f 3.137756 0.0162 

Gelemso 

c -0.00786 0.0127 

0.80 Gimbi 

c -0.02230 0.0233 

0.80 
d 0.107015 0.0155 d 0.213197 0.0265 
e 0.212733 0.0221 e 0.260236 0.0406 
f 3.23276 0.0270 f 3.353416 0.0462 

Gewane 
c 0.011289 0.0099 

0.88 
Gewane 

 
e 0.246279 0.0172 

0.88 
d 0.086597 0.0123 f 3.356674 0.0215 
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Plot of model parameters versus Elevation
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Mapping of the Model Parameters 

 Only sets of point parameters were estimated from 
the rainfall record of point rain gauges. However we need 
the model parameters at any point, as the network of 
hourly rainfall recording rain gauges in the study area has 
low density. Therefore, Maps of the parameters on every 

1km grid were required, enabling the estimation of design 
rainfall for any location in the study area. Since no useful 
relationships were found between the four model 
parameters and elevation (Figure 3), all four parameters 
were interpolated to a 1km grid size by ordinary kriging (a 
weighted mean with weight dependent on distance).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Systematic diagram showing the relation of DDF parameters against elevation 

 

 
Figure 4: Map of the DDF model parameters  

 
Model Efficiency Test  

The quantile estimate by DDF model for different 
return periods of rainfall at different durations were 
checked against estimates provided by fitting logEV1 
distribution. It is found that the developed DDF model has 
satisfactorily reproduced the rainfall depth duration 
frequency relationship at all stations considered for this 
study in the study region (Figure 5). 

 
Estimates found from the scaling DDF model were 

also compared with observed quantiles of extreme rainfall 
depth. The DDF model developed for a region 
satisfactorily reproduces the observed extreme rainfall 
depth series at all stations in the study region (Figure 6 for 
illustration). 
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Figure 5: Comparison of the rainfall depth duration frequency relationships estimated by logEV1 (points) and DDF 

Model (lines) 
 

 
 

Figure 6: Comparison of Observed extreme rainfall depth series (points) and DDF model estimates (lines). 
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Moreover, the quantile estimates of the DDF model 
was also compared with the IDF estimates previous 
developed for the region (Chali Edessa and Semu 

Ayalew, 2007) and the agreement is surprisingly good at 
all stations (Table 3 for illustration). 

 
Table 3: Comparison of quantiles estimated by DDF mode (bold) and previously developed IDF relationship at 

Haramaya station 
 

Duration T=2 T=5 T=10 T=50 T=100 

IDF DDF IDF DDF IDF DDF IDF DDF IDF DDF 

0.5 23.44 28.93 32.68 34.90 38.79 39.91 52.25 53.41 57.94 60.28 

1 26.97 31.55 38.82 40.43 46.67 47.65 63.95 68.39 71.25 79.68 

2 28.93 34.41 42.01 42.04 50.67 48.02 69.73 64.13 77.79 72.33 

3 30.30 36.20 44.53 44.39 53.96 50.69 74.69 67.65 83.46 76.29 

5 31.30 38.59 46 46.89 55.73 53.35 77.15 70.88 86.21 79.92 

6 32.41 39.48 47.19 48.72 56.97 55.60 78.52 74.14 87.63 83.58 

12 34.47 43.06 49.37 53.47 59.23 60.99 80.95 81.25 90.13 91.57 

24 35.75 46.96 51.45 58.69 61.85 66.91 84.73 89.06 94.4 100.33 

 
Farther more, quantile estimates of DDF model and 

IDF relationship at different return periods was also 
compared with observed extreme rainfall depth (Figure 7 
for illustration). It was shown that despite of its 
mathematical sophistication; involvement of too many 
parameters, and sequential steps, the conventional 
approach of characterizing the random nature of observed 
rainfall was not show better estimates than the DDF 

model. Moreover traditional methods to derive intensity 
duration relationships are not accurate and reliable since 
they depend on assumptions such as distribution 
selection for each duration, they require a large number of 
parameters, and the selection of the distributions does not 
base on any physical principles. Many criticisms have 
been also made on such approach for being inadequate 
for cases when sample size is small (Pendy et al., 1998).  

 

 
 

Figure 7: Comparison of Observed extreme rainfall depth series (points) with DDF model estimates and IDF estimates 

at 5 and 50 year return periods (lines) respectively 
 

Application of the Model 

The form of the model considered as in equation (6), 
with four parameters(c, e, d, and f) is: 
 

)log()log()log( DcYDdeYfR TT 
            (11) 

As already described, the station value of these four 
parameters required by the model was available at 1km 
grid. Therefore at each grid points the DDF model could 
then be used to derive the return period rainfalls for any 
duration in the study region. 
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Therefore, two tasks were performed: 
1. Given duration D and return period T, estimate R(T,D), 

the design rainfall depth that would be exceeded on 
average once in T years. 

2. Given duration D and R(T,D), estimate the return 
period, the frequency of occurrence of the rainfall 
depth.

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 8: Map of Rainfall Depth, Return Period 100 years, Duration 1hr. 

 

CONCLUSSIONS  

The study demonstrated the development and 
application of the model that robustly explains the rainfall 
depth, duration and frequency relationships in Oromia 
regional state. Based on the assumption of the power law 
dependence of all statistical moments on the scale of 
aggregation, i.e. scaling properties of extreme rainfall 
depth series which can provide simple relationships to link 
the statistical distribution of the rainfall processes at 
different temporal scales, Depth Duration Frequency 
model was developed which allows for the estimation of 
point design rainfall frequencies for a range of durations 
for any location in the study region. The model consisted 
of four parameters and it is fitted to the series of annual 
maxima and these parameters were determined by least 
squares method. An attempt was made to relate this 
parameter to the environmental and topographic 
variables. However, no useful relationships were found 
between the four parameters and the environmental, 
topographic and physiographic variables such as 
elevation. The graphical and numerical comparisons of 
the performance of the DDF model were made against the 
sample and quantile estimates of distribution functions, 
observed rainfall depth and also against empirical IDF 
quantile estimates. The comparison result confirmed that 
the DDF model has provided consistent quantile 
estimates with that of the logEV1 and superior estimates 
than empirical IDF estimates. It is concluded that 
statistical analysis and empirical detection of some 
regularities in hydrological observations, such as scale 
invariance properties of rainfall can provide simple 
relationships to link the statistical distribution of the rainfall 
processes at different temporal scales and enables to 
develop a model that robustly best explains the design 
rainfall depth. 
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