

* Corresponding author, tel: +234 – 703 – 030 – 5327

AUTOMATIC GENERATION OF ROOT LOCUS PLOTS FOR LINEAR TIME

INVARIANT SYSTEMS

N. Durutoye1,* and O. Ogunbiyi 2

1 PEA DEPARTMENT, NIGERIA LIQUIDLY NATURAL GAS, BONY ISLAND, RIVERS STATE. NIGERIA.
2 ELECTRICAL AND COMPUTER ENGINEERING DEPT, KWARA STATE UNIVERSITY, MALETE, KWARA STATE. NIGERIA.

E-mail addresses: 1durutonye.nathaniel@yahoo.com, 2 olalekan.ogunbiyi@kwasu.edu.ng

ABSTRACT

Design and analysis of control systems often become difficult due to the complexity of the system model and the design

techniques involved. This paper presents the development of a Tools Box in Microsoft Excel for control engineer that uses

root locus as a time domain technique for system design and analysis. The Tool Box can also serve as a computer-aided

graphical analytical tool for trainers. The work was done in two phases: the first phase is the development of a

programmable algorithms for root locus using the angle condition and bisection method while the second phase is the

implementation of the developed algorithms. The implementation was done using Microsoft Excel (R) Visual Basic

Application (VBA). Results of simulations for different systems show the potential of the Tool Box as an alternative for

other software package and the ease of using it on the readily available Microsoft Excel environment.

Keywords: Asymptotes, Poles, Root Locus, Singularity Point, Zeros

1. INTRODUCTION

The evolution of Control Engineering practice has

propelled the performance of any design system to a

reasonable satisfaction which can always be improve on

continually basis. Since control system design is

invariably an iterative process, the computer, combined

with reliable software remove the tedium of performing

repetitive calculation and/or analysis [1, 2].

The relationship between computer application and

educational sector has introduced a mechanism that

facilitates high level of understanding to learning. It

brings theoretical analysis of a particular topic to

practical reality.

An advancement in the study of control theory is the

development of method for graphically extracting the

system root in a continuous manner as some parameters

varies. This method referred to as Root locus techniques

and was developed by Evans in 1948 [3]. It has become

well-known and it has survived the innovation in control

theory, it has equally been applied to classical

formulation and the more recent state variable

approaches. Root locus techniques is referred to as a

method that extract all root of characteristic equation

using a set of rules derived from general property of the

transfer functions. It helps the designer to predict the

effects on the location of the closed-loop poles of varying

the gain value and adding open-loop poles or open-loop

zeros. In addition to its capability to describe the effect of

varying gain upon percent overshoot, settling time, and

peak time, its real power is its ability to solve problems

with higher order systems. It provides a graphical

representation of a system's stability such that the

designer can clearly see ranges of stability [1, 4].

The performance of a feedback control system depends

greatly on the location of the root of the characteristics

equation in the s-plane. Root locus technique investigates

the trajectories of the root of the closed loop system

characteristics equation (root loci) as a particular

parameter is being varied. The root locus plot is a

powerful and reliable tool in the analysis of feedback

control systems as presented by various authors [3, 5, 6].

The plot may become easier to sketch once the

fundamentals are well understood but it is

computationally challenging to generate automatically.

Using Microsoft Excel® VBA (Visual Basic Application) to

solve root locus in a common application that is readily

available to every student and instructor (teacher) is

highly essential [7, 8], it is not expensive in comparison

with MATLAB or any other control application software.

An Excel® VBA was developed in this work to generate

the root locus; this is one of the time domain analysis

through which a system design and performance can be

optimized [3].

Nigerian Journal of Technology (NIJOTECH)

Vol. 36, No. 1, January 2017, pp. 155 – 162

Copyright© Faculty of Engineering, University of Nigeria, Nsukka,

Print ISSN: 0331-8443, Electronic ISSN: 2467-8821

www.nijotech.com

http://dx.doi.org/10.4314/njt.v36i1.20

http://www.nijotech.com/
http://dx.doi.org/10.4314/njt.v36i1.1

AUTOMATIC GENERATION OF ROOT LOCUS PLOTS FOR LINEAR TIME INVARIANT SYSTEMS N. Durutoye & O. Ogunbiyi

Nigerian Journal of Technology Vol. 36, No. 1, January 2017 156

In designing any system, time always happen to be a

major constraint, therefore the use of complex graphical

and mathematical tools which required long hours of

manual implementation may not be appropriate. Manual

calculations for higher order system such as four (4) and

above may be quite unpleasant to solve [5, 9].

Another inspiration evolves from experience in that: due

to the nature of control engineering option in electrical

field, students are always running away from this option

owing to the fact that its theorems and principles looked

somehow abstract in nature. As a result, this computer

aided application in Excel® VBA will help the students to

perform a lot of control experiments on easily accessed

Microsoft office package.

The problem addressed in this paper is the development

of an Excel® VBA module that will facilitate the

generation of the Root Locus plots for teaching and

design purposes. The objectives are to; develop a suitable

iterative algorithm for generating Root Loci and realize

the resulting algorithm using the commonly available

Excel® VBA software. The extent of the work done does

not address either the case of computer controlled

systems or systems with time delay. In other words, only

strictly linear time invariant systems were considered.

Different algorithms were used in the past [5, 6, 9] but

some become intractable in some situation. This work

uses a search algorithm technique, which can be

embedded in most software.

2. SYSTEM DESIGN

The objective of this research is the development and

implementation of a computer program for the automatic

generation of root loci using Microsoft Excel® VBA

(Visual Basic Application). The algorithm employed for

this purpose, the organization and documentation of the

resultant program are discussed in this section.

Given a feedback control system shown in Figure 1, the

closed-loop transfer function ()of the system is given

as:

 ()
 ()

 ()

 ()

 () ()
 ()

Figure Feedback system with open loop transfer function

 () ()

The characteristic equation Q(s) for this closed-loop

system is obtained by setting the denominator of the

right-hand side of equation 1 to zero.

 () () () (2)

Considering a variable K in the open loop transfer

function () () such that.

 () ()
 ()

 ()
 ()

Where, () are the zeros and () are poles of the open

loop system and are polynomials of orders and

respectively, equation 2 can be rewritten as

 ()

 ()
 (a)

 () () (b)

The characteristic equation of a typical linear time

invariant system can be expressed as shown in equation

(5).

 ()
∏ (𝑠 − 𝑧𝑗)
𝑚
𝑗=1

𝑠𝑞 ∏ (𝑠 − 𝑝𝑖)
𝑛
𝑖=1

 (5)

In (5), is the root locus gain; () is the open loop

transfer function 𝑧𝑗 , 𝑗 , 2, . . . , is the set of finite

open loop zeros and 𝑝𝑖 , 𝑖 , 2, . . . , is the set of finite

open loop poles. Available algorithms for sketching this

root locus can be categorized as follows:

i. Direct Methods: These are the algorithms in which

various numerical schemes are used to determine

the roots of the polynomial as K is varied in some

prescribed manner. Since this algorithm is limited to

polynomials, they cannot handle systems with dead

time such as time delay systems.

ii Area Search Algorithms: These classes of algorithms

generate the root loci by grid-search techniques over

a specified area of the complex frequency - plane (s-

plane). The grid search method, in effect is used to

determine the points sanctifying the necessary and

sufficient conditions for root locus points. Any of the

angle or magnitude condition equation can serve as

the search criterion.

iii. Branch Following Algorithm: This method was first

presented by R.H. Ash and G.R. Ash in 1968. The

algorithm in this case often presume “a prior”

knowledge of a point on the locus of interest and use

the geometric and trigonometric asymptotes

properties of the locus at the given point to predict a

new point on the locus. An algorithm employed in

this research is based on Branch Following

Algorithm.

2.1 Sketching the Root Locus

Plot of root locus of a system in Excel VBA® was carried

out by following the algorithm below:

(i) Determination of the number of poles ()and the

number of zeros () of () ().

(ii) Determination of the location of the poles and the

number of zeros of () ().

𝐺(𝑠)

𝐺(𝑠)

𝑈(𝑠) 𝐶(𝑠)

-

+

AUTOMATIC GENERATION OF ROOT LOCUS PLOTS FOR LINEAR TIME INVARIANT SYSTEMS N. Durutoye & O. Ogunbiyi

Nigerian Journal of Technology Vol. 36, No. 1, January 2017 157

(iii) Determination of the number of branches. The

root locus will have a total of branches equal to the

number of poles in the open loop transfer function.

(iv) Loci of the real axis: The sections of the root locus

on the real axis of the complex plane are

determined by counting the total number of finite

poles and zeros of () (). to the right of the

points in question. For values of , points of

the root locus on the real axis lie to the left of an

odd number of finite poles and zeros.

(v) Determination of the asymptotes of the root loci.

For large distances from the origin in the s-plane,

the branches of a root locus approach a set of

asymptotes. These asymptotes emanate from a

point in the complex plane on the real axis called

the center of asymptotes given by

 −
∑ 𝑝𝑖
𝑛
𝑖=1 − ∑ 𝑧𝑗

𝑚
𝑗=1

 −
 ()

The angle of the asymptotes are determined as

𝜃 ±
 8 0(2𝑘)𝜋

 −
, 𝑘 , ,2, , … ()

Where 𝑝𝑖are the poles, 𝑧𝑗 are the zeros, is the number

of poles and the number of zeros.

(vi) Break-away and Break-in Points: The conventional

breakaway/break-in points are defined as the

points on the real-axis at which a root locus

branches leave (break away from) or enter (break

into) the real axis. The location of the breakaway

point can be determined by solving the following

equation for .

∑

(𝑝𝑖)

𝑛

𝑖=1

 ∑

(𝑧𝑗)

𝑚

𝑗=1

 (8)

A breakaway or break -in point exists if and only if two

singularities odd and even are of the same type or if such

a pair is complemented by a branch emanating from its

opposite kind from infinity. This clue paves a way to

logically program and greatly simplify the algorithm.

A logical procedure was incorporated into the algorithm

such that for every pair of singularities that exist a break

point, an 𝜀 . 2 is assigned to y-axis value and the

procedure iterate horizontally. If it converges, the point

on the x-axis at which it converges is taken as break-

away or break-in point, otherwise there is no break-away

or break-in point at that segment of the root locus.

(vii) Departure and Arrival Angles:

The departure angle of the root locus from a complex

pole is:

𝜃 8
0 (a)

and the arrival angle is:

𝜃 8
0 − (b)

(viii) Plotting and calibration of the root locus using the

angle condition and bisection method.

(a) Angle Condition: In this work, the technique used for

plotting the locus was based on the angle condition

expressed from the characteristic equation (5).From

the concepts of complex variables, the angle

condition can be expressed as equation ().

∑ 𝑟𝑔(𝑠 − 𝑧𝑚) 𝑟𝑔(𝑠 − 𝑝𝑛) −
𝑞𝜋

2
− (2𝑟)𝜋 ()

Where 𝑟 , , 2, . . . (− −) and 𝑞 is the system

type order.

The algorithm works in such a way that points in the s-

plane must be determined such that they satisfy the

angle condition. For an arbitrary point s in the complex

plane, let 𝑟𝑔{ ()}be an angle function defined relative

to the gain normalized open loop transfer function such:

∑ 𝑟𝑔{ ()} (2𝑟)𝜋
𝑞𝜋

2
 ()

 𝑟𝑔{ ()} ∑ 𝑟𝑔(𝑠 − 𝑧𝑚)

𝑀

𝑚=1

 ∑ 𝑟𝑔(𝑠 − 𝑝𝑛)

𝑁

𝑛=1

 (2)

Let exploratory point (test point)𝑠 𝑥 𝑗𝑦

 () (𝑥 𝑗𝑦) ()

Therefore, equation 2can be rewritten as;

 𝑟𝑔{ ()} ∑ 𝑡𝑎 −1 (
𝑦 − 𝑦𝑚
𝑥 − 𝑥𝑚

)

𝑀

𝑚=1

−∑𝑡𝑎 −1 (
𝑦 − 𝑦𝑛
𝑥 − 𝑥𝑛

) 𝜃

𝑁

𝑛=1

 ()

Where 𝑧𝑚 𝑥𝑚 𝑗𝑦𝑚 , 𝑓𝑜𝑟 ,2, ,𝑀 is the set of

finite open loop zeros.

𝑝𝑚 𝑥𝑛 𝑗𝑦𝑛 𝑓𝑜𝑟 ,2, ,⋯𝑁 is the set of finite

open loop poles.

Hence, a point𝑆0 lies on the root locus if and only if it

satisfies the angle condition (equation).

 (0) {∑ 𝑡𝑎 −1 (
𝑦 − 𝑦𝑚
𝑥 − 𝑥𝑚

)

𝑀

𝑚=1

−∑𝑡𝑎 −1 (
𝑦 − 𝑦𝑛
𝑥 − 𝑥𝑛

)

𝑁

𝑛=1

}

− (2𝑟)𝜋 𝜃 (5)

Equation (5) indicates that the calculation of legitimate

root loci points can be achieved by finding the zeros of

the angle function - a transcendental equation.

Many techniques may be used but the need to calculate

derivatives could limit the complexity of systems that can

be solved, so a derivative-free method is usually

preferred. As a result, in this work, the bisection method

was used.

A simple scheme for achieving the iterative process can

start with some 𝜃0 and then determine the

improvements,𝜃0 on the initial guess using the "bisection

method". In addition to the ability to determine suitable

converging iterates, the bisection method requires that at

start-up, two values (singularities) of the variable that

bracket the real value must be known. This implies that

at every stage of the computation, two points s and s2

must be available such that (1) 𝑎 𝑑 (2) < .

bisection method for the angle loci

AUTOMATIC GENERATION OF ROOT LOCUS PLOTS FOR LINEAR TIME INVARIANT SYSTEMS N. Durutoye & O. Ogunbiyi

Nigerian Journal of Technology Vol. 36, No. 1, January 2017 158

Let 𝑥 be the real and 𝑦 be the imaginary part of

function ()define for the real part of a point on the

locus, 𝑙𝑜 ≤ 𝑥 ≤ ℎ𝑖 𝑜𝑟 𝑙𝑜 ≤ 𝑥 ≤ ℎ𝑖 . “ 𝑙𝑜 ” and " ℎ𝑖 " are

interval search area which can be in coordinate of 𝑥 or

𝑦and are initialize by asymptotic line. In this interval,

if () (2𝑟)𝜋
𝑞𝜋

2
, correspondingly an exploratory

point that make (𝑥 𝑗𝑦) to equals (2𝑟)𝜋
𝑞𝜋

2
is

known as a closed loop pole ().

In order to implement the bisection method, a simple test

is needed, to see if function (𝑙𝑜 , 𝑦), has an argument

(angle) greater than𝜋 𝑜𝑟 (2𝑟)𝜋
𝑞𝜋

2
and if function

 (ℎ𝑖 , 𝑦), has an argument less than | 8 | or| ∗ 8 |then

that 𝑥the real part of the root (locus) exist in that

interval.

The process involved in the search and check can be

described by Figure , such that:

 { () () ∑ (𝑠 − 𝑝𝑛)

𝑁

𝑛=1

− ∑ (𝑠 − 𝑝𝑚)

𝑀

𝑚=1

 ()

 (𝑥 𝑗𝑦) (2𝑟)𝜋
𝑞𝜋

2
 ()

 (ℎ𝑖 𝑗𝑦) 𝜃1 𝜃2 𝜃3 (8)

 (ℎ𝑜 𝑗𝑦) 𝜃4 𝜃5 𝜃6 ()

2
(𝑙𝑜 ℎ𝑖) (2)

Surely the contribution of the arguments depends on the

part of the s-plane being considered. If one is iterating

horizontally, there will usually be two bounds depending

on how close to the real singularities and the asymptotes.

Figure 1: Angle measurements from open loop poles and

open loop zero to test point 𝑆 through bisectional
method.

A solution would simply use the asymptote for the

branch as one boundary and the other can then be

determined by actually trying small steps away from it

till the sign changes or else intelligently use the bounds

established by the singularities that originate the branch.

Once the interval has been established it is trivial to

determine the final best value. Consequently, an

important function is the subroutine which works for

each singularity and determines the argument of

𝑎𝑟𝑔{𝑠 − 𝑤𝑙} where 𝑤𝑙 is any of the 𝑁 𝑀 𝑞

singularities that define the open loop transfer function

 (𝑠) (𝑠).

 (ℎ𝑖 𝑗𝑦) ? (2)

The first step in the bisection method involves dividing

(bisecting) the interval 𝑙𝑜 ≤ 𝑥 ≤ ℎ𝑖 into two

subintervals 𝑙𝑜 < 𝑥 < and 𝑙𝑜 < 𝑥 < ℎ𝑖 where

1

2
(𝑙𝑜 ℎ𝑖) the subinterval to be considered next is

obtained by replacing 𝑙𝑜 by if (𝑗𝑦)

|𝜋|or(2ℎ)𝜋
𝑞𝜋

2
 because in this case (𝑗𝑦) |𝜋|

or (2ℎ)𝜋
𝑞𝜋

2
 but less than (𝑙𝑜 𝑗𝑦). Conversely,

if (𝑗𝑦) < | 𝜋| then subinterval to be considered is

obtained by replacing ℎ𝑖 by because in this

case (𝑗𝑦) < |𝜋| or (2ℎ)𝜋
𝑞𝜋

2
but greater

than (𝑗𝑦), therefore, the next subinterval will exist

as 𝑙𝑜 < 𝑥 < and so this interval must contain a

root(𝑥, 𝑦). Note that 𝑙𝑜and ℎ𝑖 are taking to be boundary

under which root of the function are bracketed and is

determine by asymptotic line. The task of finding the

root has now been refined from considering the interval

𝑙𝑜 ≤ 𝑥 ≤ and replaced by the task of finding the

unknown coordinate part of the root in an interval half

the size until a true value is found. Once 𝑥 value is found,

𝑦value will be step up or step down by a constant value

base on the form that characteristic equation takes.

2.2 Root Locus Performance Parameters

i. Gain Margin: This is defined as the factor by which

the design value of K must by multiplied before the

closed loop system becomes unstable, i.e.

𝑀

 (22)

Where is value of system parameter on the

imaginary axis of s-plane and is the design value of

system parameter .

ii. Phase Margin: This is the sum of 180o and the phase

angle of the open loop transfer function at the point

where the magnitude of the open loop transfer

function is equal to unity given by;

 𝑀 𝑀 8
0 (𝑗) (2)

 . SOFTWARE DESIGN

A modular approach was employed at the design stage of

this control toolbox, the first step taken was to

decompose the whole program into a mutually exclusive

set of procedures (subroutines or functions) such that

the combined total of all with the main body of the

program can fully implement the process described in

the outline shown below. Consequently, each procedure

was then developed separately before final integration to

AUTOMATIC GENERATION OF ROOT LOCUS PLOTS FOR LINEAR TIME INVARIANT SYSTEMS N. Durutoye & O. Ogunbiyi

Nigerian Journal of Technology Vol. 36, No. 1, January 2017 159

form a whole module as shown in the modular plan of

the whole system. Each Procedure in this case is referred

to either as a subroutine or a function in an Excel(R) VBA

application.

Excel VBA Root Locus Toolbox is a user friendly design

toolbox; it accepts data through some cells and display

information in some, the execution of a program is

activated through a “Compute root-locus”. The interface

can be categorized into two; input and output cells. In

figure 2, point “A” is initiated with spin button which

inputted numbers of both poles and zeros in a transfer

function of a given system, the number of singularities in

transfer function can be increment or decrement by

clicking on these buttons. Point “B” comprises of three

rows, each three rows for both pole and zero, each rows

is caption with “Real part , imaginary part , and

symbol”, real part are the real coefficient of the

singularity, imaginary part are the imaginary coefficient

of the singularity while symbol are initialized with “𝑝” for

poles and “𝑧” for zeros. Point “ ” are used to initialize the

boundary of generated chart, that is, extend of the size of

the chart, this point comprises of four rows and value

must be inputted there. Point “𝐷” is initiated with

command button and mark the execution of the program.

Point “𝐸” only display the singularities inputted in point

“ ” in descending order. Point “ ” is a series of cells that

display the generated root locus. Point “ ” is a chat that

is plotted with the generated roots.

 . SIMULATIONS AND RESULTS

Implementation of the algorithm was carried out using

Microsoft Excel® VBA. It has a number of control buttons

that facilitate the adjustment of the system parameters.

The numbers of poles and zeros can be entered directly

or by means of two spin buttons. System type order can

similarly be adjusted or entered using a corresponding

spin button. These completely determine the character of

the open loop system. Initiation of the root-locus

calculation is carried out by clicking on the command

button designated as “Compute root-locus”. The final

realization of the root-locus tool has an opening window

as shown in Figure 2.

 . Tests of the Root-Locus Generator

The ability to generate the root-loci for a given system

depends on the structure and relative placement of the

poles and zeros of the system. Three broad categories can

be recognized while a fourth is a combination of the

other types. The first category includes different types of

systems with all poles and no zeros. The next class has a

combination of poles and zeros. This has two sub-classes

where the difference between the number of poles and

zeros are either , and greater than . In the first two

sub-classes there may be closed loci depending on the

location of the singularities on the real axis. These are

tested in the following experiments. The computation

time is observed to depend on the following parameter:

The size of the system: that is the number of singularities

(poles and zeros) of the system; computation time are

more for complex transfer function. The step size, “∂”

(the distance between each point): the bisection iteration

converges faster for larger values of ∂ and this reduces

number of point generated.

Figure 2: GUI Interface on Microsoft Excel

AUTOMATIC GENERATION OF ROOT LOCUS PLOTS FOR LINEAR TIME INVARIANT SYSTEMS N. Durutoye & O. Ogunbiyi

Nigerian Journal of Technology Vol. 36, No. 1, January 2017 160

The number of branches: from the tested transfer

function the number of branches is seen to be a function

of time, the high the number of branches the high the

execution time.

The root-locus tool determines its different branches

such that whenever a transfer function is defined and the

command button clicked, it first determines all the

branches on the real axis where they exist, then

vectoring to determine either break-in or break-away

points as the case may be between the odd and even

singularities on the real axis. The break branches are

then determined using the asymptotes as bounds for

trials and the roots are extracted progressively for

increasing values of the imaginary part of the roots.

The simulations presented here reflect a progressive

increase in complexity where first all the singularities are

poles, then a progression of zeros are added to the

transfer function with the location of the zeros being

modified to change from the trivial when the successive

odd and even singularities are of opposite type (trivially

no break-away or break-in points) to more complex

cases where there may be both break-away and break-in

points. The simulations for different systems are as

presented in Figures 3 to 12.

The normalized transfer function “ ()2” has two poles

and one zero. The iteration started by pairing the

singularities into odd and even number from right to left

for real singularities. It checked if both odd and even

singularities are of the same type, in this case, the first

set of odd and even singularities are of different type

(the first singularity pole p = -1 and the second

singularity zero z = -2). It is certain that there will not be

a break branch and path of locus along the real axis

cannot exceed the range of paired singularities (odd and

even singularities) therefore, a small decrement say, step

size “∂ “ . is deducted from most positive

singularity until it reaches the second singularity, at each

deduction, test point angle is checked to confirm if it

equal to corresponding angle conduction (see equation 3

and 4), if it equals, the corresponding test point is taken

as root for that point. The first segment of the root

terminated immediately step size “∂” decrement equal to

the second root of that paired singularity. The iteration

proceeds to the next paired root but in this case, it is only

one root that is left, since only remaining root is real root

with no imaginary, it follows the same iteration process

as observe in first paired root. In this case the search root

tends to infinity and intentionally truncated once “∂”

decrement equal chart boundary along negative x-axis.

The normalized transfer function “ ()3” has two poles

and one zero like “ ()2” ”but the position of the zero in

this case is different , the iteration started by pairing the

singularities, it checks if paired singularities are of the

same type, in this case the singularities are of the same

type (the first is pole p = -1 and the second is pole p = -

3), it is certain that there will be a break branch and path

of locus along the real axis cannot exceed the range of

paired singularities therefore, a small decrement say,

step size “∂ “ . were deducted from most positive

singularity until it reaches the second singularity, at each

decremented step, test point angle is compare with

corresponding angle conduction, if the compared test

point is valid, the corresponding test point is taking as

root for that point. The breaking point is determine by

changing a step size “∂ “ in real axis to imaginary axis

from y to a step size “∂ “ . for a start and iterate

horizontally for every increment. The program has a

logical operation to change or determine path of search

either by vertical or horizontal iteration especially for

function that has sphere topology.

The normalized transfer function “ ()2” has two poles

and one zero. The iteration started by pairing the

singularities into odd and even number from right to left

for real singularities. It checked if both odd and even

singularities are of the same type, in this case, the first

set of odd and even singularities are of different type

(the first singularity pole p = -1 and the second

singularity zero z = -2). The normalized transfer function

“ ()2” has two poles and one zero. The iteration started

by pairing the singularities into odd and even number

from right to left for real singularities. It checked if both

odd and even singularities are of the same type, in this

case, the first set of odd and even singularities are of

different type (the first singularity pole p = -1 and the

second singularity zero z = -2).

Figure 3: Root-locus plot for ()1

1

(1)(3)

Figure 4: Root-locus plot for ()2

(2)

(1)(3)

AUTOMATIC GENERATION OF ROOT LOCUS PLOTS FOR LINEAR TIME INVARIANT SYSTEMS N. Durutoye & O. Ogunbiyi

Nigerian Journal of Technology Vol. 36, No. 1, January 2017 161

It is certain that there will not be a break branch and

path of locus along the real axis cannot exceed the range

of paired singularities (odd and even singularities)

therefore, a small decrement say, step size “∂ “ . is

deducted from most positive singularity until it reaches

the second singularity, at each deduction, test point angle

is checked to confirm if it equal to corresponding angle

conduction (see equation 3 and 4), if it equals, the

corresponding test point is taken as root for that point.

The first segment of the root terminated immediately

step size “∂” decrement equal to the second root of that

paired singularity. The iteration proceeds to the next

paired root but in this case, it is only one root that is left,

since only remaining root is real root with no imaginary,

it follows the same iteration process as observe in first

paired root. In this case the search root tends to infinity

and intentionally truncated once “∂” decrement equal

chart boundary along negative x-axis.

The normalized transfer function “ ()3” has two poles

and one zero like “ ()2” ”but the position of the zero in

this case is different , the iteration started by pairing the

singularities, it checks if paired singularities are of the

same type, in this case the singularities are of the same

type (the first is pole p = -1 and the second is pole p = -

3), it is certain that there will be a break branch and path

of locus along the real axis cannot exceed the range of

paired singularities therefore, a small decrement say,

step size “∂ “ . were deducted from most positive

singularity until it reaches the second singularity, at each

decremented step, test point angle is compare with

corresponding angle conduction, if the compared test

point is valid, the corresponding test point is taking as

root for that point. The breaking point is determine by

changing a step size “∂ “ in real axis to imaginary axis

from y to a step size “∂ “ . for a start and iterate

horizontally for every increment. The program has a

logical operation to change or determine path of search

either by vertical or horizontal iteration especially for

function that has sphere topology.

5. CONCLUSION

Excel VBA Root-locus generator was tested using

systems of different transfer function. Clearly the degree

of complexity depends on the structure of the transfer

function. For example, those with no breakaway points

are generally simpler to generate then close loop poles

than those with breakaway points. While the systems

tried in this work are not exhaustive of all possibilities, it

can be seen that the procedure can solve a reasonable

number of systems that one may encounter in real life.

This is a very welcome result since it is now possible for

a designer, instructor or student to explore the root-

locus characteristics of many linear time invariant

systems using nothing more proprietary than the

ubiquitous EXCEL with its VBA environment.

Figure 5: Root-locus plot for ()3

(5)

(1)(3)

Figure 6: Root-locus plot for ()4

1

 (3)(5)

Figure 7: Root-locus plot for ()5

(2)

(1)(3)(5)

Figure 8: Root-locus plot for ()6

(4)

 2(3)

AUTOMATIC GENERATION OF ROOT LOCUS PLOTS FOR LINEAR TIME INVARIANT SYSTEMS N. Durutoye & O. Ogunbiyi

Nigerian Journal of Technology Vol. 36, No. 1, January 2017 162

Figure 9: Root-locus plot for ()

1

 (3 2𝑗)(3−2𝑗)(5)

Figure 10: Root-locus plot for ()
(3)

 2(4)

Figure 11: Root-locus plot for ()

(5)

 (2)(4)(3 2𝑗)(3−2𝑗)

Figure 12: Root-locus plot for ()10
(2)(3)

 (1)(5)

Since this was essentially the objective of this work, it

can be concluded that it has been successfully resolved. It

is possible to generate root-locus plots for a sufficiently

wide range of system types and use this for teaching,

laboratory and design purposes.

6 RECOMMENDATIONS

The implementation presented here depends on search

process which is not general but attempts to identify all

possible types of loci for specific cases. This is a

limitation which should be addressed by a subsequent

researcher so that the resulting algorithm can be more

compact and efficient. It is recommended that the

algorithm be made more efficient by modifying its

branching logic and using a more compact approach.

7. REFERENCES

[1] K, Ogata, Modern Control Engineering, 3rd ed., Prentice
Hall, Upper –Saddle River, NJ, 1997.

[2] A. Grace, A. J. Lamb, J. N. little, and C.M. Thompson, Control
System Toolbox for use with MATLAB, User guide, The
Math works, Inc , Natick, Mass, 1992.

[3] R.C. Dorf and R.H. Bishop, Modern Control Systems, 11th
ed., Prentice Hall, 2008.

[4] S. N. Norman, Control System Engineering, 3rd ed., John
Wiley & Sons, New York, USA, 2000.

[5] J. F. Opadiji, Development of Software for Graphical
Analysis of Continuous-Time Control Systems, M.sc, Thesis,
University of Ilorin. 2003.

[6] J. J. Blakley, "An expert system root locus plotter", INT J EL
EN, vol. 36, no. 4, pp.298-310. 1999.

[7] L. M. Robert, An Introduction to VBA in Excel, 2nd ed,
Kellog School, Northwestern University, 2000.

[8] D. Birnbaum, Microsoft Excel VBA Programming, 2nd ed.,
Thomson Course Technology PTR, 2005.

[9] K. C. Okafor, Automatic Generation and Plots of Root Loci.
B.sc, Thesis, Ahmadu Bello University, Zaria., 1981,

[10] J. Moscinski, and Z. Ogonowski, Advance Control with
MATLAB and SIMULAINK , Ellis Horwood, Hemel
Hempstead, UK, 1995.

[11] S.D. Conte and C. de Boor, Elementary Numerical Analysis:
An Algorithmic Approach, 3rd ed., McGraw-Hill, New York
,1981

[12] R. S. Burn, Advance Control Engineering, 1st ed.,
Butterworth-Heinemann, 2001.

[13] G. T. John, Automatic Feedback Control System Synthesis,
McGraw-Hill book company, Inc, USA, 1955.

[14] P. N. Paraskevopoulos, Modern control Engineering, 1st ed.,
Marcel Dekker Inc, New York USA, 2002.

[15] F. Raven, Automatic control Engineering, Second edition,
McGraw-Hill, New York, 1990.

[16] J. G. Walter and L. V. Thompson, Modern Control Systems
Analysis and Design, John Wiley and Son Inc. USA, 1993.

http://serials.unibo.it/cgi-ser/start/en/spogli/df-s.tcl?prog_art=6722604&language=ENGLISH&view=articoli
http://serials.unibo.it/cgi-ser/start/en/spogli/df-s.tcl?prog_art=6722604&language=ENGLISH&view=articoli

