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ABSTRACT 

The increased use of drones and aerial vehicles in applications poses challenges of airspace safety 

for aviation organizations. It is important to ensure the safety of the airspace when a significant 

number of unmanned aerial vehicles are deployed by civilian users. A solution that meets this 

requirement is important to promote innovation in the commercialization of air space for civilian 

users deploying unmanned aerial vehicle. The discussion in this paper proposes a mechanism that 

uses artificial intelligence to address this challenge. The proposed mechanism utilizes a low altitude 

platform (LAP) and entities in terrestrial wireless networks. The low altitude platform (LAP) 

observes, develops insights and training data (with human aid). The training data is used to develop 

learning mechanisms which determine the suitable unmanned aerial vehicles flight parameters in 

different scenarios.  The use of the LAP reduces the burden of communicating with terrestrial base 

stations. The unmanned aerial vehicles have a reduced altitude between the LAPs in comparison to 

terrestrial base stations. This reduces the free space path loss and rain-induced attenuation.  The 

performance benefit of the proposed mechanism in comparison to existing solution is examined via 

MATLAB simulations. Evaluation shows that the proposed mechanism reduces the network access 

costs by up to 90% on average. The proposed mechanism also increases available flight power and 

improves airspace safety by 37.3% and up to 53.2% on average respectively. 

 

Keywords: Autonomous unmanned aerial vehicles, Intelligence Paradigm; Aviation Safety, Capital Constrained 

Aviation Organizations. 

 

1. INTRODUCTION  

Advances in aerial vehicle technology have led to the 

emergence of numerous applications in areas such as 

near space communications [1–3], weather 

monitoring [4-6] and scientific studies [7-9].  The use 

of aerial vehicles is attractive due to their low cost 

benefit in comparison to satellites. However, the 

large scale use of aerial vehicles faces challenges due 

to aviation safety risks [10-12].  It is important to 

design solutions that address the safety concern 

associated with the use of aerial vehicles. This 

enables more capital constrained aviation 

organizations to deliver new applications via aerial 

vehicles. Capital constrained aviation organizations 

are those that cannot afford manned aerial vehicles 

and pilots in the long term. The challenge addressed 

in this paper is ensuring that capital-constrained 

aviation organizations can deploy unmanned aerial 

vehicles for service delivery (across different 

applications) while meeting aviation safety 

requirements. This paper makes the following 

contributions:  

   Firstly, the paper proposes a novel mechanism 

enabling unmanned aerial vehicles to meet aviation 

safety requirements using artificial intelligence. The 

proposed mechanism makes use of a low altitude 
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platform (LAP) that incorporates learning diversity. 

The LAP incorporates payload enabling it to observe 

bird behaviour, and develop insights that can be used 

to derive training data with human assistance from a 

ground location. The derived training data is used to 

train learning algorithms aboard the LAP. These 

learning algorithms are transferred to the unmanned 

aerial vehicles for autonomous guidance.  Each 

unmanned aerial vehicle uses a different learning 

algorithm for motion guidance in different contexts. 

Unmanned aerial vehicle obtains information on 

learning mechanism suitability from the LAP.  

Secondly, the paper formulates the performance 

model for the proposed mechanism. The formulated 

metrics are (i) network access costs, (ii) available 

flight power on unmanned aerial vehicles before and 

after using the proposed mechanism, and (iii) the 

aerial aviation safety indicator (AASI) before and 

after using the proposed mechanism. The AASI 

metric investigates how artificial intelligence 

paradigms enhance aerial safety.  

    The rest of the paper is organized as follows. 

Section 2 discusses the motivation and related 

background to the research described in the paper. 

Section 3 describes the problem. Section 4 presents 

the proposed mechanism. Section 5 formulates the 

performance model. Section 6 presents and discusses 

simulation results. Section 7 concludes the paper.  

 

2. MOTIVATION AND RELATED BACKGROUND 

The discussion here examines the existing use of 

aerial vehicles in different applications. Aerial vehicles 

can be considered as either manned aerial vehicles or 

unmanned aerial vehicles [13-15]. The use of 

unmanned aerial vehicles poses aviation safety risks 

since there is no human on-board. Unmanned aerial 

vehicles are controlled via signals sent from a ground 

station. Manned aerial vehicles have a human on-

board and pose a lesser safety risk than unmanned 

aerial vehicles. Hence, the use of manned aerial 

vehicles is more favourable to airspace regulatory 

agencies from the viewpoint of ensuring safety.  

  This perspective has motivated Ogan [16] to 

propose the joint use of manned aerial vehicles and 

unmanned aerial vehicles. The use of manned aerial 

vehicles is proposed to mitigate against the safety 

risks caused by increased use of unmanned aerial 

vehicles. However, the use of manned aerial vehicles 

incurs higher costs than autonomous unmanned 

aerial vehicles. This is because operators of manned 

aerial vehicles have to hire and train pilots 

responsible for operating the manned aerial vehicle. 

However, pilots are not required for autonomous 

unmanned aerial vehicles. The additional cost of 

hiring and training of pilots makes the large scale use 

of piloted manned aerial vehicles expensive for 

capital-constrained aviation organizations. In a case 

where pilots have high fees, the cost of hiring a 

significant number of pilots can exceed the cost of 

acquiring manned aerial vehicles. This is not 

beneficial for capital constrained aviation 

organizations.  

An unmanned aerial vehicle can be remotely piloted 

or engage in autonomous flight guidance [16]. A 

remotely piloted unmanned aerial vehicle receives 

flight guidance signal via wireless network 

connection. The wireless network connection is also 

used to resolve aerial traffic alert concerns. The use 

of remotely piloted unmanned aerial vehicles poses 

challenges to terrestrial wireless networks. For 

example, the large scale deploying of remotely 

piloted unmanned aerial vehicles increase the risk of 

congestion on terrestrial wireless networks. The 

congestion arises when a significant number of 

remotely piloted unmanned aerial vehicles are in a 

given coverage area. The relay of control signals for 

remotely piloted unmanned aerial vehicles is also 

subject to the state of terrestrial wireless networks. 

Control signal transmission suffers a high latency 

when terrestrial wireless networks have a poor 

quality of service. This increases safety risks.  

In addition, capital constrained aviation organizations 

should be able to pay wireless network operators 

where necessary for network access. This is because 

the providing network access is a revenue source for 

wireless network operators. The network access 

charges for transmitting control signals to remotely 

piloted unmanned aerial vehicles become very high 

when multiple aerial vehicles are deployed.  

The use of autonomous unmanned aerial vehicles 

reduces the need to pay high network access charges 

and reduces the susceptibility of control signals to 

network latency effects.  These benefits arise 

because autonomous unmanned aerial vehicles rely 

on intelligent algorithms for flight guidance.  

The deep learning algorithm is suitable for designing 

intelligent behaviour for unmanned aerial vehicle 

[17]. Carrio et al. [17] recognize that deep learning 

algorithms are suitable for planning and situational 

awareness in unmanned aerial vehicle flight planning. 

Deep learning neural network algorithms are suitable 

for the execution of flight planning in dynamic aerial 
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environments. Therefore, autonomous unmanned 

aerial vehicles should be equipped with sensor 

payload enabling them to acquire the environmental 

state. The acquired environmental state is used to 

determine the output of the deep learning algorithm. 

The output determines the action executed by the 

autonomous unmanned aerial vehicle. The discussion 

in [17] also recognizes challenges affecting achieving 

autonomy in unmanned aerial vehicles. Some of 

these challenges are size, weight and payload power 

restrictions. The realization of feature extraction to 

realize deep learning in unmanned aerial vehicles is 

also challenging. For example, the size restriction of 

unmanned aerial vehicle limits the computing payload 

that can be integrated on autonomous unmanned 

aerial vehicle.  

In [18], Kouris et al. propose the use of convolutional 

neural networks to solve the problem of autonomous 

unmanned aerial vehicle navigation. The unmanned 

aerial vehicle incorporates ultrasonic sensors for long 

range distance sensing. The authors in [18] aim to 

create an indoor flight dataset annotated with real 

distance labels. The acquisition of training data is 

realized by mounting three pairs of Ultrasonic and 

Infra-Red distance sensors on the unmanned aerial 

vehicle. The developed algorithm targets indoor 

environments and not outdoor environment. 

    The development of landing hardware for 

unmanned aerial vehicles is addressed in [19] by Luo 

et al. The discussion in [19] is motivated by the 

observation that flying animals utilize soft landing 

ability enabling them to land on different types of 

surfaces. The paper i.e. [19] aims to equip unmanned 

aerial vehicles with this landing ability. The bio-

inspired technique utilized radial basis function neural 

network proportional integral derivative controllers. 

The proposed technique has the benefit of enabling 

the Quadcopter drone being considered to land on a 

non-flat surface. The ability to land on non-flat 

surfaces enhances safety because unmanned aerial 

vehicles can take advantage of more surfaces to 

ensure safety.   

  Luo et al. [19] considers the usefulness of the 

landing ability of birds in improving unmanned aerial 

vehicles landing ability. However, birds have more 

useful behaviour that can be considered in designing 

unmanned aerial vehicles with improved safety 

capabilities. For example, birds also make use of the 

airspace and are equipped with evolving mechanisms 

to ensure airspace safety.  

Lyons et al. in [13] examine the response of birds to 

drones. They observe that bird behaviour do not pose 

a significant threat to small unmanned aerial vehicles 

i.e. drones. The response of birds to drones sharing 

their territory is observed to have unexpected safety 

consequences in some instances. However, the 

incorporation of drone manoeuvrability is capable of 

evading negative responses for birds with territorial 

behaviour. The discussion in [13] is aimed at studying 

how drone deployment influences bird behaviour in 

breeding and non-breeding seasons.  This study has 

biological significance and aims to ensure that drone 

use does not reduce avian population.  

Flight is a challenging task requiring significant 

muscular activity in birds. In addition, successful bird 

flights require cognitive capability. This is because 

birds respond to different threat scenarios during 

flight. The muscle activity is also influenced by avian 

neuron activity [20]. Therefore, unmanned aerial 

vehicle flight behavior can be influenced by 

mechanisms motivated by avian neuron activity. 

Research has focused on developing unmanned 

aerial vehicle flight behaviour [19, 21-25] but lesser 

research has focused on developing neuronal 

networks motivated by avian intelligence. This is 

because of lesser understanding on the role of 

cognitive ornithology in bird flight and associated 

adaptation.  

   Efforts to incorporate bird like structures in 

unmanned aerial vehicles to enhance their flight 

performance should be matched with corresponding 

development in control logic. This control logic can 

be realized via artificial intelligence mechanisms such 

as artificial neural networks [17-18].  

     Artificial neural networks are suitable for 

designing robust and adaptive systems [26]. The 

concept of learning diversity is presented in [26]. 

Learning diversity implies the use of multiple learning 

algorithms to achieve a given goal at different 

epochs. The suitability of learning diversity is 

examined for cognitive radios in [26]. The use of 

multiple learning algorithms is beneficial because 

different learning algorithms are suitable for 

executing prediction in different scenarios with 

varying prediction accuracy. However, the use of 

learning diversity has not been considered in 

autonomous unmanned aerial vehicles.  

     Autonomous unmanned aerial vehicles are 

beneficial for capital constrained aviation 

organizations. This is because their use does not 

require having access to pilots or wireless network 
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links (ideally avoiding network access costs). 

Currently, drone control is considered to require 

having access to terrestrial wireless networks access 

links [27-28]. This does not consider the widespread 

use of autonomous unmanned aerial vehicles and the 

interest of capital constrained aviation organizations. 

Moreover, autonomous unmanned aerial vehicles 

utilizing artificial intelligence mechanism require 

access to training data. Hence, autonomous 

unmanned aerial vehicles need wireless networks 

access for training data transfer.   

     Capital constrained aviation organizations 

deploying unmanned aerial vehicles in large numbers 

without access to wireless network links need to be 

able to adapt to changing flight scenarios. The 

resulting challenge can be addressed if newly 

developed intelligent mechanisms are transmitted to 

deployed autonomous unmanned aerial vehicles. The 

training data used to develop these new mechanisms 

is acquired by unmanned aerial vehicles (with limited 

computing payload) and transmitted to computing 

entities. This should be done while minimizing 

network access costs.  Drones should also be able to 

adapt to new challenging scenarios emerging in the 

airspace. This should be achievable for capital 

constrained aviation organizations without recourse 

to terrestrial wireless networks. This paper proposes 

a solution that achieves this objective.  

 

3. PROBLEM DESCRIPTION  

This section describes the problem being addressed 

in this paper. The scenario being considered is one in 

which different capital constrained aviation 

organizations deploy multiple autonomous 

unmanned aerial vehicles in class G airspace. The 

autonomous aerial vehicles are used by capital 

constrained aviation organizations for service delivery 

to end-users. The set of capital constrained aviation 

organizations is denoted as 𝛼 such that:  

𝛼 = {𝛼1, 𝛼2, … , 𝛼𝐼}                                                      (1) 

Where 𝐼 is total number of capital constrained 

aviation organizations.  

     A capital constrained aviation organization can 

use multiple autonomous unmanned aerial vehicles. 

The 𝑖𝑡ℎ capital constrained aviation organization 

𝛼𝑖  , 𝛼𝑖  𝜖 𝛼 can deploy multiple autonomous unmanned 

aerial vehicles. Let 𝛽𝑖 denote the set of autonomous 

unmanned aerial vehicles used by the 𝑖𝑡ℎ capital 

constrained aviation organization 𝛼𝑖.  

𝛽𝑖 =  {𝛽𝑖
1, 𝛽𝑖

2, … , 𝛽𝑖
𝐽}                                                  (2)  

Where  𝐽 is the total number of autonomous 

unmanned aerial vehicle used by the 𝑖𝑡ℎ capital 

constrained aviation organization 𝛼𝑖. 

      In (2), 𝛽𝑖
2 is the second autonomous unmanned 

aerial vehicle used by the 𝑖𝑡ℎ capital constrained 

aviation organization 𝛼𝑖. The 𝑗𝑡ℎ autonomous 

unmanned aerial vehicle used by the  𝑖𝑡ℎ capital 

constrained aviation organization 𝛼𝑖 is denoted 

𝛽𝑖
𝑗
, 𝛽𝑖

𝑗
𝜖 𝛽𝑖 .  

    The size of control data associated with the flight 

control of the autonomous unmanned aerial vehicle 

𝛽𝑖
𝑗
 at epoch 𝑡𝑦 is denoted as 𝐶𝑑

1(𝛽𝑖
𝑗
, 𝑡𝑦). In addition, 

the size of the training data acquired by the 

concerned unmanned aerial vehicle sent to the 

ground segment for processing is denoted 𝐶𝑑
2(𝛽𝑖

𝑗
, 𝑡𝑦). 

The size of the training data 𝐶𝑑
2(𝛽𝑖

𝑗
, 𝑡𝑦) is unrelated to 

𝐶𝑑
1(𝛽𝑖

𝑗
, 𝑡𝑦) i.e. 𝐶𝑑

1(𝛽𝑖
𝑗
, 𝑡𝑦) ≠ 𝐶𝑑

2(𝛽𝑖
𝑗
, 𝑡𝑦) .  

     In addition, the cost of accessing wireless 

network links by the autonomous unmanned aerial 

vehicle 𝛽𝑖
𝑗
at the 𝑦𝑡ℎ epoch, 𝑡𝑦 is denoted 𝑃𝑎𝑐(𝛽𝑖

𝑗
, 𝑡𝑦).  

A variable network access charge is feasible if the 

network incorporates congestion based dynamic 

pricing scheme. Given that the organization, 𝛽𝑖
𝑗
 has a 

threshold network access cost of the 𝑖𝑡ℎ  capital-

constrained aviation organization 𝑃𝑡ℎ(𝛼𝑖); the data 

transmission costs constitutes a bottleneck if:  

∑ ∑ 𝑃𝑎𝑐(𝛽𝑖
𝑗
, 𝑡𝑦)(𝐶𝑑

1(𝛽𝑖
𝑗
, 𝑡𝑦) + 𝐶𝑑

2(𝛽𝑖
𝑗
, 𝑡𝑦))

𝐽

𝑗=1

𝑌

𝑦=1

≥ 𝑃𝑡ℎ(𝛼𝑖)                                       (3) 

     Furthermore, let 𝑃 and 𝑃1(𝛽𝑖
𝑗
, 𝑡𝑦) denote the initial 

power aboard the autonomous aerial vehicle and 

power expended by the autonomous unmanned 

aerial vehicle  𝛽𝑖
𝑗
 at epoch  𝑡𝑦 respectively. Given that 

𝑃1(𝛽𝑖
𝑗
, 𝑡𝑦) also includes power consumption of the 

computing payload. The necessity of data 

communications reduces unmanned aerial vehicle 

flight duration if:  

𝑃 − ∑ 𝑃1(𝛽𝑖
𝑗
, 𝑡𝑦)  ≤ 0

𝑌

𝑦=1

                                         (4) 

     The aerial environment of the class G airspace 

comprises aerial vehicles from different capital 

constrained organizations and those of other aviation 

organizations. The other aviation organizations are 

those with access to significant financial, capital and 

technical resources such as Amazon.  Let 𝛾 be the set 

of other organizations with aerial vehicles in the class 

G airspace.  
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𝛾 = {𝛾1, 𝛾2, … , 𝛾𝐾}                                                     (5) 

      Where 𝐾 is the total number of additional 

aviation organizations in the class G airspace.  

The set of autonomous aerial vehicles owned by 

organization 𝛾𝑘  , 𝛾𝑘𝜖  𝛾 is given as: 

𝛾𝑘 = {𝛾𝑘
1, 𝛾𝑘

2, … , 𝛾𝑘
𝐿}                                             (6) 

Where 𝐿 is the total number of aerial vehicles used 

by the  𝑘𝑡ℎ aviation organization.  

   The aerial environment of the autonomous 

unmanned aerial vehicle 𝛽𝑖
𝑗
 can comprise 

autonomous unmanned aerial vehicles from other 

aviation organizations. This is in addition to birds in 

the class G airspace.  The vehicle 𝛽𝑖
𝑗
 needs to be 

capable of adapting for a safe flight in each possible 

class G airspace scenario. If the vehicle 𝛽𝑖
𝑗
 uses 

artificial neural networks for flight adaptation, it is 

feasible to think that an artificial neural network most 

suitable for a class G airspace scenario is unsuitable 

for another scenario.  

      This consideration is important as the scenario in 

the class G airspace is dynamic. This is because of 

the differences in the required training data and 

prediction accuracy for each scenario.  Furthermore, 

different artificial neural networks have varying 

prediction accuracies making them capable of 

yielding different results in different scenarios. 

Autonomous unmanned aerial vehicles should also be 

able to benefit from newly emerging training data. A 

solution in this context requires a novel learning 

framework for autonomous unmanned aerial vehicle. 

This framework should also be supported by suitable 

computational payload. The computing payload 

should consider the power constraints of autonomous 

unmanned aerial vehicle in addressing this challenge.  

    Therefore, new mechanisms are required for 

capital constrained aviation organizations utilizing 

autonomous unmanned aerial vehicles in large-scale. 

The mechanism should address the challenges of (i) 

reducing wireless network link access costs, (ii) 

increasing power available for flight, (iii) enabling use 

of different machine learning algorithms at different 

epochs and (iv) improving airspace safety. The 

machine learning algorithms are developed using 

dynamic training data to improve adaptation and 

enhance safety. 

 

4. PROPOSED SOLUTION 

This section presents the proposed solution and is 

divided into three aspects. The first aspect presents 

the mechanism which enables the reduction of 

wireless network link access costs for autonomous 

unmanned aerial vehicles. The second aspect 

describes the solution enabling the improvement of 

available flight power in autonomous unmanned 

aerial vehicles. The third aspect presents a 

mechanism incorporating the concept of machine 

learning diversity.  

 

4.1 Proposed Solution – Reducing Wireless 

Network Link Access Costs 

Currently unmanned aerial vehicles obtain the control 

signals from terrestrial wireless networks [27-28]. 

The use of terrestrial wireless networks is 

advantageous in comparison to satellite networks 

due to the high cost of satellite links. Moreover, the 

higher distance between satellite networks and aerial 

vehicles signifies a high latency in comparison to 

terrestrial wireless networks with a shorter distance. 

The use of low altitude platforms (LAPs) is preferred 

in this case because they have a lower latency than 

satellite networks. LAPs also have a wide coverage, 

are located at an altitude above commercial aircraft 

and transmit signals to multiple unmanned aerial 

vehicles within their coverage.  

     This paper proposes a LAP crowd-sourcing 

acquisition strategy. In the proposed strategy, capital 

constrained aviation organizations jointly acquire or 

develop (via open source strategy) own LAPs. Recent 

advances favor an open source development of LAPs 

as seen in [29-30]. Multiple capital constrained 

aviation organizations can share the costs associated 

with acquiring or developing LAPs.  

   The LAPs receive signals from a ground location. 

The ground location is jointly acquired or developed 

by capital constrained aviation organizations. Data 

transmission from the ground location to the LAP; 

and from the LAP to the autonomous unmanned 

aerial vehicles is free of network access costs. This 

mechanism also reduces the risk of network 

congestion from the transmission of subscriber traffic 

in terrestrial wireless networks. The data transmitted 

in the proposed mechanism relates to ensuring the 

safety of autonomous unmanned aerial vehicle in the 

class G airspace. Transmitted data in this context 

comprises (i) acquired training data, (ii) pre-

processed training data, (iii) matrices for developed 

artificial neural networks for predicting autonomous 

unmanned aerial vehicle manoeuvrability 

configuration parameters and (iv) sojourn status of 

the autonomous unmanned aerial vehicle.  
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    The observed information obtained via cameras 

and sensors on autonomous unmanned aerial 

vehicles is refined to extract suitable training data. 

This process can take place on either the LAP via 

remote terrestrial access and using the LAP’s 

computing resources. It can also take place on the 

ground location after transmission of observed 

information.  

   The pre-processed training data is used to train 

artificial neural networks. This training can be done 

either on the LAP (with or without remote access) or 

at the ground station. In addition, the matrices for 

developed artificial neural networks are sent from 

either the ground station or the low altitude platform 

to the autonomous unmanned aerial vehicle in the 

class G airspace.   

    In the proposed mechanism, the LAP hosts 

information on the matrices of different learning 

algorithms suitable for use by autonomous aerial 

vehicles in ensuring airspace safety. This shifts the 

computational load from autonomous unmanned 

aerial vehicles to crowdsourced LAPs.   

 

4.2 Proposed Solution – Increasing Available 

Flight Power 

The power consumption on the autonomous 

unmanned aerial vehicle is sub-divided into four 

components. These are power expended by the (i) 

communication payload, (ii) sensing payload, (iii) 

motion payload and (iv) computing payload. The 

power consumed by the motion payload is 

responsible for the flight of the autonomous 

unmanned aerial vehicle. The communication 

payload enables data transmission between the LAP 

and the ground station. The sensing payload enables 

on-board camera operation and acquires training 

data. The computing payload consumes energy 

associated with using on-board trained neural 

networks to determine the flight configuration 

parameters and pre-processing of training data.  

   This paper proposes the use of neuromorphic 

computing hardware in the communication payload, 

sensing payload and computing payload. 

Neuromorphic computing hardware is suitable for 

future devices and technologies due to their low 

power consumption [31-32]. The use of 

neuromorphic hardware with low power consumption 

reduces the energy consumed by the communication 

payload, sensing payload and computing payload. 

This increases the proportion of the energy aboard 

the autonomous unmanned aerial vehicle that is 

available for the motion payload i.e. expended in 

flight.  

    The network scenario of the proposed mechanism 

is shown in Figure 1. The presented network scenario 

comprises the low altitude platform in the lower 

stratosphere, aerial vehicles in the class G airspace 

and ground based terrestrial wireless networks base 

stations. The altitude of the class G airspace and the 

low altitude platform relative to the ground location 

are ℎ2 and  ℎ1 respectively. The distance between the 

class G airspace region and the low altitude platform 

is described by the relation  2ℎ2 >  ℎ1. Given that 

2ℎ2 >  ℎ1, the use of the low altitude platform 

compared to terrestrial wireless network base 

stations results in a lower free space loss since  2ℎ2 >

 ℎ1. This reduces the energy consumption of the 

communication payload in the unmanned aerial 

vehicle.   

     The context in Figure 1 is one in which the low 

altitude platform based in the stratosphere has 

completed communications with the ground station. 

Hence, the ground station is not shown. However, 

low altitude platforms do not communicate 

continually with the ground stations but at scheduled 

intervals. The transmission of navigation control 

signals for non-autonomous unmanned aerial 

vehicles is not delivered timeously due to latency and 

network congestion. In Figure, 1, the low altitude 

platform is used to provide coverage and data 

transmissions to the concerned unmanned aerial 

vehicles. However, multiple low altitude platforms 

can be used for a larger coverage area. In this case, 

low altitude platforms provide coverage. 

 

4.3 Proposed Solution – Artificial Intelligence 

for Improved Airspace Safety 

The proposed mechanism aims to enhance airspace 

safety for autonomous unmanned aerial vehicles in 

the class G airspace. The class G airspace in the 

context of this paper can support remotely piloted 

aerial vehicles, optionally piloted aerial vehicles and 

autonomous unmanned aerial vehicles. The control of 

remotely piloted aerial vehicles and optionally piloted 

aerial vehicles from the ground stations via wireless 

networks is subject to delay and congestion in 

wireless networks. However, this is not true for 

autonomous unmanned aerial vehicles that use 

intelligent algorithms for flight guidance.  
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Figure 1: Proposed Mechanism’s Network Scenario. 

 

Training data required for intelligent algorithm training 

does not require continuous transmission.  

    The design of the proposed artificial intelligence 

paradigm is motivated by the intelligent pattern in 

which birds are observed to utilize the airspace. Birds 

demonstrate a high level of intelligence leading to the 

study of cognitive ornithology and avian intelligence 

[33-35]. Fox in [36] recognize that avian intelligence 

play an important role in the design of future multi-

intelligence systems. In [36], the combination of 

human and avian intelligence is used to design 

mechanisms enabling the design of useful techniques 

for drones. This combination requires the use of 

learning mechanisms motivated by human and avian 

intelligence.  

    Currently, artificial neural networks that play a 

significant role in artificial intelligence are motivated 

by the human brain. The role of avian intelligence in 

using the structures of bird brains to develop artificial 

neural networks is an area that remains largely 

unexplored. However, the joint use of artificial neural 

networks motivated by human and bird brains is 

essential for developing multi-intelligent hybrid 

learning systems. The goal of developing the multi-

intelligent hybrid learning systems can be achieved via 

learning diversity. Learning diversity is achieved by 

using artificial neural networks of different structures 

to realize the learning and prediction process. This is 

feasible because artificial neural networks have a 

significant number of configuration parameters.  

     Examples of configuration parameters for artificial 

neural networks are: (i) number of inputs, (ii) number 

of hidden layers, (iii) number of outputs, (iv) input 

layer transfer function, (v) pre-processing functions, 

(vi) Presence or absence of recurrent links, (vii) 

transfer function of each hidden layer, (viii) output 

layer transfer function, (ix) number of reservoirs (echo 

state network), (x) number of neurons in the input 

layer, (xi) number of neurons in each hidden layer and 

(xii) number of neurons in the output layer and (xiv) 

regularization parameter for each layer in the artificial 

neural network. 

   The values of these parameters can be varied and 

configured to be different thereby leading to the 

emergence of different artificial neural networks. The 

parameters influencing artificial neural network 

configuration are not limited to the aforementioned. 

    In the proposed mechanism, the LAP incorporates 

computing payload that hosts artificial neural network 

of different structures. The motivation for using 

multiple artificial neural networks is that the use of 

neural networks of different structures enables us to 

approximate the brain structure of birds. This 

paradigm is the approximate avian brain artificial 

neural network paradigm. The LAP acquired via open 

source and crowd-sourcing hosts payload comprising 

neuromorphic hardware. It develops training data 

obtained via observations made by the cameras 

mounted on autonomous unmanned aerial vehicles. 
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The training data is developed via autonomous 

inference or user analysis via ground station access.  

    The training of the neural networks with different 

structures is done on the crowd-sourced low altitude 

platform. The training is done to predict configuration 

parameters given different environmental inputs as 

observed via the sensing payload. The output of the 

training procedure is the artificial neural network 

matrices. The developed matrices are transmitted to 

autonomous unmanned aerial vehicles that use them 

to determine flight configuration parameters.  

       The proposed artificial intelligence paradigm 

considers differences in camera capabilities in 

autonomous unmanned aerial vehicles. The possibility 

of using different sensing payload components implies 

that different artificial neural network structures will 

be suitable for different objectives. The crowd-sourced 

low altitude platform’s computing payload executes 

multi-objective learning aiming to meet the learning 

demands and prediction objectives of autonomous 

unmanned aerial vehicles. The proposed solution also 

executes the task of learning algorithm classification. 

This enables the low altitude platform to determine the 

most suitable artificial neural network structure. 

Hence, parameter prediction in the aerial vehicle to be 

executed using the best learning mechanism at an 

epoch. The classification of learning mechanism is 

done by the learning mechanism classification entity 

aboard the LAP.   

       The multi-objective learning procedure 

incorporating learning diversity that is incorporated in 

the computing payload aboard the LAP is shown in 

Figure 2. Figure 2 shows the computing payload 

comprising neuromorphic computing hardware that 

pre-processes the acquired training data. In Figure 2, 

the depiction on the right shows the neuromorphic 

hardware hosting the implemented artificial neural 

networks. In addition, the LAP hosts computing 

facilities that provides storage for the matrices of the 

artificial neural network. The pre-processing of 

training data is done using multiple computing entities 

aboard the LAP. The pre-processed training data is 

used to train artificial neural networks and the output 

is a matrix for each neural network.  

The sequence of relations between autonomous 

unmanned aerial vehicle and the LAP is shown in 

Figure 3. In Figure 3, the relations between the LAP 

(left) and the drone (right) occurs in four steps. In the 

first step, the drone transmits the data observed in the 

aerial environment to the LAP. The transmitted data is 

processed and used to develop training data aboard 

for the LAP. The processed data is used to train the 

artificial neural networks with different configurations 

that are hosted aboard the LAP. The output of the 

second step are well–trained artificial neural networks 

with own matrices. The third step involves the 

transmission of artificial neural network matrices from 

the LAP to autonomous unmanned aerial vehicle. 

Newly observed training data for a new scenario in the 

aerial environment is transmitted from the drone to 

the LAP in the fourth step.  

  

5. PERFORMANCE FORMULATION 

This section formulates the performance metrics of the 

proposed mechanism.  

 

 

 
Figure 2: Machine learning aboard the low altitude platform in the proposed mechanism.  
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Figure 3: Relations between autonomous unmanned aerial vehicle and low altitude platform. 

 

The formulated performance metrics are (i) wireless 

network access costs, (ii) available flight power on-

board autonomous unmanned aerial vehicle and (iii) 

aerial aviation safety index (AASI).  This section is 

divided into three parts. The first part focuses on the 

wireless network access costs. The second part 

formulates the available flight power on-board the 

autonomous aerial vehicle and available flight range. 

The third part focuses on the AASI. 

 

5.1 Performance Formulation – Wireless 

Network Access Costs 

The wireless network access costs when terrestrial 

wireless networks base stations are utilized to transmit 

information on developed artificial neural network 

matrices to autonomous unmanned aerial vehicles is 

denoted 𝑌1. The network access costs when low 

altitude platforms are required to transmit information 

on developed artificial neural network matrices is 

denoted  𝑌0. The costs 𝑌0 and 𝑌1 are formulated 

considering the normalized load due to aerial vehicle 

traffic and that due to terrestrial network denoted as  

𝜌𝑢(𝛼𝑖
𝑗
, 𝑡𝑦) and 𝜌𝑡𝑟_𝑏𝑠(𝛼𝑖

𝑗
, 𝑡𝑦) respectively.  

𝑌𝑛 = ∑ ∑ 𝑃𝑎𝑐(𝛼𝑖
𝑗
, 𝑡𝑦) (𝐶𝑑

1(𝛼𝑖
𝑗
𝑡𝑦) +𝐽

𝑗=1
𝑌
𝑦=1

𝐶𝑑
2(𝛼𝑖

𝑗
, 𝑡𝑦)) 𝑒𝑥𝑝 (𝜌𝑢(𝛼𝑖

𝑗
, 𝑡𝑦) + 𝑛𝜌𝑡𝑟𝑏𝑠

(𝛼𝑖
𝑗
, 𝑡𝑦)) +

𝜗′

|𝛼|
|

𝑛=0
                                                                   (7);    

𝜖 {0,1}  

Where 𝜗′ is the cost of acquiring or developing the low 

altitude platform via open source strategy.   

 

5.2 Performance Formulation – Available Flight 

Power 

The available flight power is formulated for the case 

where the autonomous unmanned aerial vehicle 

communicates with either the terrestrial wireless 

network base station or low altitude platform. The 

data transmit power when the autonomous unmanned 

aerial vehicle transmits data to the terrestrial wireless 

network depends on the altitude and frequency.  

     Let 𝑃𝑡𝑟_𝑏𝑠(𝛼𝑖
𝑗
, 𝑡𝑦 , ℎ2, 𝑓)  denote the transmit power 

required by autonomous unmanned aerial vehicle 𝛼𝑖
𝑗
 

to transmit to the base station from an altitude ℎ2 at 

frequency 𝑓 at epoch 𝑡𝑦. In addition, 

𝑃𝑡𝑟_ℎ𝑎(𝛼𝑖
𝑗
, 𝑡𝑦, (ℎ1 − ℎ2), 𝑓) is the transmit power 

required by autonomous unmanned aerial vehicle 𝛼𝑖
𝑗
 

at  altitude (ℎ1 − ℎ2)  and frequency 𝑓 at epoch 𝑡𝑦. 

The power consumed by the communication payload 

in the autonomous unmanned aerial vehicle comprises 

power expended in pre-processing data for data 

transmission.  

    The parameters 𝑃𝑡𝑟_ℎ𝑎(𝛼𝑖
𝑗
, 𝑡𝑦 , (ℎ1 − ℎ2), 𝑓) and  

𝑃𝑡𝑟_𝑏𝑠(𝛼𝑖
𝑗
, 𝑡𝑦, ℎ2, 𝑓) are associated with the free space 

loss given that autonomous unmanned aerial vehicles 

are not deployed in rainfall.  The formulation assumes 

that the sensing payload consumes the same amount 

of power in both cases. The available flight power 

associated with 𝑃𝑡𝑟_ℎ𝑎(𝛼𝑖
𝑗
, 𝑡𝑦 , (ℎ1 − ℎ2), 𝑓) and 

𝑃𝑡𝑟_𝑏𝑠(𝛼𝑖
𝑗
, 𝑡𝑦, (ℎ1 − ℎ2), 𝑓) are denoted as 𝑃𝑓𝑙_ℎ𝑎(ℎ1 −

ℎ2, 𝑓) and 𝑃𝑓𝑙_𝑏𝑠(ℎ2, 𝑓) respectively.  

𝑃𝑓𝑙_𝑏𝑠(𝛼𝑖
𝑗
, ℎ2, 𝑓) = 𝑃 − (∑ 𝑃𝑡𝑟_𝑏𝑠(𝛼𝑖

𝑗
, 𝑡𝑦 , ℎ2, 𝑓)

𝑌

𝑦=1

) (8) 

𝑃𝑓𝑙_ℎ𝑎(𝛼𝑖
𝑗
, (ℎ1 − ℎ2), 𝑓)  = 𝑃 − (∑ 𝑃𝑡𝑟ℎ𝑎

(𝛼𝑖
𝑗
, 𝑡𝑦 , (ℎ1 −𝑌

𝑦=1

ℎ2), 𝑓))                             (9)  

 

5.3 Performance Formulation – Influence of 

Artificial Intelligence Algorithm on Air 

Safety 

The proposed mechanism advocates the incorporation 

of multi-intelligence paradigm i.e. learning diversity 

airspace safety when autonomous unmanned aerial 

vehicles are deployed.      

   The influence of artificial intelligence on enhancing 

air safety is formulated via the AASI metric.  The AASI 

gives a measure of aerial safety considering the 

performance of artificial neural networks used in 

autonomous unmanned aerial vehicles. Artificial neural 

networks can be used to predict different configuration 

parameters such as speed, flight direction, hovering 

duration and necessary altitude adjustments amongst 

other parameters. 

    These outputs can be determined with varying 

degrees of prediction accuracy for an artificial neural 

network. Hence, the prediction accuracy is an 
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important parameter for the artificial neural network 

or any other learning mechanism.  

   Let ϓ denote the set of artificial neural networks 

that can be used by autonomous unmanned aerial 

vehicles such that: 

ϓ = {ϓ1, ϓ2, … , ϓ𝑀}                                         (10) 

  Where 𝑀 is the total number of artificial neural 

networks.  

    The probability that the prediction accuracy of the 

artificial neural network ϓ𝑚, ϓ𝑚 𝜖 ϓ at epoch 𝑡𝑦  does 

not meet or exceed the desired predicted output is 

denoted  𝑃(ϓ𝑚 , 𝑡𝑦).  

     Furthermore, the artificial neural networks are 

classified based on their outputs i.e. prediction 

accuracy. This functionality is executed by the learning 

mechanism classification entity. Let ϔ  denote the set 

of learning mechanism classification entities such that:  

ϔ = {ϔ1, ϔ2, … , ϔ𝑁}                                   (11) 

     Where 𝑁 is the total number of learning 

mechanism classification entities.  

     In the existing mechanism i.e. [37], the 

autonomous unmanned aerial vehicle incorporates 

one artificial neural network structure such as the 

convolutional neural network.  The airspace safety is 

compromised if the artificial neural network prediction 

falls short or exceeds the value of the desired output. 

The AASI assuming that the autonomous aerial 

unmanned vehicle incorporates artificial neural 

networks in an ensemble is denoted Г1. In this case, 

the artificial neural networks or other learning 

algorithms are not classified.  

Г1 =  (1 − (∏ ∏ 𝑃(ϓ𝑚 , 𝑡𝑦)

𝑌

𝑦=1

𝑀

𝑚=1

))                    (12) 

     In the proposed mechanism, learning algorithm 

classification is executed by the learning algorithm 

classification entity. The probability that the learning 

algorithm classification entity ϔ𝑛 , ϔ𝑛 𝜖 ϔ does not 

function as expected at epoch 𝑡𝑦 is denoted 𝑃(ϔ𝑛 , 𝑡𝑦). 

The airspace safety is compromised if all the artificial 

neural networks suitable for prediction in a given 

scenario fail to deliver expected performance or if the 

learning mechanism classification entities fail to deliver 

the expected performance. The AASI when the 

autonomous aerial unmanned vehicle incorporates 

learning diversity is denoted Г2 and given as:  

Г2 =  (1 − (∏ ∏ 𝑃(ϓ𝑚 , 𝑡𝑦)𝑌
𝑦=1

𝑀
𝑚=1 )) +  (1 −

(∏ ∏ 𝑃(ϔ𝑛 , 𝑡𝑦)𝑌
𝑦=1

𝑁
𝑛=1 ))                                                    (13)

  

 

6. PERFORMANCE SIMULATION 

This section presents the result of performance 

simulation and discusses the performance benefits of 

using the proposed mechanism. The performance 

simulation, evaluation and analysis are done using the 

MATLAB software package. The MATLAB software 

package has been used because it has a flexible editor 

tool that can allow the evaluation of the proposed 

mechanism under different performance conditions 

and scenarios. The use of the editor tool in MATLAB 

for the performance simulation and evaluation 

requires the provision of parameters describing the 

scenario where the proposed mechanism is deployed. 

The parameters that are used in this regard are 

presented in Table I.  

   The performance simulation has also assumed that 

unmanned aerial vehicles can have different altitudes, 

normalized traffic load, size of control data and 

training data and probability of failure for learning 

mechanisms.  In addition, the mean values can be 

easily obtained for random values that can be defined 

using MATLAB inbuilt functions such as the ‘randtool’. 

This has necessitated the providing the information on 

the average value of these parameters in the 

information presented in Table 1.  

     The performance simulation is done using the 

parameters shown in Table I. The simulation is done 

with the aim of investigating how the use of the 

proposed mechanism influences the network access 

costs, the available flight power and the AASI.  

    The result for the network access costs is shown in 

Figure 4 and Figure 5. Figure 4 and Figure 5 shows 

network access costs for the proposed mechanism and 

existing approach respectively. The network access 

cost for the existing approach in is examined for the 

case where the normalized traffic load for wireless 

subscribers has values of 1.5, 3.0 and 4.5 as described 

in Case 1, Case 2 and Case 3 respectively.  

    The scenario describing the existing case can be 

found in [27] where mobile networks such as the LTE-

Advanced and 5G networks are used to transmit all 

data associated with drone control. The result in 

Figure 4 are for the case of the proposed mechanism 

low altitude platform is used to execute only data 

transmission related to unmanned aerial vehicle. The 

network access costs in Figure 5 have been 

determined using the scenario in [27] as the case 

study. In the simulation, three cases of normalized 

load have been considered.         
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    Analysis of the results presented in Figure 4 and 

Figure 5 show that the use of the proposed mechanism 

reduces network access costs in comparison to results 

obtained from existing mechanism. The proposed 

mechanism   reduces the network access costs by an 

overall mean of 90%. Therefore, the use of the 

proposed mechanism in managing autonomous 

unmanned aerial traffic instead of using terrestrial 

wireless network base station is beneficial. This is 

because of the significant improvement even when 

terrestrial wireless network has low congestion levels 

i.e. low normalized traffic load level. 

 

     The results on the available flight power on-board 

the autonomous unmanned aerial vehicle is shown in 

Figure 6. In Figure 6, the existing approach refers to 

the existing scenario in [28] where unmanned aerial 

vehicles are controlled from the terrestrial mobile 

network. The proposed approach refers to the 

scenario in the proposed mechanism.  

     The results in Figure 6 show that the available 

flight power increases with unmanned aerial vehicle 

altitude. This is because the autonomous unmanned 

aerial vehicle is closer to the low altitude platforms as 

its altitude increases. This reduces the influence of 

free space loss in the case of the proposed 

mechanism. Therefore, the communication payload 

uses less proportion of the energy to overcome free 

space loss and realize intended communications. 

Hence, more energy is available for flight.  

     However, in the existing approach [27], separation 

between the autonomous unmanned aerial vehicle 

and the terrestrial wireless network base station 

increases with aerial vehicle altitude. Therefore, the 

available flight power decreases with increasing 

altitude in the existing scheme.  

This is because a larger proportion of the power in the 

autonomous unmanned aerial vehicle is expended to 

overcome the higher free space path loss.  

    Analysis of the results in Figure 6 shows that the 

use of the proposed mechanism increases aerial 

vehicle flight power by 37.3% on average. An 

increment in the power available for flight increases 

aerial vehicle range and increases power available to 

operate more components that enhances safety.   

The simulation result for the AASI is shown in Figure 

7. The AASI is examined for three scenarios i.e. 

Scenario 1, Scenario 2 and Scenario 3.  

   Scenario 1 describes the case for which artificial 

neural networks are used to predict the configuration 

parameter of the autonomous unmanned aerial 

vehicle. This describes the existing scenario that can 

be found in [37]. The discussion in [37] utilizes a well-

trained convolutional neural network for navigation in 

autonomous unmanned aerial vehicles. 

The convolutional neural network generates the 

steering commands for the unmanned aerial vehicle. 

It is assumed that the convolutional neural network 

used in [37] can predict the required steering 

commands for all scenarios with 100% accuracy. It 

does not consider scenarios for which the change in 

the configuration of the parameters of the convolution 

neural network might be necessary.  

Scenario 2 and Scenario 3 describes the case where 

the proposed multi-intelligence framework 

incorporating learning diversity is incorporated. This is 

the case with the existing mechanism.  The difference 

between scenarios 2 and 3 is the number of learning 

algorithm classification entities. 

 
Table 1: Simulation Parameters 

S/N Parameter Value 

1 Low Altitude Platform – Altitude 10  km 

2 Mean altitude of autonomous unmanned aerial vehicle 6.7 km 

3 Autonomous unmanned aerial vehicle on-board power 1 MW 
4 Operational Frequency 2 GHz. 

5 Mean Normalized Traffic Load of autonomous unmanned aerial vehicle 12 
6 Normalized Traffic Load of subscriber traffic [0.8   1.6   2.4] 

7 Mean size of transmitted controlled data 477.6 Bytes 
8 Mean size of transmitted training data 0.525 Mbytes 

9 Mean network access costs per MB.  (conservative estimate) $ 7.5 

10 Overall number of learning mechanisms 10 
11 Mean probability of failure of artificial neural network 0.6148 

12 Overall number of learning mechanism classification entities 3 
13 Mean probability of failure of learning mechanism classification entities 0.3204 
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The number of classification entities in scenario 2 

and scenario 3 is one and three respectively. 

 Analysis shows that the AASI in scenario 2 and 

scenario 3 outperforms that of scenario 1 by an 

average of 29.7% and 53.2% respectively. An 

increase in the number of learning mechanism 

classification entities from 1 to 3 by 33.3% enhances 

the AASI by an average of 35.3%. 

 
Figure 4: Network Access Costs in the proposed 

mechanism.  

 
Figure 5: Network Access Costs in the existing 

mechanism. 

 
Figure 6: Simulation results for the available flight 

power.  
 

 
Figure 7: Simulation results for the AASI.  

 

7. CONCLUSION  

The discussion in this paper addressed the challenge 

of ensuring airspace safety when a significant number 

of unmanned aerial vehicles are deployed in civil 

applications. The paper proposed the use of low 

altitude platforms hosting intelligent algorithms and 

learning diversity to improve the safety of deployed 

unmanned aerial vehicles. It has also identified and 

described the relations between different entities that 

interact to ensure that the goal of airspace safety is 

realized. The paper also formulated the performance 

metrics used to examine the performance of the 

proposed mechanism. The performance benefit of the 

proposed mechanism is evaluated and analyzed by 

using the MATLAB software package. The results 

obtained show that the use of the proposed 

mechanism outperformed the existing approach where 

terrestrial wireless network base stations are used for 

unmanned aerial vehicle control. The available flight 

power and air safety are improved by an average of 

37.3% and 53.2% respectively when the proposed 

mechanism is used.  
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