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ABSTRACT  

The traditional method of dynamic analysis of tall rigid frames assumes the shear 

frame model. Models that allow joint rotations with/without the inclusion of the column 

axial loads give improved results but pose much more computational difficulty. In this 

work a computer program Natfrequency that determines the dynamic stiffness matrix of 

tall frames and solves the eigenvalue problem when modeled as a shear frame and 

when joint rotations with/without the inclusion of the column axial loads was 

developed.  

Results obtained using Natfrequency were in total agreement with those obtained 

manually and were obtained in seconds. It is recommended that with tall buildings 

becoming less stiff and more susceptible to dynamic disturbances, that models, which 

allow joint rotations with/without the inclusion of the columns' axial loads, be used for 

their analysis.  

 

INTRODUCTION.  

In spite of the 2001 bombing of the d Trade 

Centre the demand for tall buildings has not 

abated. Many high-rise buildings have since 

been completed or nearing completion. 

Notable examples [1] include The Tapei 101 

storey building (the world's tallest building), 

was completed in 2004, the 88- story 

International finance centre, Hong 

(completed in 2003) and the 60 storey 

Wuham International Securities. Buildings 

(under construction). Even in conservative 

United Kingdom, tall buildings seem to be 

enjoying popularity unlike anything seen 

previously [2] Tall buildings are subjected to 

dynamic force which induce vibration in the 

buildings. 

Prerequisite to the design of such a structure 

is a good insight into its vibration motions 

and, in particular, the natural frequency, w. 

The traditional method of dynamic analysis 

of tall frames assumes the shear frame model 

in which the horizontal members are 

assumed to be of infinite rigidity when 

compared to the columns. Its major 

advantage is its simplicity. With modern tall 

buildings becoming more flexible [3] the 

shear frame model may not always be 

justified. It has, however, been shown [4] 

that models which permit joint rotations 

with/without the inclusion of the columns 

axial loads give improved results. Such 

models pose great computational difficulty 

and can only be analyzed using computers. 

In this work a computer program that 

determines the natural frequencies of tall, 

regular, rigid frames when modelled as a 

shear frame and when joint rotations 

with/without the inclusion of the column 

axial loads will be developed using Matlab.  

 

2.0 DESCRIPTION OF MODELS.  

Tall frames are essentially systems 

with infinite degrees of freedom. However, 

some simplifications are made in their 

dynamic analyses by considering them as 
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two dimensional-multi-degrees of freedom 

systems with the masses lumped at the floor 

levels. The models are as described below:  

 

2.1 Model 1: The Shear Frame  

This model assumes that the floor slab 

acting integrally with the beams makes the 

beams infinitely rigid when compared to the 

columns; the deformation of the structure is 

independent of the axial forces in the 

columns. Thus a building frame can be 

modelled as a vertical pole with the masses 

concentrated at the floor levels and the 

rigidities of the vertical members of the 

original frame, say at the i
th

 floor level 

summed up to give the rigidity of the pole at 

the i
th

 floor [5].  

 

2.2 Model 2: Model with no restriction on 

joint rotation  

This, like the shear frame model, 

assumes that the. masses are lumped at the 

floor levels but the girders are not assumed 

to be of infinite rigidity when compared to 

the columns. The effect of vertical inertia is 

negligible and the axial deformation of the 

structure is independent of the axial forces in 

the columns. When the effects of column 

axial loads are included, the columns are 

considered as beam-column elements. The 

conventional beam element stiffness is then 

modified by the so-called stability functions 

 

3. EQUATION OF FREE MOTION  

The dynamic analysis of structure 

using the principles of mode superposition 

leads to the generalized eigenvalue problem: 

 MK 2                                          (1) 

Where K is the lateral stiffness matrix and 

M is the mass matrix, both of order n. K and 

M are usually banded. The solutions to 

equation 1 can be written as  

  MK                                            (2) 

Where,  is a matrix of eigenvectors, Ù is a 

diagonal matrix listing the eigenvalue 

(square of the free vibration frequencies) In 

a lumped mass analysis, which is usually 

assumed for tall frames, K and M are 

positive definite and M is also diagonal with 

Mii positive.  

The solution of the generalized eigenvalue 

problem has been discussed extensively [6-

8]. In many methods the problem is first 

reduced to the standard form which, when 

M is diagonal, is given as:  

 MK 2                                       (3) 

Where; KMK 1                             (4) 

It has been shown that the most time 

consuming phase in most dynamic analysis 

of structures [8] is the solution of the 

resulting eigenvalue problem. The solution 

is time consuming especially for tall frame 

structures. In this work, great advantage will 

be taken by the use of Matlab programming 

[9] through which the solution of such 

problems can be achieved in seconds.  

 

4.0 EVALUATION OF THE LATERAL 

STIFFNESS MATRIX ELEMENTS.  

The major difference in the models lies in 

lateral stiffness matrices, K of equation 3 

The element Kjj of the lateral stiffness  

matrix is the restoring force at floor level i 

when floor level i is given a unit sway,  all 

other floor displacement being assumed to 

be zero.  

 

Stiffness matrix elements for Model l  

if floor i (i=1 to n, the degree of freedom) a 

unit sway then the relevant stiffness matrix 

elements are given as:  
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1,,1,0,  iiiforK ij  

 

Stiffness matrix elements for Model 2  

stiffness matrix elements can only be 
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obtained after a complete static analysis of 

the structure, using, say, the classical 

displacement method.  

To evaluate the elements Ki,j (i=1 to v,j=1 to 

v; v being the dynamic degree of freedom) 

the structure is assumed is to be given a unit 

lateral displacement at floor level j, other 

lateral displacements r floors being assumed 

to be zero. The compatibility equations are 

then set up and are given as:  

kvv XRYrYrYr 1,122,111,1 ......   

kvv XRYrYrYr 2,222,211,2 ......   

..    ..   ..   ..   .. 

kvvvvvv XRYrYrYr  ,22,11, ...... ….  (5) 

Where rij ( i = 1 to v, j = 1 to v) is the 

moment 'generated at joint i due to a unit 

rotation at joint j. RiXK is the moment 

generated at joint i due to a unit sway at 

floor level k, Yi, (i = 1 to v) is the unknown 

rotation at joint i.  

Equation 5 is solved and the final 

member-end moments obtained. The shear 

forces and hence the stiffness matrix 

elements, Ki,k  (i = 1 to n,) at each floor level 

can now be calculated using the local 

equilibrium principle.  

The process is repeated for each 

degree of freedom. It should be noted that 

only the right hand side of equation 5 

changes each time the process is repeated.  

 

5.0 COMPUTER PROGRAMMING  

5.1 Description of the structure and 

arrays to the computer.  

Tall frames usually have a regular 

geometry and distribution of joints that make 

the assignment of structural information to 

the computer and its subsequent handling 

and transfer relatively easy. Each member, 

joint or force action, and any quantity which 

can be used to describe the structure, or its 

behaviour, can be represented by the content 

of an element in a rectangular array. The 

array element and the quantity that it 

represents occupy the same relative positions 

in the array and structure' respectively. This 

one to one relationship greatly simplifies the 

identification of numerical information with 

its origin in the computer. Neither joints nor 

members need be formally numbered; their 

locations are known when the integer 

variables y and z are given values which 

specify the floor level and the bay or vertical 

column line the arithmetic operations are to 

be carried out. The method outlined in [10] 

will be adopted for this work and it is 

summarized below. Figure 5.1 shows the 

arrays associated with the definition of 

multi-storey, multi- bay frame. Consider the 

frame shown in figure 5.la. If c is the number 

of storeys and b the number of bays the 

structure will have c x d beams. Some 

information pertaining to these beams may 

be conveniently held in arrays of c rows and 

d columns (figure 5.lb). Thus BS ( ) could be 

an array containing the beam spans and BS 

(1,2) will be the value of the span at the roof 

and the second bay. The frame also has c x 

(d+I) columns and (c=L) x (d=l) joints. 

Associated joint arrays will have (c+ 1) rows 

and (d+ 1) columns whilst the column 

member arrays will have c rows and (d+ 1) 

columns as shown in fig 5.lc and 5.ld 

respectively. Using the convention that at a 

four-member joint the end of the members 

are labelled North, South, East and West 

(figure 5.le) the bending moments at member 

ends are identified as NM, SM, EM, and 

WM. The member shear forces are similarly 

identified. Each family of force action is 

stored in its own array that has (c+L) rows 

and (d+l.) columns.  

From fig 5.le, it can be seen that the bending 

moment at the left hand end of the beam 

identified by SB(y, z) is EM(y, z) and at the 

right end is WM(y, z+ 1).  

 

The stiffness matrix of equation 5 is 

symmetric and banded with a half 
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bandwidth of b+l. so that only the upper 

triangular elements need be stored. Since it 

is only the right hand side of equation 5 that 

changes each time the process is repeated, it 

is advantageous to determine the values of 

the right hand side for each degree of 

freedom and store them in a single array so 

that the resulting sets of simultaneous 

equations could all be solved at the same 

time using the Gauss elimination method.  

 

5.2 Computer program Natfrequency.  

A computer program Natfrequency was 

developed for the generation of the stiffness 

matrix of tall regular frames. The necessary 

input data are the number of storeys, 

nstoreys, and the number of bays, nbays, 

beam and column lengths and EI values 

(kMm
2
), Others are the roof load (kN), the 

floor load, floor-load (kN), the model type 

mod; mod is 1 for a shear frame and 2 for 

frames that allow joint rotations. If mod is 2, 

then one has to input the type; type is 1 when 

only rotations are allowed and 2 when 

rotations and axial load effects are 

considered.  

The column and beam properties and 

the lumped masses are entered from the 

topmost roof from left to the right. The 

lumped masses are calculated using only the 

un-factored dead mass of the slabs and 

neglecting the claddings. The column axial 

loads are calculated on the simple 

assumption that a column carries a half of 

the loads of the beams framing into it. To 

run the program, type Natfrequency after the 

Matlab command window prompt.  

Natfrequency first formulates the left hand 

side coefficients of the compatibility 

equation and stores them in a banded form 

the half bandwidth being nbays +1. The 

right hand side of the equation is then 

formulated for all the degrees of freedom. It 

then solves the resulting simultaneous 

equations and calculates the member end 

shear forces from which the stiffness 

elements are determined. It then transforms 

the generalised eigenvalue problem to the 

standard form and determines the 

eigenvalues using the Matlab command eig. 

The result is the display of the stiffness 

matrix, and the natural frequencies. When 

the effect of joint loads is included, a column 

is assumed to carry a half of the loads on the 

beams framing into it. The associated modes 

of vibration can also be displayed, if 

required. The listing of Natfrequency is 

given in Appendix 1 while the definition of 

the terms and variables is given in Appendix 

2.  

 

6.0 TEST PROBLEMS AND RESULTS  

Natfrequency will be used to determine the 

natural frequencies of two regular frames. 

The first, the simple three storey-two-bay 

building frame of figure 6.1, has been 

chosen to illustrate the use of Natfrequency 

and to also serve as a basis for comparing 

the computer and the manual solutions. The 

second is the fifteen storey-three bay 

building frame of figure 6.2  

The input data for the three storey frame of 

figure 6.1 is as below:  

 

nbays = 2, nstoreys = 3, roof_load = 9.12, 

floor _load = 13.62 bl = [6,4] cl = 

[3.5,3.5,5.5]  

be = [13021, 13021, 13021, 13021, 13021, 

13021] 

ce = [13021, 15625, 13021; 13021, 15625, 

13021; 13021, 15625, 13021];  

1m = [14400, 18900, 18900];  

The results obtained for the various models 

are given below; input mod> 1  

The lateral stiffness matrix for shear frame 

model (kN/m)  

1.0e+004 *  

1.1662 -1.1662  0  

-1.1662 2.3324 -1.1662  

0 -1.1662 1.4667  
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The natural frequencies (rads/secs) are: 

7.1266 28.1213 44.4788  

input mod> 2  

input type> 1  

Lateral stiffness matrix (kN /m) when joint 

rotations are considered.  

1.0e+004 *  

 

0.6122 -0.7923 0.1954  

-0.7923 1.6480 -0.9752  

0.1954 -0.9752 1.1342  

 

The natural frequencies (rads/secs) are: 

5.4529 19.8987 38.3599  

input mod> 2  

input type> 1  

Lateral stiffness matrix (kN /m) when joint 

rotations are considered.  

1.0e+004 *  

0.6122 '-0.7923 0.1954  

-0.7923 1.6480 -0.9752  

0.1954 -0.9752 1.1342  

The natural frequencies (rads/secs) are:  

5.4529 19.8987 38.3599  

For the fifteen storey-three bay frame of fig 

6.2, the input data are as follows: nbays = 3; 

nstoreys = 15; roof-load = 10; floor-load = 

13; wf = 3.6;  

cl = [3,3,3,3,3,3,3,3,3,3,3,3,3,3,5];  

be=[151200, 151200, 151200; 151200,  

151200, 151200; 151200, 151200, 151200  

151200, 151200, 151200; 151200, 151200, 

151200; 151200,151200,151200 151200,  

151200, 151200; 151200, 151200, 151200;  

151200,151200,151200 151200,151200,  

151200; 151200, 151200, 151200; 151200,  

151200,151200 151200, 151200, 151200;  

151200, 151200, 151200; 151200, 151200, 

151200];  

ce = [192238, 145833, 145833, 192238; 

192238, 145833, 145833, 192238 192238, 

145833, 145833, 192238; 192238, 145833, 

145833, 192238 192238, 145833, 145833, 

192238; 192238, 416515, 416515,192238 

192238,416515,416515, 192238; 192238, 

416515, 416515, 192238, 192238, 416515, 

416515, 192238; 192238, 416515, 416515, 

192238 256317 

bl=[7.2,3.6,7.2]; 

Im=[23328, 23328, 23328, 23328, 23328, 

23328, 23328, 23328,           23328, 23328, 

23328, 23328, 23328, 23328, 23328]; 

The natural frequencies (rads/ sec) obtained 

using Natjrequency for the various models 

are:  

For shear frame (model 1) 

Columns 1 through 8  

0.4339 1.1569 1.9925 2.8888 3.6791  

4.5081 5.1553 5.9406  

Columns 9 through 15  

6.4729 6.9088 7.4618 8.3537 9.1787  

 

When only joint rotations are considered 

(model 2 type 1)  

Columns 1 through 8  

0.1989 0.5820 0.9999 1.4710 1.9691 

2.5566 3.1852 3.8824  

Columns 9 through 15  

4.6558 5.3836 6.2505 6.8164 7.8668 

8.9347 10.2055  

When joint rotations and column axial loads 

are considered (model 2 type 2)  

Columns 1 through 8  

0.1988 0.5817 0.9994 1.4703 1.9680 

2.5552 3.1833 3.8799  

Columns 9 through 15  

4.6529 5.3802 6.2471 6.8125 7.8614 

8.9298 10.1996.  

 

7.0 DISCUSSION OF RESULTS  

A comparison of the natural 

frequencies obtained for the three storey 

building frame of Figure 6.1 to those 

obtained using manual computations [3] 

shows no differences; thus confirming the 

accuracy of Natfrequency. The computer 

results for each of the models were however 

obtained within seconds.  

The beauty of the Natfrequency is 

further appreciated when it is realized that to 
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determine the stiffness elements of the 

fifteen storey frame of figure 6.2, for model 

2, one has to solve a set simultaneous 

equation with 60 unknown joint rotations 

and for 15 times. This will be impossible to 

achieve manually. Yet the total solutions, 

including the solution of the resulting 

eigenvalue problem were accomplished 

within seconds using the computer program. 

Improved results were obtained when joint 

rotations were included. The results were 

further improved when the column axial 

loads and joint rotations were considered.  

 

8.0 CONCLUSION  

A computer program for determining the 

natural frequencies of tall, regular, rigid 

frames using various models was developed. 

Results obtained using the computer 

program were in total agreement with those 

obtained manually. Tall rigid regular frames 

can be modeled using any of the models 

discussed. The choice of which model to use 

is determined by the degree of accuracy 

required.  
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