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Abstract
In this study, we took advantage of the emergence of accurate biomechanical human hand models to develop
a system in which the interaction between a human arm and a rehabilitation robot while performing a planar
trajectory tracking task can be simulated. Seven biomechanical armmodels were based on the 11-degree-of-freedom
Dynamic Arm Simulation model and implemented in OpenSim. The model of the robot was developed in Matlab-
Simulink and interaction between the arm and robot models was achieved using the OpenSim API. The models
were tested by simulating the performance of each model while moving the end effector of a simulated planar robot
model through an elliptical trajectory with an eccentricity of 0.94. Without assistance from the robot, the average
root-mean-square error (RMSE) for all subjects was 3.98 mm. With the simulated robot providing assistive torque,
the average RMSE error reduced to 2.88 mm. The test was repeated after modifying the length of the robot links,
and an average RMSE of 2.91 mm recorded. A single-factor ANOVA test revealed that there was no significant
difference in the RMSE for the two different robot geometries (p-value = 0.479), revealing that the simulator was
not sensitive to robot geometry.
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1. INTRODUCTION
The increased interest in post-stroke rehabili-

tation robotics over the last two decades is largely
due to its potential advantages over conventional
rehabilitation therapy. Post-stroke functional
outcomes are strongly mediated by exercise inten-
sity, task specificity, active engagement and focus-
ing on motor coordination [1] making rehabilita-
tion very labour-intensive. These are all specifi-
cations for which properly-designed robots could
reasonably be expected to be at least as effective
as conventional therapy. In addition, shortage
of therapists, difficulty in achieving cooperative
and intensive efforts from therapists and patients
over multiple sessions, and subjective evaluation
methods are challenges with conventional ther-
apy that would be minimized with robots. While
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there is insufficient evidence to declare the out-
right superiority of robotic training over tradi-
tional approaches, there is at least evidence that
it improves motor impairment and strength [2].
Numerous studies have also shown that combin-
ing the two approaches leads to greater reduction
in motor impairments and improvements in func-
tional abilities ([3] for example).

There exists a large variety of rehabilitation
robot designs in the literature, but almost with-
out exception, they conform to the general struc-
ture laid out in Fig. 1. A training strategy links
neuroscience and physiotherapy on one hand and
robotics on the other. Variants of the task-specific
training (TST) strategy are now preferred, but
there are viable alternative training strategies
[4]. The training strategy informs the control
strategy, and ultimately the physical design of the
robot. That physical design is usually dominated
by a number of mechanical links which can utilize
either an exoskeleton or end-effector form [5, 6].
In both forms, their primary function is to provide
either augmentative or resistive force or torque to
the human user natural limb movements. This is
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Figure 1: Generalized robotic rehabilitation elements.

most often achieved by means of electrical actu-
ators, rather than pneumatic or hydraulic actua-
tors. The convenience of easily integrating elec-
trical actuators into systems that already have
other electrical components usually outweigh the
higher torque-to-weight ratio advantage of pneu-
matic actuators [5, 7]. Additional assistive torque
may be generated by optional direct stimulation
of the musculoskeletal or nervous system. Sen-
sors acquire displacement, velocity or acceleration
data or myoelectric or neurophysiological corre-
lates from the user, while force or torque sensors
quantify their effort.
Coordination of all rehabilitation robot system

component is effected through a control algorithm
dictated by the control strategy and implemented
using an electronic controller. There are nu-
merous control strategy taxonomies. Following
the convention of [7], we adopt a classification
into high and low level control strategies in this
study. High level strategies include assistive con-
trol, challenge-based control, haptic control, and
couching control strategies. The most commonly-
used high level control strategy is currently the
assistive one, in which patients are assisted to
move their affected limbs in a stipulated man-
ner while carrying out activities like grasping,
reaching, or walking [8]. The high level control
strategy determines the low level control strat-
egy which could be position control, adaptive posi-
tion control, impedance control, admittance con-
trol, assistance-as-needed control or tunnel con-
trol, the last four of which are also collectively
termed patient-cooperative control strategies [9].
The choice of control algorithm entirely de-

termines the function of the robot vis-a-vis the
adopted training strategy. A wrong control algo-
rithm would reduce the effectiveness of the robot,
regardless of the sophistication or ingenuity of the
hardware elements. A case can therefore be made
that the control algorithm is the most important
aspect of the rehabilitation robot, and the abil-
ity to evaluate different alternative control laws
would be desirable. Unfortunately, current de-
velopment approaches usually make it difficult
to evaluate multiple control algorithms for the
same robotic hardware. Historically, there have
been very few accurate human controller mod-
els. Consequently, control law development for
robotic hardware usually requires involving a real
human operator in a real control loop, preceded
by an inconvenient and often time-consuming sys-
tem identification process to tune system parame-
ters. This limits the flexibility in terms of testing
multiple control algorithms.
In this study, we took advantage of the emer-

gence of accurate human neuromusculoskeletal
(biomechanical) models to develop a system for
simulating upper extremity rehabilitation with a
robot, therefore providing a means by which mul-
tiple control algorithms can be tested while sim-
ulating the interactions with the human operator
in the loop. The rest of this paper is organized
as follows: Section 2 provides a rationale and
methodology for developing normal and impaired
biomechanical models, and then discusses a gen-
eral modelling framework for simulating robot-
human dynamics. In Section 3, we present a de-
tailed implementation example of the use of the
simulator to test a five-link planar arm rehabilita-
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tion robot operating in assistive mode to help the
subject trace a trajectory. Results are presented
in Section 4, with concluding remarks coming in
Section 5.

2. MATERIALS AND METHODS

The existence of accurate dynamic models of a
plant makes it easier to design controllers to meet
desired performance objectives. For the inverse
dynamics control approach in particular, know-
ing the dynamics of the plant to be controlled al-
lows it to be inverted, rapidly leading to a control
law which cancels out the nonlinear aspects of the
dynamics, decouples interactions between regu-
lated variables and allows easy specification of
the time characteristics of the delay of task errors
[10]. Even for other controller design approaches,
knowledge of at least the general form of the plant
is useful. It is therefore very convenient that re-
habilitation robots are usually structurally sim-
ple, with easily derivable kinematic and dynamic
models which can be completely defined with di-
rect or indirect dynamic parameter identification.
Consequently, the development of a rehabili-

tation robot control system usually involves the
formulation of the robot dynamic model along
with some sort of dynamic parameter identifica-
tion process. In order to effectively optimize the
controller, it is often necessary to adopt a model
reflecting the dynamical properties of the human
operator. Most rehabilitation robots employ assis-
tive control strategies and for them, the expected
movements of the human operator and the robot
are defined beforehand, minimizing the role of hu-
man cognition and volition in the interaction with
the robot, and simplifying the dynamics of the hu-
man operator within the control system.
In order to develop a simulator for testing re-

habilitation robot control algorithms, it is neces-
sary to first develop models of the human opera-
tor, and introduce elements capable of sufficiently
capturing the dynamics of human-robot interac-
tion. Hence, this section first discusses the devel-
opment of upper limb extremity dynamic models
for both normal and impaired human operators,
and subsequently discusses how those models can
be integrated with models of planar robotics arms
in simulations that expose the salient points of
their interactions. A detailed implementation ex-
ample is thereafter given to illustrated how the
system can be used to simulate a particular pla-
nar robot and evaluate how different control algo-
rithms would work on it.

2.1. Normal and Impaired Arm Biomechani-
cal Models

There are a number of software tools for hu-
man neuromusculoskeletalmodelling and simula-
tion. They include commercial packages such as
AnyBody [11], MSMS [12], SIMM [13] and free,
open source packages like OpenSim [14]. Open-
Sim was adopted in this study because apart from
being free, its open, extensible architecture allows

seamless integration with computational pack-
ages such as Matlab-Simulink. OpenSim mod-
els can be defined or edited graphically within the
programmeGUI, programmatically using any of a
number of programming language options, or by
directly generating a model text file. This flexi-
bility allows easy re-use of OpenSim models. All
the models used in this study were derived from
the Dynamic Arm Simulation (DAS) biomechani-
cal model [15]. The DAS model is a complex 3D
model of the upper limb that is fast enough to run
in real time on a personal computer. A base model
was derived from the DAS model, and four vari-
ants of the base were generated as described be-
low.
The base model was generated using anthro-

pomorphic measures obtained from the cadaver
of an adult male, and included the muscles and
bones of the thorax and right hand. There are a
total of 138musculotendon actuators in 29muscle
groups, and 13 joints. Themodel has 11 degrees of
freedom (DOF): 3 each at the glenohumeral, ster-
noclavicular and acromioclavicular joints, one for
elbow flexion/extension and the last for forearm
pronation/supination.
Human armmotion is the result of contractions

in antagonistic muscles pairs under the influence
of neural excitations. Choice of muscle model is
fundamental to an accurate biomechanical model.
We adopted a Hill-type [16] muscle model for the
generation of muscle force from activation signals.
In this model, the active force generation for a
muscle with length LM is achieved through a con-
tractile element (CE) of length LCE. Tendons and
other series stiffnesses are represented by a series
elastic element (SE), while a parallel elastic ele-
ment (PE) captures the muscle belly passive stiff-
ness. The pennation angle α is the angle between
the longitudinal axis of the muscle mass and its
constituent fibres. Increased tension in the fibres
results in an increase in the pennation angle and
a reduction in the force transmitted to the tendon.
We modelled PE and SE as nonlinear springs

in which element length, L, and generated force,
FKE are related as follows:

FKE =
{

k1(L−Ls) |L ≤ Ls

k1(L−Ls)+k2(L−Ls)2 |L > Ls
(1)

where Ls and k2 are constants whose values de-
pends on the element type, and k1 is a positive-
valued constant. The positive value of k1 (10 N/m
in this study) prevents a singularity from being
formed in the Jacobian of the system dynamics at
zero activation. The constant k2 for the SEwas set
at a value such that the SE force at 4% elongation
equalled the maximum isometric force. For the
PE, the value of k2 was that which allows the PE
force to equal the maximum isometric force when
the CE was stretched to its maximum length for
active force production. The relationship between
muscle active state, a, and the neural excitation
u, was modelled as [15, 17]:
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ȧ(t)=
(

u(t)
Tact

+ 1−u(t)
Tdeact

)
{u(t)−a(t)} (2)

where Tact and Tdeact are the activation and de-
activation time constants respectively. In accor-
dance with [18], the values of Tact and Tdeact were
estimated from the proportions of fast and slow
twitch fibres in the muscle. Muscle active state, a
and the force FCE generated by the CE are related
as follows:

FCE = aFmax fFL fFV (3)
where Fmax is the maximum isometric force the
muscle is capable of generating, fFL is the isomet-
ric force-length relationship of the CE, and fFV is
the force-velocity relationship of the CE. In this
study, the following approximations were adopted
for fFL and fFV [15]:

fFL = exp−
(

LCE−LCEO
W ·LCEO

)2

(4)

fFV =


Vmax+VCE

Vmax− VCE
A

VCE ≤ 0
gmaxVCE+c3

VCE+c3
VCE > 0

(5)

where LCE is the contrative element length, LCEO
is a muscle-dependent constant termed the opti-
mal CE length, and W is the parameter of the
force-length curve. We set the value of W as
0.56. VCE is the velocity of the CE element, Vmax
is the maximum shortening velocity at full acti-
vation and A is a constant. gmax is the maxi-
mal normalized eccentric muscle force, and c3 is
a muscle-dependent constant. We used values of
0.25, 10LCE0, and 1.5 for A, Vmax and gmax respec-
tively, and set c3 to a value that generates a con-
tinuous first derivative when VCE = 0.

The base model has 22 states representing 11
angular displacements and 11 angular velocities.
We adopted the following equation of motion:

M(q)q̈+B(q, q̇)+C(q) ·Ψ= 0 (6)
in which q, q̇, q̈ ∈ R11 are the vectors of joint dis-
placement, velocity and aceleration respectively,
M,B,∈ R11×11 are inertial and coriolis matrices
which account for muscular inetia and Coriolis
forces along with ligament and contact forces re-
spectively. Ψ is the vector of joint and muscle mo-
ments, and C ∈R11 is the coefficient for accounting
for the effect of muscle moments.
To adequately simulate the interactions be-

tween the rehabilitation robot and stroke sur-
vivors with different movement abnormalities, it
is necessary to introduce abnormal dynamics into
the arm model. The cover-all term for the posi-
tive and negativemotor symptoms that occur after
stroke is “hemiparesis”. A number of studies have
attempted to identify distinct categories of hemi-
paretic deficit. One of the most notable studies
[19] identified the following categories of deficits:
muscle weakness, spasticity, loss of muscle syn-
ergies, and a deficit in feed-forward compensation

for interaction torques, exhibited as a loss of joint
coordination resulting from an inability to antici-
pate the effect of shoulder acceleration on acceler-
ation at the elbow.
Muscle weakness is a common stroke symptom

which manifests as a reduction in the contraction
strength of affected muscles, and consequently,
impairment in completion of the activities medi-
ated by the muscles, such as gripping. We mod-
elled muscle weakness as a reduction in the max-
imum isometric forces of muscles [20]. For weak
muscles, Eq. (1) was modified by the introduction
of a factor, µ so that:

FCE = aµFmax fFL fFV (7)
We defined three levels of weakness, namely mild,
moderate, and severe with µ values of 0.250,
0.125, and 0.0625 respectively [21]. The force-
length and force-velocity curves of the Hill-type
muscle model were scaled accordingly for each
level of weakness. The weakness correction was
uniformly applied to every muscle in a muscle
group.
Spasticity has been defined as a velocity-

dependent increase in resistance against exter-
nally imposed joint movements [22] that is char-
acterized by exaggerated stretch reflex. However,
biomechanical models of spasticity based on veloc-
ity alone fail to capture certain salient features of
spastic response, such as the oscillations in mea-
sured EMG activity or sustained muscle activity
following a stretch [23]. We adopted a stretch re-
flex activationmodel based on stretch velocity and
muscle length, which also factors in the relative
proportions of slow and fast twitch fibres [24]. In
this model, the activation generated by a muscle
experiencing stretching is given by

a(t)= γ

{
wS

λLlm
0

(LF −λLlm
0 )+ wF

λV Vmax
(L̇F −λV Vmax)

}
(8)

where γ is an adjustable gain parameter, wS and
wF are weighting factors of slow and fast twitch
fibres respectively such that wS + wF = 1. Lm

0 is
the optimal muscle length, λL and λV are muscle-
dependent parameters, and Vmax is the maximum
muscle stretch velocity. Force generation in the
spastic muscle is then computed using Eq. (1) and
(3). In the upper extremities, spasticity is usually
experienced in the flexor muscles, although excep-
tions are known [25].
Abnormal muscle synergy is a well-known se-

quela of stroke. Muscle synergies are vectors
specifying patterns of relative muscle activation
levels. They are believed to be adaptations
that allow task-level commands to be translated
into execution-level activation patterns, mirror-
ing the hierarchal structure of multisensory inte-
gration systems [26]. In normal vertebrate phys-
iology, the nervous system adaptively activates
sequences of muscle co-activations with simple
neural commands. This increases the informa-
tional efficiency of the nervous system. When
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the controlling neuronal populations are affected
by a lesion however, the normal synergies may
be disrupted, leading to stereotyped abnormal co-
activation of multiple muscle groups that reflect a
loss of independent joint control, which limits the
patient’s ability to coordinate their joints in cre-
ating arbitrary movement patterns [27].
We modelled two well-known abnormal post-

stroke forearm synergies, namely flexor synergy
(in which elbow flexion is accompanied by shoul-
der abduction and forearm supination) and exten-
sion synergy (involving simultaneous elbow exten-
sion, shoulder adduction, and forearm pronation)
[28]. The muscle activation for muscles recruited
into abnormal sympathetic movement during flex-
ion or extension is:

a∗
syn =

 asyn +ζam

(
φ−φmin

φmax−φmin

)
if φmin ≤φ< φmax−φmin

2

asyn +ζam

(
φmax−φ

φmax−φmin

)
if φmax−φmin

2 ≤φ<φmax

(9)
where asyn is the original activation of the sym-
pathetic muscle, a∗

syn is the adjusted activation,
am is the activation of the biceps for flexor syn-
ergy, or the triceps for extensor synergy. ζ is
a gain factor for which we used the value 0.1,
while φmin and φmax are threshold elbow flex-
ion angles between which abnormal synegy would
kick in. Muscle groups sympathetically activated
during flexor synergy include supinator, deltoid
and supraspinatus. For extensor synergy, prona-
tor teres, pronator quadratus, pectoralis major,
latissimus dorsi, teresmajor, and coracobrachialis
were activated in sympathy with the activation on
the triceps.

2.2. Simulation Framework
In a normal arm rehabilitation session using an

end effector robot and a tracking task, the robot
exerts a vector of torques and forces on the pa-
tient’s arm (Fig. 2). This vector combines with ac-
tuation from muscles to move the patient’s arm
in an attempt to follow the prescribed path. The
human brain controls the sensory and executive
functions required to generate the proper activa-
tion for muscles. Although the complexities or,
and variation in human anatomy and physiology
ordinarily precludes accurate models of the hu-
man operator, a trajectory tracking task mini-
mizes the role of human volition and simplifies the
modelling requirements. Once the current loca-
tion of the end effector is known, the desired next
location can be predicted with very high accuracy,
which means that the actions of the real normal
human operator can be predicted with compara-
ble accuracy, subject to minor random errors.
Let us assume a specified trajectory χ =

χi(T,F,θ, i = 1,2. . . , N, where the iterator i indi-
cates the current position in the sequence of N
states, and the trajectory has been parameterized
in terms of vectors of torques (T), forces (F) and
angular displacements (θ). The movement of a
point of interest on the human arm can similarly

be parameterized M= Mi(T,F,θ, i = 1,2. . . , N,. The
goal of a tracking task is to find the optimum dy-
namical sequence Mopt for the point of interest on
the arm using some objective function, J(·) such
that

Mopt = argmin
M

N∑
i=1

j(χiMi) (10)

where χi and Mi are the previously defined de-
sired and arm trajectories. To achieve this, a real
human applies feedback and an integrative pro-
cess to determine the proper amount of force or
torque to apply in order to arrive at the desired
next end effector location. Using sensory-motor
cooperation learned over years, the nervous sys-
tem automatically supplies the appropriate neu-
ral excitations and muscle activation to generate
the required forces and torques. In fact, the mo-
tor deficits stroke sequelae arise from the fail-
ure of this process, due to impairments in ei-
ther excitation mechanism within neuronal pop-
ulations, or nervous system pathways. A biome-
chanical model within a simulated rehabilitation
block must be able to generate the requisite forces
and torques for a normal user, and also intro-
duce realistic failure modes that correspond to
real hemiplegic deficits. We did this, and em-
ployed a predictor-corrector scheme to integrate
the dynamics of the robotic arm. First, a predictor
step was used to generate the future state based
on only the dynamics of the human model.

Mi+ 1
2
= F(Mi,χi) (11)

Given the noise in both normal and abnormal hu-
man models, some error existed between this pre-
dicted next state and the next state in the trajec-
tory. The robot controller therefore operated on
this error in a corrector step:

Mi = f (Mi+ 1
2
, j(χi+1, Mi+ 1

2
)) (12)

where, as before, j(χi+1, Mi+ 1
2
) is an objective func-

tion, and the nature of the function f (·) depends
on the low-level control strategy. An example us-
ing impedance control is considered in Section 3.
Our simulation framework therefore carried out

the following steps : first, the next desired location
χi(T,F,θ) in the trajectory was obtained, allowing
the internal joint configuration in the arm model
to be determined by inverse kinematics. There-
after, the internal forces and torques about joints
was computed using an inverse dynamic optimiza-
tion. Using a static optimization procedure, these
internal forces and torques were used to compute
the required muscle activations, which were then
modified to add noise whose nature depended on
the absence or nature of hemiplegia being mod-
elled. Thereupon, forward dynamics was executed
to determine the predictor next position. This was
then operated upon by the robot model in concert
with the applicable control algorithm to obtain the
corrected next position.
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Figure 2: Block diagram showing human and robotic components during rehabilitation.

Figure 3: Component diagram of the simulation framework.
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The goal of the inverse kinematics step was
to determine the set of joint angles that best
matched the next specified location in the tra-
jectory. This required the specification of the
intended location as markers, and the solving
of a weighted elast squares optimization prob-
lem while minimizing the error between required
and computed marker positions. We associated
each marker with a weight which indicated how
strongly the marker’s error term should be mini-
mized in the least squares optimization problem.
The operation of the inverse kinematic step is
given by

min
q

[ ∑
i∈markers

wi||xexp
i − xi(q)||2

]
(13)

Inverse dynamics computation thereafter allows
the determination of the net forces and torques at
all the joints that would give rise to the movement
obtained in the inverse kinematics step. We used
Eq. (6) in which displacement was obtained from
inverse kinematics and velocity determined with
inverse kinematics and next trajectory state, the
vector of all joint moments Ψ was computed. in
the static optimization step, the known motion of
the model was then used to solve the equation of
motion for unknown generalized forces subject to
ideal force generators.
The simulation framework is presented in Fig. 3

in the form of a component diagram. Interac-
tion between Matlab and OpenSim was through
the OpenSim Matlab API. To simulate a reha-
bilitation session, a specific human model was
seected. A trajectory was formulated and trans-
ferred to the shared coordinate system. The dy-
namic model of the robot was developed, after
which the control algorithm to be tested was in-
serted. it should be noted that within this frame-
work, the biomechanical human model played the
role of real human; it can therefore be referred to
as a virtual human. Depending on the control law
being tested, the controller may integrate a sim-
pler model of the human arm, and indeed system
identification may be carried out, with the virtual
human serving in lieu of a real one.

3. IMPLEMENTATION
3.1. Description of Robot
We used an implementation of the simulation

framework for testing control algorithms for the
PULSR parallelogram arm rehabilitation robot
of Obafemi Awolowo University, Nigeria (Fig. 4).
The robot has five links with four of them config-
ured as a standard parallelogram arm while the
fifth link serves as a mount for the patient fore-
arm. Links are fabricated out of 5.08 cm wide
extruded 6061 aluminium bars with rolling ball
bearing joints. Two 60 W 24 V NEMA 23 brush-
less DC (BLDC) servomotors coaxially mounted at
point A actuate link 1 and link 2. Each motor is
capable of generating 12.5 Nm continuous torque
and 35 Nm peak torque using a 100:1 planetary
gearbox. Three two-phase 600 pulses/revolution

incremental rotary encoders at points A and B al-
low the angular configuration of the robot to be
determined. The forces generated by the user as
they use the robot are determined by means of a
3-axis force sensor installed at the base of the end
effector at point B. A 4-channel functional electri-
cal stimulation (FES) amplifier is used to gener-
ate pulse width modulated signals for application
to the triceps of the subject. Graphite-and-steel-
ball air bearing ensures minimal friction between
the robot and workspace table.
During normal operation, a subject’s forearm

is strapped to link 5, with the subject grabbing
the end effector located at B, and attempting to
move it to trace a pre-specified elliptical trajectory
at constant velocity. The predefined trajectories
are projected from an overhead projection system,
with multiple trajectories possible using worksta-
tion. For this study, an elliptical trajectory with
eccentricity of 0.94 was used. The user is firmly
strapped to the high backrest of their seat using
padded straps in order to minimize movement of
the acromioclavicular and sternoclavicular joints.
FES signals may be applied to the arm undergo-
ing rehabilitation. Muscle weaknesses and spas-
ticity are two common stroke symptoms for which
FES is commonly applied. Most stroke patients
will eexperience problems with elbow and shoul-
der extension during reaching tasks at some point
during recovery or rehabilitation. The application
of pulse-width modulated FES signals to the tri-
ceps in particular can counteract this during re-
habilitation. The FES input was not utilized in
this study.

3.2. Robot Dynamic Model and Control
The geometry of the robot coupled with a hu-

man forearm is shown in Fig. 5 and the Denavit-
Hartenberg parameters of the robot are presented
in Table 1. The full length of Link 4 is 0.6 m. The
robot joint angle vector is qr = [θ1θ2]T where θ1 and
θ2 are the angles between the base frame and Link
1 and Link 2 respectively. The torque generated
by the BLDCmotors is represented by τr = [τ1τ2]T .
The configuration of the human arm is defined by
qa = [θ f θu]T where θu is the angle between the up-
per arm and a coronal plane passing through the
glenohumeral joint, and θ f is the angle between
the projections of the forearm and the upper arm
onto a transverse plane through the human body.

Table 1: Denavit-Hertenberg parameters for the par-
ellogram arm robot.

Link a(m) α d θ
Link 1 0.3 0 0 θ1
Link 4 0.3 0 0 θ4 = θ2 −θ1
Link 3 0.3 0 0 θ3 =π+θ1−θ2
Link 2 0.3 0 0 θ2

A form of impedance control was adopted for
the interaction of the robot and the human opera-
tor. The primary advantage of impedance control

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 1, January 2021.



122 K.P. Ayodele, O.T. Akinniyi, A.O. Oluwatope, A.M. Jubril, A.O. Ogundele and M.A. Komolafe

Figure 4: The real PULSR rehabilitation robot showing the 4 links.

Figure 5: Geometry of the parallelogram arm robot showing a strapped human arm.
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is that it allows easy simultaneous control of mo-
tion and contact force. In so doing, it ensures the
safety of the human operator from injuries caused
by sudden large forces. The following relationship
was assumed between robot displacement qr and
force fr applied to the end effector at Point B [29]:

fr =KM
¨̃Xr +KB

˙̃Xr +KK X̃r (14)
where X̃r = Xre f −Xr, in which Xre f is the refer-
ence position and Xre f = kr(qr). Also Ẋr = Jr(qr)q̇r

and Xr =Jr(qr)q̈r + J̇r(qr, q̇r)q̇r · J̇T
r (qr) is the Jaco-

bian of the system and KM , KB, KK are gain ma-
trices whose value depends on the mode in which
the robot is being operated of which there are
three: "free-moving load" (FML), "tracking con-
trol" (TC), and "assistive torque" (AT). In the FML
mode, the robot presents itself as a load that can
be moved with ease by the user. Most interactions
of human arms with their environment during
normal day-to-day activities can be modelled as
moving a point mass through a viscuous medium
[18]. Therefore, in the FML mode, KK = 0. Also,
KMKMI and KB = KBI, where KM and KB are real
values that make the load feel "natural" to each
user. In TC mode, the robot initializes the sub-
ject’s arm at the beginning of each iteration of the
task. The gain matrices are set as KM = KMI,
KB = KBI, KK = KKI with a further constraint that
KK > 0. KM and KB are tuned to achieve the re-
quired tracking performance. In the ATmode, the
application of FES signals at the triceps generates
assistive torque at the elbows. Since FES use was
not considered in this study, the AT mode was not
used.

3.3. Trajectories and Testing
In real life, gain matrices KM ,KB,KK are set

during a preliminary system identification ses-
sion in which they are tuned until operation of the
robot feels "natural" to a user. Since the "user"
in this study was a virtual user (the biomechan-
ical model), we introduced a measure to replace
what a normal user would have deemed "natu-
ral". According to [18], typical loads interacted
with daily are most accurately modeled as a mov-
ing point mass through a viscuous medium. Moti-
vated by typical values used in literature for real
users, we selected values corresponsing to a load
of 1.5 kg and viscuous friction of 30 N/ms. We
thereafter generated ten trials each for an unim-
paired virtual subject and five different impaired
subjects using the simulink robot model in the
FML mode. The root mean square error (RMSE)
- calculated from the absolute value of the devi-
ation between planned trajectory and the actual
trajectory traced by the biomechanical model for
each trial- was recorded. Subsequently, the same
subjects were also simulated using the robot TC
mode, and RMSE errors similarly recorded.

4. RESULTS AND DISCUSSION
The trajectories traced by the 7 subjects over a

total of 60 trials are presented in Fig. 6 and 7. An

(a) simulated subject

(b) real human subject

Figure 6: Trajectories resulting from 10 trial move-
ments for unimpaired (a) simulated subject (b) real hu-
man subject.
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(a) flexion synergy (b) extension synergy

(c) spasticity (d) muscle weakness

Figure 7: Trajectories resulting from 10 trial movements each for simulated subjects with the following impair-
ments (a) flexion synergy (b) extension synergy (c) spasticity (d) muscle weakness.
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Figure 8: RMSE for the trajectories of 6 different simulated users in FML mode.

Figure 9: RMSE for the trajectories of 7 different simulated users in TC mode.
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Figure 10: RMSE for the trajectories of 7 different simulated users in TCmode with a different robot dimensions.

ellipse with relatively high eccentricity (0.94) was
used in order to minimise sideways movement of
the arm, thereby limiting forearm rotation, which
made the inverse dynamic computations more dif-
ficult to converge. The simulated normal sub-
ject was unable to trace the trajectory perfectly,
which is similar to what happens in real humans.
For comparison, we recruited a single subject to
move an actual version of the PULSR robot, with
a ball-point pen attached near the end effector to
trace movement. The resulting traces are shown
in Fig. 6(b).
Trajectories for various biomechanical arm

models moving the robot model in FML mode
are shown in Fig. 7. For the flexion synergy
and extension synergies (Fig. 7(a) and (b)), the
eliptical movements are flattened during the in-
ward and outward movements of the arm respec-
tively. This correctly reflects the fact that flexion
is accompanied by shoulder abduction and fore-
arm supination for flexion synergy, while in ex-
tension synergy, elbow extension, shoulder ad-
duction, and forearm pronation all take place to-
gether [28]. The spasticity model experienced no-
tably increased jerking during elbow extension,
as can be seen from Fig. 7(c). The three muscle
weakness models however seemed to have no dis-
cernable pattern of systematic errors. This is why
all three conditions are represented by the trajec-
tories for moderate weakness in Fig. 7(d). This
may be explained by the fact that muscle weak-
ness would normally affect the pace at which the
trial is completed, rather than the actual errors.

The RMSE error for each subject during FML
mode are shown in Fig. 8. Flexion and extension
synergies have higher errors because of the na-
ture of movement impairment. The jerky move-
ment of the spasticitymodel during arm extension
result in the the impaired trajectory error varying
intermittently. Similary, for the weakness mod-
els, the errors are also more random than the syn-
ergy models. For the synergy models, there is a
strong and persistent deviation during extension
or flexion, which contributes to the increased er-
ror. As previously mentioned, the difference in
mild, moderate and severe weakness are not pro-
nounced. For comparison, the RMSE errors for
TC mode, in which the robotic arm was actively
working to assist the arm models, are presented
in Fig. 9.
The errors for all subjects reduced, with move-

ment synergy and spasticity impairmentsmost af-
fected. The primary take-away from this should
be the fact that the interactions of the biomechan-
ical models and robot model resulted in a reduc-
tion of the movement errors, just as a real human
and real robot would. Not much can be read into
the actual magnitude of the errors, as will be ex-
plained later in this section.
In order to determine whether the dimensions

of the robot affects performance, the geomety of
the robot model was altered, such that Link 1,
Link 2 and Link 3 were 0.4 m long, while Link
4 remained 0.6 m. The simulation was repeated
in TC mode, and the resulting RMSE errors are
presented in Fig. 10. A single factor ANOVA test

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 1, January 2021.



A Simulator for Testing Planar ... Robot Control Algorithms 127

of the RMSE errors from TC mode of the two dif-
ferent geometries resulted in a p-value of 0.479,
F=0.533, F-crit=4.74, which means that the null
hypothesis cannot be rejected that both sets of
errors are from the same population. In other
words, changing the geometry of the robot (by
modifying its dimensions) did not significantly af-
fect the performance of the simulation.
An important limitation of this study will now

be discussed. There is at present no substantial
data available on the quantitative measures of
deficit in stroke impairments. For that reason,
the trajectories generated and discussed in the
foregoing were discussed in light of the theoret-
ical understanding of the various conditions. In
addition, this prevents a more thorough compari-
son of the RMSE errors as mentioned previously.
Additional studies are therefore planed in which
stroke patients will be recruited to validate the
biomechanical models in this study.

5. CONCLUSION
Modeling and simulation can lead to signifi-

cant reduction in development and testing costs
in terms of time, money, and other resources.
The introduction of modelling frameworks capa-
ble of capturing the interaction between human
subjects and robots has been challenging due to
the complexity of accurately modelling the guman
operator. By using biomechanical models of the
human arm following pre-stipulated trajectory-
tracing tasks, this study minimized the role of hu-
man volition and demonstrated a way in which
control laws for rehabilitation robots can be tested
more rapidly, by eliminating the usual system
identification process needed to configure a robot
to a real human user. While a lot more work needs
to be done in this area, this study has demon-
stated the possibility and the promise of simulat-
ing human-robot interaction during hand rehabil-
itation.
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