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Abstract  

This paper presents the results of computer simulation studies designed to isolate the effects of the 

major parameters of a fuzzy logic controller namely the range of the universe of discourse, the 

extent of overlap of the fuzzy sets, the rules in the rule base and the modes of the output fuzzy sets 

on the performance of a fuzzy logic control system. The controlled process was modeled by a 

nonlinear differential equation that was solved using the Runge-Kutta numerical method. The 

results show that varying the range of the universe of discourse of the inputs to the fuzzy controller 

affects both the transient response and the steady state error of the system, and that a desired system 

response could be achieved by adjusting the modes of the output fuzzy sets given a fairly good rule 

base. It has also been shown that the system response could be fine-tuned by varying the overlap of 

the input fuzzy sets.  

 

1. Introduction  

Conventional control system design requires 

the existence of a precise mathematical model 

of the process. For this reason, process 

dynamics are represented as integro-

differential equations. The desired response 

characteristics of the control system are also 

expressed mathematically. Controller design 

then involves the use of all this mathematical 

information to deduce a mathematical 

expression that describes the action of the 

controller. Usually, this mathematical 

expression that describes the controller appears 

as a function relating plant states or outputs to 

the control action to be effected at the input to 

the plant [1].  

 

A fuzzy controller approaches a control 

problem the way a human operator would. 

Instead of focusing on the mathematical 

modelling of the plant, as the fundamental 

starting point, the human operator's behaviour 

is given the primary attention. The adjustments 

of the control variable are handled by a fuzzy 

rule-based expert system, which is a logical 

model of the thinking processes a human 

operator might go through in the course of 

manipulating the system [2]. Fuzzy control 

system design does not depend on a 

mathematical model of the process. A fuzzy 

controller is based on an approximate 

representation of the control output and its 

behaviour as the plant states or outputs deviate 

from or correspond with desired or setpoint 

values [3]. This shift in focus from the process 

to a human operator changes the entire 

approach to automatic control problems.  

E. H. Mamdani introduced the concept of 

fuzzy logic control (FLC) in 1974 [4]. FLC 

was strongly motivated by the theory of fuzzy 

sets developed by L. A. Zadeh [5]. Since then 

FLC based systems have proven to be superior 

in performance to conventional systems in a 

number of areas. Their superiority are 

particularly pronounced in those areas where 

mathematical modelling is rather difficult, that 

is, systems that are ill-defined.  

In this paper we report the results of efforts we 

made to discover the influences of the various 

design parameters on the performance of fuzzy 

logic controllers. The work was done with the 

hope that this discovery will make it easier to 

design FLCs. We present the operating 

principles of a fuzzy logic controller in § 2. § 3 
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describes a series of computer simulation 

experiments that investigated the effects of 

variations of some parameters of a fuzzy 

reasoner, namely the range of the universe of 

discourse, the extent of overlap of the fuzzy 

sets, the rules in the rule base and the modes of 

the output fuzzy sets, on the behaviour of a 

fuzzy logic control system. § 4 presents the 

simulation results. § 5 discusses the results, 

and the paper ends with concluding remarks.  

 

2. Principles of operation  

A fuzzy controller is an approximate reasoner 

in which a control output is deduced by 

manipulating the current controller input with a 

collection of linguistic rules using some 

established inference procedures [6]. Figure 1 

shows the block diagram of a control system 

that makes use of fuzzy logic control. Within 

one sampling period, the fuzzy controller must 

do the following: convert the measured error 

signals into the input signals required by the 

fuzzy subsystem, this function is performed by 

the Input Formation block; create a fuzzy set 

representation of the input signals, this 

function is performed by the Fuzztfication 

block; deduce the current controller fuzzy 

outputs by means of linguistic rules, the 

Inference Engine block performs this function 

by operating on the Rule- base; and finally 

obtain crisp controller outputs by operating on 

the inferred fuzzy outputs, this task is carried 

out by the Defuzzification block. The resulting 

control output is then sent to the process being 

controlled.  

 

2.1. Input formation  

In figure 1 the process states or outputs are 

compared with set point values, forming error 

signals. The function of the Input Formation 

block is to convert an m-dimensional vector 

that represents the error signals into a 2m- 

dimensional vector input to the fuzzy 

subsystem. Each error signal is extended into 

two elements: e and c, where e is the error 

signal itself and c is the derivative of error 

given by  

  
  

  
                        (1) 

In digital implementation of the controller, 

there is no need to implement the discrete 

equivalent of Eq. (1), instead the sample-to-

sample change in error is used. If the sampling 

period is T, then at time kT the change in error 

is given by  

 

 (  )   (  )   ((   ) )                  (2) 

 

2.2. Fuzzification  

 

The function of the Fuzzification block is to 

normalize the inputs and convert to fuzzy 

representations. The control vector u must be 

transferred into a new vector U0 by 

multiplication with suitable scaling factors gi, 

and then quantizing the scaled values to the 

closest elements of the corresponding 

universes, i.e. u0, = [U0l, U02,…..u0n] with U0i = 

[gi,Ui] and U0i  Ui; The settings of the gains gi, 

is important in determining the response of the 

controller.  

 

Each input to and output from the fuzzy 

subsystem must be decomposed into a set of 

fuzzy regions called the term set [7]. The fuzzy 

sets overlap, so that there are inputs which 

have non-zero grades of membership in more 

than one set. The lack of mutual exclusivity is 

important in determining the recommended 

control action [2].  

 

2.3. Rulebase  

The rulebase is the knowledge repository for 

the fuzzy expert system, where the linguistic 

rules are stored. Assume that there are p rules 

in the rule base. The jth rule has the form  

 

        
 
          

 
             

 
 

            
 
            

 
             

 
           

(3) 

 

Where ui, and Vk are linguistic variables 
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corresponding to the input and output variables 

of the fuzzy reasoner; Ai and Bk, are fuzzy 

subsets representing some linguistic terms such 

as positive. big and negative medium, etc., and 

will be defined numerically in the respective 

universes of discourse by membership 

functions. Equation (3) shows that the premise 

of a rule refers to the inputs (which represents 

the condition of the controlled process), while 

the conclusion or action refers to the controller 

outputs.  

 

2.4. Inference engine  

The Inference block converts the input fuzzy 

sets into output fuzzy sets. The inference 

engine uses the fuzzified inputs to execute the 

rules in the rule base. Due to the fact that a 

particular input value may fall into more than 

one fuzzy set, more than one rule may 

contribute to a particular control action. All the 

rules are checked to see if they match the 

labels of the resulting input fuzzy sets.  

 

For purposes of illustrating the inference 

procedure, consider the following rule.  

 

[Rj]  IF temperature error is negative large 

AND change in temperature error is 

zero THE flowrate' is positive big  

 

Fuzzy controllers use standard fuzzy 

inferencing techniques called correlation 

minimum and the min/max inferencing 

method. However, some researchers (such as 

Kosko [8]) believe that the correlation product 

and the fuzzy additive inferencing method are 

superior, with some experiments indicating that 

these methods yield better results. Here is the 

procedure for the standard inferencing 

technique [7]: 

 

(1) For all the predicate expressions connected 

by an AND take the minimum of their 

collective membership truths. This final truth is 

the truth of the rule premise.  

           (            )                    (4) 

In the previous rule [Rj] this means evaluating 

the fuzzy propositions (temperature error is 

positive large) and (change in temperature 

error is zero) to find their degrees of truth. The 

minimum of the two truth values forms the 

truth of the predicate.  

(2) The fuzzy set on the right-hand side, i.e., 

the consequent or action (the "control" fuzzy 

set) is then reduced in height by this amount.  

         ( )      (        ( )       )   (5) 

 

In [Rj] the control fuzzy set is positive big. The 

height of positive big is then reduced to the 

truth value of the predicate. This is the 

correlation minimum process.  

 

(3) This newly modified fuzzy set (positive 

correlated to the truth value of the predicate) is 

then copied into the output variable's fuzzy set. 

If that region is not empty, then it is OR’d with 

the current contents by taking the maximum of 

the new fuzzy region and the currently existing 

fuzzy region at each point along the domain 

(the horizontal axis).  

          ( )     (         ( )         ( 

))               (6) 

 

2.5. Defuzzification  

The outcome of the inference process so far is 

a fuzzy set, specifying a fuzzy distribution of 

control action. However, a single action only 

may be applied, so a single point need to 

selected from the set. This process of reducing 

a fuzzy set to a single point is known as 

defuzzification [9]. Most current FLCs employ 

the centroid or centre of gravity method of 

defuzzification. For the kth output fuzzy set, 

the general formula for centroid is [10] 

 

   
∫  

 ( )   

∫  
 ( )  

                     (7) 

where v refers to a particular control output 

and ranges over the appropriate domain and 

BK(V) is the membership function of the 

corresponding fuzzy region. In digital 

implementations. discrete integration would be 

performed, i.e., for all v  B [10],  
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∑  ( ) 

∑  ( )
                      (8) 

 

3. Simulation studies  

The objective of the simulation was to 

demonstrate the design process of a fuzzy logic 

controller and to observe the influence of its 

major components, particularly the fuzzy sets 

and the rulebase on the performance. The 

controlled variable of the plant is assumed to 

obey a nonlinear differential equation that is 

now used in the simulation.  

The differential equation used in the simulation 

is: 

   ( )

   
    

  

  
     ( )   ( )                      

(9) 

where y(t) is the controlled variable and u(t) is 

the control signal. A computer program 

module was developed which solves this 

differential equation model of the process by 

means of the Runge-Kutta-Nystrorn numerical 

technique, with the assumption of zero initial 

conditions. The simulation program basically 

implements unit step response test on the 

control system.  

As explained in section 2, the control error is 

extended into two signals, error and change-

in- error, by the input formation block. These 

two signals serve as the inputs to the fuzzy 

controller. Figure 2 shows the fuzzy sets that 

were used to represent the two inputs, error 

and change-in-error, and one output, the 

control signal u(t). Each input or output 

variable was decomposed into seven fuzzy 

regions, large negative (LN) , medium 

negative (MN), small negative (SN), zero 

(ZR), small positive (SP), medium positive 

(MP) and large positive (LP).  

Having specified the fuzzy sets, the next task 

in the design process is to elucidate the 

rulebase. Since there are only two inputs, each 

of which can fall into any of seven fuzzy 

regions, writing the rules simply involves 

deciding what the output fuzzy set should be 

for each possible input combination. From the 

interaction of the two inputs, a seven-by-seven 

matrix can be constructed showing the output 

for each input combination (figure 3). Such a 

matrix is called a fuzzy associative memory (F 

AM), as it associates the input of a fuzzy 

controller with the desired output action [3]. 

The FAM is the rule base for the fuzzy 

controller. 

The final step in the design process is the 

selection of a method of defuzzification. In the  

(           )  ( ̆   )                  (11) 

present case, the centroid method (Eq. 9), 

which is the most popular in FLC, is 

employed.  

 

3.1. Programming considerations  

Every block in figure 1 was implemented in 

software using the C++ programming 

language. In software, each of the universes of 

discourse represented by figure 2, that is, 

error, change-in- error, and output [u(t)], is 

decomposed into seven triangular fuzzy sets, 

each of which is identified by its modal value 

mi. All the fuzzy sets in each universe of 

discourse have the same span a Figure 4 

illustrates these ideas. Let the input and output 

variables be decomposed into fuzzy sets whose 

modal values and span are given as follows:  

        *                        +  

                   

                

  *                  

          +  

                          

         *                    

    +                     

Each universe of discourse is quantized into 

101 values, and is associated with seven 

arrays, corresponding with the seven fuzzy 

regions. This can be stored in memory as a 7 x 

101 2- dimensional array. For example, the 

quantized values for error would be -1, -.98, -

.96,…, -.02, 0, .02, …,.98, 1. The elements of 

the array are the corresponding membership 

grades of the quantized values in each fuzzy 

set (each row of the array corresponds to a 
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fuzzy set, each column identifies with a 

quantized value). The elements of the array are 

computed and stored during the initialization 

stage of the computer program. The 

determination of the membership value of a 

quantized value x in fuzzy set i i = 1 2, ... , 7, 

begins with the computation of the 

distance of x from the modal values. 

mii=1,2,…,7, of the fuzzy sets in the 

corresponding universe of discourse. The 

distance is computed as follows:  

          |    |              (10)  

where Ai is fuzzy set i in the universe of 

discourse. If the left hand side of (12) is true, 

meaning that x falls within fuzzy set i, the 

membership value is computed as follows:  

 

   ( )  
         

 
                      (12) 

If the left hand side of (12) is false  

   ( )    

Having stored the vocabulary fuzzy sets (or 

term set) in memory, let us show how 

fuzzification is then carried out. Consider that 

at a sampling instant error = 0.2345. By means 

of rounding, this value should be quantized to 

error = 0.24. The column position of 0.24 in 

the array is given by  

 

  
     (  )

    
      

Generally, the column position is given by  

       –           
            

      
                     

(13) 

Where q- value is the quantized crisp value, 

Umin is the minimum value in the universe of 

discourse, and quanta is the value of the 

quantization step (0.02 in the present case).  

 

Once the column position has been determined, 

the membership value of the quantized crisp 

value in each of the seven fuzzy sets can be 

read off the array by moving vertically 

downwards to the appropriate rows. This is 

fuzzification.  

 

In the simulation software, the F AM of figure 

3 is stored as a 7 x 7 matrix. The fuzzy sets 

NL, NM, etc., are represented by the numbers 

1, 2, ... , 7, coresponding to the rows, columns 

and entries of the F AM. Essentially, the F AM 

of figure 3 is represented as follows:  

{1, 1, 1, 2, 2, 3, 3},  

{1, l, 2, 2, 3, 3, 4} 

{l, 2, 3, 3, 4, 4, 5},  

{2, 3, 4, 4, 5, 5, 6},  

{2, 3, 4, 5, 5, 6, 7},  

{3, 4, 5, 5, 6, 7, 7},  

{4, 5, 5, 6, 7, 7, 7}  

 

The inference engine should fire the rules in 

the rule base in accordance with the result of 

fuzzification. The rows of the fuzzification 

array that do not have all zeros correspond to 

the fuzzy sets within which the current input 

value falls-there cannot be more than two such 

rows in the present case, in line with figure 2. 

Fuzzification of error will yield one or two 

fuzzy sets and fuzzification of change-in-error 

will yield one or two fuzzy sets. Every fuzzy 

set for error must combine with every fuzzy 

set for change-in-error in executing the rule 

base (FAM). The fuzzy set(s) for error operate 

the rows of the FAM, while the fuzzy set(s) for 

change-in-error operate the columns. This way 

the implied output fuzzy sets can easily be read 

off the F AM. Apart from reading the implied 

output fuzzy set off the F AM, the inference 

engine also has to determine the predicate truth 

value according to (5). Then the maximum 

truth value for the implied output fuzzy set 

must be set to the predicate truth value, 

according to (6).  

 

When the inference engine begins to scan the 

rule base, the maximum truth value for each 

output fuzzy set is set to zero; this is equivalent 

to saying that the solution fuzzy region is made 

empty. As each rule is fired, the maximum 

truth value of the implied fuzzy set is updated 

and the modified fuzzy set is copied into the 

solution fuzzy region. Equation (7) is 

employed in case this copying might interfere 
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with what has already been copied into the 

solution fuzzy region. In the end the result of 

the inference procedure is the fully constructed 

solution fuzzy region.  

 

It now remains to defuzzify the solution fuzzy 

set, i.e., defuzzification. Since the solution 

fuzzy set exists as a single 1 x 101 array, it is 

very easy to implement Eq. (9) in software. 

Each element of the array, as already stated, is 

the membership value μB, and the associated 

domain value v is implied by the position of 

the element in the array [Eq. (14)].  

 

The result of defuzzification serves as the input 

to the differential equation model of the 

process. The differentail equation is solved 

numerically using the Runge-Kutta method, to 

yield the output of the controlled process. The 

process output is compared with the setpoint (= 

1) to form the error signal which is then sent to 

the Input Formation module. The Input 

Formation module computes the error and 

change-in-error signals that serve as inputs to 

the fuzzifier and the simulation cycle 

continues.  

 

3.2. Effects of fuzzy sets  

We studied the influences of some parameters 

of the input and output fuzzy sets on the 

performance of the controller. To this end, the 

fuzzy sets defined in section 3. I were regarded 

as standard. They were used as the term set in 

a simulation run. Refer to this experiment as 

experiment 1.  

The range for fuzzy set error was then 

changed to [-1.5, + 1.5] and another simulation 

run was carried out as experiment 2. The range 

for fuzzy set error was further changed to [-

0.66, +0.66] and once again another simulation 

run was carried out as experiment 3. At this 

point, the standard error fuzzy set was 

restored, and the span was reduced to 0.25. 

Another simulation run was carried out as 

experiment 4.  

Now, turning attention to the fuzzy set for 

change-in-error, the standard term set was 

restored and the range for change-in-error was 

changed to [-1, +1] and then to [-0.3, +0.3], 

giving rise to experiments 5 and 6. Then the 

standard term set was restored and the span for 

change-in-error was reduced to 0.12 resulting 

in experiment 7.  

The standard term set was restored, and the 

range for output fuzzy set was changed to [-

2.7, +2.7] and then to [-1.5, + 1.5], giving rise 

to experiments 8 and 9. Then the standard term 

set was restored and the span for output was 

reduced to 1/3 giving rise to experiment 10. In 

all these experiments, the same rule base was 

used.  

 

3.3. Influence of the rule base  

Further studies were carried out to determine 

the effects of the rule base on the performance 

of the fuzzy controller. To this end, the FAM 

of figure 3a was used in conjunction with the 

standard term set to carry out a simulation run. 

Further, the F AM of figures 3 band 3c were 

also tried. These gave rise to experiments 11, 

12, and 13.  

 

3.4. Manipulations of the output fuzzy set  

The output fuzzy set was manipulated 

severally, in attempts to improve the 

performance of the controller. In this report, we 

will show the results for the following three 

configurations:  

         *                       

    +  

                  

       

  *                                 +  

                  

       

  *                                 +  

                   

These gave rise to experiments 14, 15, and 16.  

 

4. Results and Discussion  

In presenting the results and their discussion, it 

should be recalled that the simulation program 
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implements unit step response test. The criteria 

for comparing the performances of the 

controller then is how quickly the process 

output settles to unity.  

Figure 5 shows the plots of the results of 

experiments 1 to 4. As stated in the previous 

section, experiment 1 is the standard, that is, no 

adjustment has been made to the parameters of 

the fuzzy controller. The result of experiment 2 

indicates that expanding the range of the 

universe of discourse for error is equivalent to 

reducing the controller gain, so that the speed 

of the system (in reaching the setpoint value) is 

greatly reduced and there is highly increased 

steady state error. The result of experiment 3 

shows that reducing the range of the universe 

of discourse for error makes the system to be 

faster and oscillatory, and there is some 

improvement in steady state error. This means 

that reducing the range of the universe of 

discourse increases the controller gain. The 

result of experiment 4 indicates that narrowing 

the domains of the error fuzzy sets slightly 

increases the speed of the system, there is no 

visible improvement in steady state error, and 

the system response curve is not smooth. 

Clearly, then, the overlap in the fuzzy sets 

creates smooth response curve.  

Figure 6 shows the plots of the results of 

experiments 5, 6, and 7. The plot for 

experiment 5 indicates a system with faster 

transient response, which corresponds with the 

effect of reduction of the derivative term in a 

proportional + derivative (PD) controller. The 

plot for experiment 6 shows that reducing the 

range of change-in-error leads to a system that 

is slow and with large steady-state error, which 

corresponds with increasing the derivative term 

in a PD controller. The plot for experiment 7 

shows that whereas narrowing the change-in- 

error fuzzy sets does not affect the system 

transient response, it could lead to oscillatory 

steady state response. This result, apparently, is 

a consequence of the fact that reducing the 

overlap of the fuzzy sets reduces the 

smoothness of the controller response.  

 

Figure 7 shows the plots for experiments 8, 9, 

and 10. The plot for experiment 8 shows a very 

slight amplification of the plot for experiment 

1 (the standard), but the smoothness of the 

system response is reduced. The plot for 

experiment 9 shows a slightly downward 

scaling of the plot for experiment 1. That is the 

effect of expanding or reducing the range of 

the universe of discourse for output. The plot 

for experiment 10 does not differ very much 

from the plot for experiment 1.  

 

Figure 8 shows the plots for experiments 11, 

12, and 13. The three plots indicate that the 

rule base has the greatest influence on the 

behaviour of the controller.  

Figures 9 shows the plots for experiments 14, 

15 and 16. The plots indicate that adjusting the 

modes of the output fuzzy sets have almost as 

much impact as adjusting the rule base. It 

means that when a fairly good rule base has 

been obtained, the desired system response can 

be achieved by adjusting the modes of the 

output fuzzy sets.  

The simulation results confirm the generally 

held view that the greatest difficulty 

encountered in the design of a fuzzy logic 

controller and, in fact, in the design of any 

knowledge-based system, is the elucidation of 

the rules. This difficulty is commonly referred 

to as the Feigenbaum bottleneck, after Edward 

Fiegenbaum, who emphasized the fact that the 

real power of an expert system comes from the 

knowledge it possesses rather than the 

particular inference schemes and other 

formalisms it employs. As already stated, the 

results of experiments 11, 12, and 13 indicate 

that the rule-base has the greatest influence on 

the controller.  

The simulation studies provided an explanation 

for a puzzle which came up during the early 

runs of the simulation program: why it is that 

most fuzzy logic controllers employ PD control 

structure for every kind of plant. Due to the 

fact that the process model used in the 
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simulation has no integrator, a significant 

amount of steady state error appeared. Such a 

problem would usually be taken care of by the 

inclusion of integral action in the controller. 

Initially, it was not very clear how this problem 

could be tackled in a control structure that is 

basically PD. However, further consideration 

of this problem cleared the difficulty: What 

integral action basically does is to maintain 

some control action even when the error is zero 

and non-changing. By adjusting the output 

fuzzy set that is asserted by the rule which fires 

when error is zero and non-changing in such a 

way that the centre of the domain of this fuzzy 

set is greater than zero something similar to 

integral action is achieved. This was how the 

steady state error (offset) was eventually 

nulled.  

 

One problem immediately noticeable from the 

simulation studies is that. even though fuzzy 

controllers are known to be robust, if the 

parameters of the controlled process vary by 

wide margins. it will become necessary to 

retune the controller, for best performance. 

Because of the difficulties encountered in the 

tuning of a fuzzy logic controller. the current 

direction of research in FLC is towards self-

tuning or self- adaptation.  

 

5. Conclusion  

This paper is a report of some simulation 

experiments carried out in order to isolate the 

effect of varying certain parameters of a FLC 

on the performance of the overall control 

system. The parameters investigated include 

the range of the universe of discourse the 

extent of overlap of the fuzzy sets, the rules in 

the rule base and the modes of the output fuzzy 

sets.  

From the results of the simulation studies, it is 

very clear that there are many parameters a 

designer can vary in order to attain his design 

objectives. Varying the range of the universe of 

discourse for the inputs to the fuzzy controller 

affects the transient response of the system, 

and even the steady state error. Varying the 

width of the input fuzzy sets can be carried out 

to fine- tune the system. By far the greatest 

problem in the design process is the elicitation 

of the rules in the rule-base. It has been shown 

that, if it is possible to elucidate a fairly good 

rule base, the desired system response can be 

achieved by adjusting the modes of the output 

fuzzy sets.  
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