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ABSTRACT 

Plates are important structural elements used to model bridge decks, retaining walls, floor slabs, spacecraft panels, 

aerospace structures, and ship hulls amongst. Plates have been modelled using three dimensional elasticity theory, 

Reissner’s theory, Kirchhoff theory, Shimpi’s theory, Von Karman’s theory, etc. The resulting plate equations have 

also been solved using classical and numerical techniques.In this research, the Galerkin-Vlasov variational method 

was used to present a general formulation of the Kirchhoff plate problem with simply supported edges and under 

distributed loads. The problem was then solved to obtain the displacements, and the bending moments in a 

Kirchhoff plate with simply supported edges and under uniform load. Maximum values of the displacement and the 

bending moments were found to occur at the plate center. The Galerkin Vlasov solutions for a rectangular simply 

supported Kirchhoff plate carrying uniform load was found to be exactly identical with the Navier double 

trigonometric series solution. 

 

Keywords: Kirchhoff Plate, Reissner Plate, Galerkin-Vlasov method, Navier double trigonometric series method, 

uniform load. 

 

1. INTRODUCTION 

Plates are initially flat structural members bounded by 

two parallel planes, called faces and an edge[1]. Plates 

have been considered as two dimensional extensions 

of beams. This two dimensional structural action of 

plates results in lighter structures, and this offers 

immense benefits. Plates can be submitted to static 

loads, dynamic or transient (time dependent) loads or 

in plane loads, resulting in three types of analysis 

namely – static or elasticity analysis, dynamic analysis 

and stability analysis. 

The focus of this paper is the static elasticity analysis 

of plates since the loads are considered to be static. 

The aims and objectives of the elasticity analysis of 

plates are: 

(i)  the determination of deflection due to applied 

static loads and the critical values of the 

deflection 

(ii) the determination of the internal force functions 

such as the bending moments, and their critical 

values. 

Plates have been classified based on their shapes as 

rectangular, triangular, circular, skew, square, 

elliptical etc plates, and based on their material 

properties as isotropic, anisotropic  or orthotropic, 

homogeneous, heterogeneous, etc. Plates have also 

been classified based in their thicknesses as thin 

plates, moderately thick plates and thick plates [2-4]. 

Plates are used in bridge decks, retaining walls, ship 

decks, hulls, aircraft and spacecraft panels, and are 

thus important structural forms in civil, mechanical, 

aerospace, and naval engineering.The focus of this 

paper shall be on rectangular thin plates made of 

homogeneous, isotropic material. 

 

1.1 Justification of the Galerkin-Vlasov’s Method 

The Galerkin-Vlasov method is proposed in this work 

due to the merits of the method which include: 
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(i) Due to the relative ease in selecting shape 

functions for almost all boundary conditions 

encountered in practice, Galerkin-Vlasov method 

can be considered more universal than the other 

variational methods like Ritz Variational Method, 

Galerkin Variational Method and the Kantorovich 

Variational method [5] 

(ii) Further simplification results in numerical 

computation in the method due to the quasi-

orthogonality of the eigen functions of the 

vibrating beam used as the basis function in the 

method [5]. 

(iii) The problem is reduced to the evaluation of the 

integrals of simple functions with quasi-

orthogonal properties. 

(iv) The choice of appropriate basis functions simply 

reduces to a matter of choosing beam functions 

with identical boundary conditions as those of 

the plate. 

(v) The accuracy of the method is excellent, despite 

the relative ease of the numerical computation 

involved [5]. 

(vi) The method has considerable merits in the 

manual solutions of plate flexure problems [5]. 

However, the method has the disadvantage that as a 

variational method, it is not suited for automated 

computer applications [5]. 

 

1.2 Research Problem 

The research problem considered in this paper is 

stated as follows: 

Given a rectangular thin plate made of homogeneous, 

isotropic material, we wish to apply the Galerkin-

Vlasov variational technique to solve the elasticity 

problem of finding the deflection and the internal 

bending moments, and their critical values for simply 

supported edges and uniformly distributed static 

loads over the entire surface of the plate. 

Mathematically, the research problem is to present a 

Galerkin-Vlasov variational formulation of the 

Kirchhoff plate problem given by Equation (1)for 

rectangular plates with simply supported edges. 

      ( ,  )    ( ,  )                                                 ( ) 

where  ( ,  ) is the transverse displacement of the 

plate middle surface, 

  ( ,  ) is the transverse load distribution on the 

plate, 

D is the flexural rigidity of the plate and 2 is the 

Laplacian operator. 

22 is the biharmonic  operator.  

 

1.3 Research Aims and Objectives 

The aims and objectives of this study include: 

(i) to propose a Galerkin-Vlasov variational 

formulation of the Kirchhoff plate problem for 

static loads. 

(ii) to solve the Galerkin-Vlasov variational problem 

and find the deflection function for Kirchhoff 

plates with simply supported edges and under 

uniform loads. 

(iii) to use the moment – displacement relations for 

Kirchhoff plates to find the bending moment 

functions, and their critical values. 

(iv) to compare the results of the Galerkin-Vlasov 

solution with the results from literature sources. 

 

2. LITERATURE REVIEW 

Several types of plate theories exist. The basic idea of 

all plate theories is to simplify the three dimensional 

problem of plates described by the theory of elasticity 

to two dimensional approximations; usually done by 

integrating out a dimension. 

Accordingly, a review of existing literature shows the 

following plate theories: thin plate theories, 

moderately thick plate theories and thick plate 

theories [1, 2, 3]. We present a review of the following 

plate theories: Exact plate theory, Reissner’s sixth 

order plate theory, Von Karman plate theory, Mindlin 

plate theory, Shimpi’s refined plate theory and 

Kirchhoff plate theory. 

 

2.1 Exact Theory of Plates 

This is defined by the three dimensional elasticity 

equation of plates. The exact theory of plates is a three 

dimensional presentation of the plate flexure problem 

based on a simultaneous satisfaction of the 

diffferential equations of equilibrium, the kinematic 

equations and the material constitutive laws [5],[1]. 

Th.e governing equations are a system of fifteen 

differential equations, which need to be solved subject 

to the conditions of restraint and the loading. Three 

approaches are used to solve the resulting equations, 

namely – stress based approach, displacement based 

approach and mixed approach. The resulting 

governing equations are complicated and difficult to 

solve in analytical form [1], [5]. 

 

2.2 Reissner’s Sixth Order Plate Theory 

Reissner’s stress based theory of plate presents an 

integration prblem of sixth order. Reissner’s plate 

theory for isotropic plates is a system of three 

simultaneous differential equations. [5] [6].In the 
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Reissner’s plate theory, the distributions of stress 

components through the plate thickness are assumed 

to be: 
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In (2), xx, yy, zz, are the normal stresses and xy, yz, 

xz are the shear stresses, h is the plate thickness, Mxx, 

Myy are the bending moment distributions, Qx, Qy are 

shear forces distributions and z is the position of an 

arbitrary point on the plate thickness. 

Thus, the assumed distribution of in plane stresses are 

linear, the transverse shear stresses are quadratic and 

the transverse normal stress is cubic in the plate 

thickness direction. These stress components satisfy 

the stress equilibrium equations of three dimensional 

elasticity theory. The transverse displacement of 

Reissner’s theory is a function of the three space 

coordinates of the plate, complicating its 

determination. In order to simplify the governing 

equations, Reissner introduced the thickness – 

integrated transvese displacement ( , )w x y  as: 
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Reissner applied the Castigliano’s theorem of least 

work to the energy functional of the plate to obtain the 

following three simultaenous differential equations 

[5]: 
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The bending and twisting moments are given by 
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The Reissner’s plate theory is an extension of the 

Kirchhoff – Love plate theory, accounting for first 

order shear effects. Reissner plate theory gives stress 

and strain fields that are consistent with elasticity 

solutions; and are applicable to moderately thick 

plates. However, the governing equations involve 

complicated systems of partial differential equations 

for which satisfactory solutions are not found for 

complex loading and restraint conditions [5], [1], [2]. 

 

2.3 Von Karman Plate Theory 

The Von Karman large deflection plate theory yields 

the system of equilibrium and compatiblity equation 

given by 
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where L is a differential generator defined as 
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In (12),  ( ,  ) is the transverse displacement of the 

plate, pz  is the transverse load distribution, D is the 

flexural rigidity of the plate, E is the modulus of 

elasticity and  is the Airy’s stress function. 

Von Karman plate equations are coupled nonlinear 

partial differential equations of the fourth order.Von 

Karman’s large deflection plate theory considers the 

longitudinal displacement of the middle plane caused 

by the deflection and hence the middle plane stress 

and strain. The Von Karman’s equations cannot; in 

general be solved directly in analytical form, except 

using some approximate methods [3, 5]. 

 

2.4 Mindlin Plate Theory 

The Mindlin plate theory, which is a first order shear 

deformable theory, does not require that the cross-

section remains orthogonal to the middle surface 

which is the neutral surface after deformation [7]. 

Therefore,   0xz   and      . The theory assumes 

that the state of deformation is described by the 

transverse displacements in the z direction of the 

middle surface  ( ,  ) at z = 0 and the notations x 

and y of the middle surface [8]. The displacement 

field at a generic point of the plate are   

 ( ,  ,    )   ( ,  ),  ( ,  ,  )     ( ,  )and   

   ( ,  ) and  where u, v and w are the displacement 

[8, 9] components in the x, y and z directions 

respectively. 

The governing equations of isotropic Mindlin plaes 

are: 
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The shear strain and shear stress variation across the 

plate thickness is considered in the Mindlin plate 

theory. However the assumption of constant shear 

strain variation over the plate thickness violates the 

predictions of structural theory since the shear stress 

is known to be parabolic over the plate thickness. This 

discrepancy is corrected using a shear correction 

factor k. Also the Mindlin plate theory contradicts the 

shear – free boundary condition on the plate surfaces. 

The governing partial differential equations are 

difficult to solve mathematically even for simple loads 

and restaint conditions.Mindlin plate theory yields a 

system of three differential equations in terms of 

three unknown displacement parameters for isotropic 

plates. 

 

2.5 Shimpi’s Refined Plate Theory [Shimpi’s (RPT)] 

Shimpi [10] developed a new refined plate theory and 

its two variants, variationally consistent variant and 

variational inconsistent variant. Shimpi’s variationally 

consistent RPT equations are: 

     
 

 
                                                                            (  ) 

     
   

 (   )

 

 
                                                         (  ) 

where wb is the displacement due to bending, ws is the 

displacement due to shear, q is the transverse load, D 

is the flexural rigidity  is the Poisson’s ratio and h is 

the plate thickness. 

Shimpi’s variationally inconsistent plate equations 

are: 
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2.6 Kirchhoff Plate Theory 

The Kirchhoff plate theory assumes as follows: 

(i) the plate thickness is small, compared to the 

other dimensions, the normal stress is in the 

plane of the plate. 

(ii) the deflection is smallcompared to the plate 

thickness. 

(iii) the middle surface is free from deformation. 

(iv) normals to the middle surface remain normal to 

the middle surface during and after deformation. 

The equilibrium equation for Kirchhoff plate is given 

by, the fourth order partial differential equation, 

Equation (1).Literature review shows that plates are 

analysed for elastic, dynamic and stability behaviour, 

using Navier’s double trigonometric series method. 

Other methods used for the analysis of plates 

include:Levy Single Trigonometric Series, Finite 

Difference, Improved Finite Difference, Boundary 

Element, Finite Element, Finite Strip, Weighted 

Residual,Polynomial Splines, Differential Quadrature 

andEnergy Minimization. 

 

3. RESEARCH METHODOLOGY 

3.1 Galerkin-Vlasov Method 

This research uses the Galerkin-Vlasov method to 

solve the Kirchhoff plate bending problem given by 

Equation (1).    

In variational form,Equation (1) can be written as: 

∬(       p) 

 

 

                                     (  ) 

where w is a small virtual displacement 

The Galerkin-Vlasov method assumes that the plate 

deflection and the load are expanded using the 

orthorgonal functionsXm(x) and Yn(y) of a freely 

vibrating beam that is identical with the ends of the 

plate. 

Thus, 

 ( ,  )  ∑∑ 

 

 

 

 

 

     ( )  ( ) ,  

  ,  ,                                                (  ) 

where wmn are the unknown parameters of the 

displacement function. 

 ( ,  )  ∑∑ 

 

 

 

 

 

     ( )  ( )                              (  ) 

where pmn are the parameters of the load distribution. 

Then the variational Kirchhoff plate problem, using 

the Galerkin-Vlasov method becomes, in general, 

∬  [ (     ∑ ∑     ( )  ( ))

 ∑ ∑      ( )  ( )]  ( )               (  ) 

wmn and pmn are parameters of the displacement 

function ( , )w x y and the transverse load distribution 

p(x, y) respectively, and since they don’t depend upon 

the space variables, they could be factored out of the 

double integration in Equation (23) to obtain: 
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Since Xm and Yn are orthogonal functions, the 

integrations simplify to 

 ∑ ∑    ∬ 
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Hence,the solution for wmn could be presented in 

compact form as: 

    
      
     

                                                                (  ) 

where  Imn and Imn* are symbols defined to represent 

the double integration problems in Equation (25). 

Thus: 
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4. GALERKIN – VLASOV SOLUTION 

We define the coordinate system of the plate as shown 

in Fig. 1. 

 

 
Fig. 1 Simply supported rectangular Kirchhoff plate 

under uniform load 
 

The Kirchhoff plate equation is 

   ( ,  )  
  ( ,  )

 
                                            (  ) 

In (29) pz(x,y) is the distributed transverse load, D is 

the flexural rigidity of the plate w(x,y) is the 

transverse displacement of the  plate middle surface. 

For simply supported edges, the boundary conditions 

are: 

 (   ,  )   (   ,  )           

 (    )   ( ,    )   ,       

   (   ,  )     (   ,  )         

     ( ,    )   ( ,    )                             (  )  

The Vlasov method uses the eigen functions of 

vibrating beams with identical end restraint 

conditions as the plate. 

The equation of free vibration of uniform prismatic 

Bernoulli beams is 

   ( ,  )

   
  

 ̅

  

   ( ,  )

   
                                     (  ) 

where  ̅ is the mass per unit length, w(x, t) is the 

lateral deflection, E is the Young’s modulus of 

elasticity and I is the moment of inertia. 

For harmonic response 

 ( ,  )   ( ) sin  t                                                   (  ) 

where wn is the natural frequency, X(x) is the shape 

function of the beam. 

then we obtainby substitution of Equation (32) into 

Equation (31), we obtain: 

   ( )  
 ̅  

 

  
 ( )  

  

  
 ( )                                (  ) 

where  is the shape parameter andl is the span of the 

beam. 

The solution of Equation (33) for simply supported 

ends is 

  ( )  sin
   

 
,    ,  , ,                          (  ) 

Similarly, in the y direction, 

  ( )  sin
   

 
,     ,  , ,                          (  ) 

Hence, by the Galerkin – Vlasov method, the 

displacement function is chosen as: 

 ( ,  )  ∑∑     ( )  ( )

 

 

 

 

 

where Xm(x) and Yn(y), the basis or shape functions 

are the eigen functions of simply supported beams in 

the x and y coordinate directions, wmn are generalised 

coordinates. 

Hence the trial displacement function is: 

 ( ,  )   ∑∑   

 

 

 

 

sin
   

 
sin
   

 
  ,  

  ,  , ,                                        (  ) 

The variational form of the Kirchoff plate equation, by 

the Galerkin-Vlasov method becomes: 

∬  

 

 

[  (∑∑   sin
   

 
sin
   

 
)

 
 

 
∑ ∑   sin

   

 
sin
   

 
]

 sin 
   

 
sin
   

 
              (  ) 

Factoring out the wmn and pmn terms from the double 

integration problem in Equation (37) we obtain: 
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Evaluating the biharmonic operation in the right hand 

side of equation (38) we obtain: 
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The vibrating simply supported beam function 
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s are orthogonal functions. Hence for 

mr, ns, the integrals all vanish and are non 

vanishing when m = r, n = s. Therefore, the Galerkin-

Vlasov variational equation simplifies to: 
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pmn are the Fourier series coefficients of the load 

function. For uniformly distributed loads of intensity 

p0, 
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Hence for uniformly distributed loads, 
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4.1 Maximum Deflection 

The maximum deflection occurs at the plate center, 

and is obtained as: 
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4.2 Bending Moment Distributions 

The bending moment distributions are found from the 

moment displacement relations: 

      (        )                                         (  ) 
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At the center of the plate, the bending moments are 
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The Galerkin-Vlasov result for wmax, Mxx and Myy 

obtained at the center of uniformly loaded Kirchhoff 

plate for various aspect ratios of the plate are 

tabulated in Table 1. 

 

5. DISCUSSION OF RESULTS AND CONCLUSION 

In this work, the Galerkin-Vlasov variational method 

has been used to solve the problem of bending of 
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rectangular Kirchhoff plate with simply supported 

edges and under uniformly distributed load over  the 

entire plate region. Orthogonal basis functions which 

were the beam vibration modal shape functions were 

used to describe the displacement shape functions of 

the plate, yielding considerable simplifications in the 

evaluation of the integration problem. 

 
Table 1:Galerkin-Vlasov solutions for maximum 

deflection and maximum bending moments in SSSS 
Kirchhoff Plates under uniform load on the entire plate 

region      ,      ;        
   

 

   
,  

            
 ,         

   
 

 
,             

  

b/a 1 2 3 4 
1 0.0443 0.0477 0.0479 4.062  103 

1.2 0.0616 0.0626 0.0501 5.641  103 
1.4 0.0770 0.0753 0.0506 7.07  103 
1.5  0.0812  7.724  103 
1.6 0.0906 0.0862 0.0493 8.293  103 
1.8 0.1017 0.0948 0.0479 9.313  103 
2 0.1106 0.1017 0.0404 10.129  103 
3 0.1336 0.1189 0.0404 12.233  103 
4 0.1400 0.1235 0.0384 12.819  103 
5  0.1246 0.03775 12.971  103 
 0.1422 0.1250 0.0375 13.021  103 

 

For simply supported edges, the general Galerkin 

Vlasov solution is presented as Equantion (26). The 

displacement function for a simply supported 

rectangular Kirchhoff plate was found in this work to 

be exactly identical with the Navier solution, and is 

presented in Equation (45). 

The displacement function is found to be a rapidly 

convergent series of infinite terms and a few terms of 

the series gives satisfactory results for the maximum 

deflection which was found to occur at the plate 

center.Similarly, the bending moment functions were 

obtained by using the moment – displacement 

equations, and the maximum bending moments were 

found to occur at the centre of the plate. The bending 

moment distributions and the maximum values about 

the x and y coordinate axes were found to be given by 

Equations (50) – (53). 

The deflections and bending moments were evaluated 

at different aspect ratios of the plate and the variation 

presented in Table 1. The Galerkin-Vlasov solutions 

for the variation of deflections and bending moments 

in simply supported rectangular Kirchhoff plates 

under uniformly distributed loads are exactly identical 

 ith the solutions obtained using the Navier’s double 

trigonometric series method. The Galerkin-Vlasov 

solutions for maximum deflection and maximum 

bending moment for various plate aspect ratios as 

presented in Table 1 agree with classical solutions in 

the technical literature. 
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