

* Corresponding Author, Tel: +234-903-036-1832

MINIMIZATION OF RETRIEVAL TIME DURING SOFTWARE REUSEMINIMIZATION OF RETRIEVAL TIME DURING SOFTWARE REUSEMINIMIZATION OF RETRIEVAL TIME DURING SOFTWARE REUSEMINIMIZATION OF RETRIEVAL TIME DURING SOFTWARE REUSE

HHHH.... OOOO.... SalamiSalamiSalamiSalami****

DEPARTMENT OF COMPUTER SCIENCE, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA

EEEE----mail mail mail mail aaaaddress: ddress: ddress: ddress: ho.salami@futminna.edu.ng

ABSTRACTABSTRACTABSTRACTABSTRACT

Software reuse refers to the development of software using Software reuse refers to the development of software using Software reuse refers to the development of software using Software reuse refers to the development of software using existing software.existing software.existing software.existing software. Reuse of software can help reduce Reuse of software can help reduce Reuse of software can help reduce Reuse of software can help reduce

software development time and software development time and software development time and software development time and overall overall overall overall cost. Retrieval of relevant software from the repository during software cost. Retrieval of relevant software from the repository during software cost. Retrieval of relevant software from the repository during software cost. Retrieval of relevant software from the repository during software

reuse can be time consuming if the repository contains many projects, and/or the retrieval preuse can be time consuming if the repository contains many projects, and/or the retrieval preuse can be time consuming if the repository contains many projects, and/or the retrieval preuse can be time consuming if the repository contains many projects, and/or the retrieval process is rocess is rocess is rocess is

computationally expensivecomputationally expensivecomputationally expensivecomputationally expensive. This . This . This . This paperpaperpaperpaper describes describes describes describes prepreprepre----filtering, which is filtering, which is filtering, which is filtering, which is a method of minimizing retrieval time a method of minimizing retrieval time a method of minimizing retrieval time a method of minimizing retrieval time

during software reuse. Preduring software reuse. Preduring software reuse. Preduring software reuse. Pre----filtering can be applied filtering can be applied filtering can be applied filtering can be applied while reusingwhile reusingwhile reusingwhile reusing objectobjectobjectobject----oriented software, whose requirement oriented software, whose requirement oriented software, whose requirement oriented software, whose requirement

specifications contain Unified Modelling Language (UML) diagrams. Prespecifications contain Unified Modelling Language (UML) diagrams. Prespecifications contain Unified Modelling Language (UML) diagrams. Prespecifications contain Unified Modelling Language (UML) diagrams. Pre----filtering involves filtering involves filtering involves filtering involves quickly quickly quickly quickly identifying a identifying a identifying a identifying a

subset of repository subset of repository subset of repository subset of repository projectsprojectsprojectsprojects which are potentially similar to a query model. The which are potentially similar to a query model. The which are potentially similar to a query model. The which are potentially similar to a query model. The candidatecandidatecandidatecandidate proproproprojectsjectsjectsjects are are are are

subsequently compared with the query during retrieval to determine their actual degree of similarity to the query. subsequently compared with the query during retrieval to determine their actual degree of similarity to the query. subsequently compared with the query during retrieval to determine their actual degree of similarity to the query. subsequently compared with the query during retrieval to determine their actual degree of similarity to the query.

The query and rThe query and rThe query and rThe query and repository projects are represented by nepository projects are represented by nepository projects are represented by nepository projects are represented by n----dimensional feature vectordimensional feature vectordimensional feature vectordimensional feature vectorssss, where each feature is a metric , where each feature is a metric , where each feature is a metric , where each feature is a metric

which provides a quanwhich provides a quanwhich provides a quanwhich provides a quantitative measure of properties of a software project. Experimental results show that the titative measure of properties of a software project. Experimental results show that the titative measure of properties of a software project. Experimental results show that the titative measure of properties of a software project. Experimental results show that the

proposed technique leads to a significant reduction in retrieval time, even though it proposed technique leads to a significant reduction in retrieval time, even though it proposed technique leads to a significant reduction in retrieval time, even though it proposed technique leads to a significant reduction in retrieval time, even though it causescausescausescauses a slight decrease in a slight decrease in a slight decrease in a slight decrease in

mean average precision.mean average precision.mean average precision.mean average precision.

Keywords: Keywords: Keywords: Keywords: software reuse; retrieval time; pre-filtering; software repository; UML

1.1.1.1. INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

Software reuse is the use of existing software to

develop new software. It minimizes reinvention of the

wheel during software development. The benefits of

software reuse include accelerated development,

reduced overall costs and risks, increased

dependability and effective use of specialists[1].

Reusable software artifacts are usually kept in a

components library or repository, from where they can

be retrieved during reuse. As the repository increases

in size, there is a corresponding rise in retrieval time

which can lower the expected savings in development

time. Moreover, retrieval time can be high if the

retrieval process is computationally expensive.

This paper describes pre-filtering, which is a fast way

of identifying a subset of repository projects which are

potentially similar to a query model. The shortlisted

repository projects are subsequently compared with

the query model in a retrieval stage to ascertain their

actual degree of similarity with the query model. The

pre-filtering technique proposed in this paper can be

applied while reusingobject-oriented software, whose

requirement specifications contain Unified Modelling

Language (UML) diagrams. UML is the de facto

standard language for modelling object-oriented

software.

There are two ways of gaining speed by selecting a first

set of projects from the repository prior to the retrieval

stage during the pre-filtering stage. First, it leads to a

reduction in retrieval time because not all repository

projects are compared with the query when a retrieval

stage is preceded by pre-filtering. The decrease in

retrieval time is significant when the retrieval stage is

time consuming and/or the repository contains many

projects. Second, if the repository projects are indexed

beforehand, additional speed is gained because it

eliminates the need to load each repository project into

primary memory during pre-filtering as well as

retrieval. Indexing entails computing and saving the

pre-filtering features for each project as the project is

being stored in the repository.

The remainder of this paper is organized as follows:

Section 2 briefly discusses related work. In Section 3,

an overview of the software reuse process is provided.

Section 4 describes the pre-filtering process.

Nigerian Journal of Technology (NIJOTECH)

Vol. 34 No. 2, April 2015, pp. 392 – 398

Copyright© Faculty of Engineering,

 University of Nigeria, Nsukka, ISSN: 1115-8443

www.nijotech.com

http://dx.doi.org/10.4314/njt.v34i2.25

MMMMINIMIZATION OINIMIZATION OINIMIZATION OINIMIZATION OF F F F RRRRETRIEVAL ETRIEVAL ETRIEVAL ETRIEVAL TTTTIME IME IME IME DDDDURING URING URING URING SSSSOFTWARE OFTWARE OFTWARE OFTWARE RRRREUSEEUSEEUSEEUSE,,,, H. O. Salami H. O. Salami H. O. Salami H. O. Salami

Nigerian Journal of Technology, Vol. 34, No.2, April 2015 393

Experimental results are presented in Section 5 and the

paper is concluded in Section 6.

2.2.2.2. RELATED WORKRELATED WORKRELATED WORKRELATED WORK

Channarukul et al. [2] performed pre-filtering while

retrieving class diagrams for reuse. During their pre-

filtering stage, a fixed number of projects are selected

from the repository depending on the number of class

names the query and repository class diagrams have in

common. However, because this filtering approach

checks for exact matches in class names, two similar

class diagrams containing classes whose names are

non-identical but similar (e.g. college and school) may

not be considered as similar.

While retrieving class diagrams for reuse, authors in

[3] performed a computationally inexpensive selection

(or pre-filtering),in which a fixed number of relevant

cases are chosen by using the WordNet lexicon to index

cases. WordNet is a large lexical database developed at

Princeton University. Because WordNet is utilized

during pre-filtering, repository class diagrams which

contain classes whose names are similar in meaning to

those of the query diagram are likely to be shortlisted.

Park and Bae [4]adopted a two-stage approach for

retrieving repository artifacts. In the first stage (i.e. the

pre-filtering stage), they determined the similarity

score of two class diagrams using the Structure

Mapping Engine (SME). The SME software works based

on the structure mapping theory, which allows

knowledge to be mapped in two domains by

considering relational commonalities of objects in the

domains regardless of the objects involved in the

relationships. Based on the similarity scores obtained, a

subset of repository projects is selected. During the

second stage, sequence diagrams in the shortlisted

projects are converted to Message-Object-Order-

Graphs which are then compared using a graph

matching algorithm.

The pre-filtering approach presented in this paper

differs from those in existing works in two aspects.

Firstly, this work compares software systems using

software metrics that describe some properties of the

software systems. Secondly, unlike the previous

software reuse works which performed pre-filtering

using information collected from only class diagrams,

this work uses information from UML sequence

diagrams and class diagrams during pre-filtering. Both

class diagrams and sequence diagrams are commonly

used to model software systems early in the software

development life cycle.

3. REUSE SYSTEM3. REUSE SYSTEM3. REUSE SYSTEM3. REUSE SYSTEM

Our reuse approach is hinged on the intuition that

similar software systems have similar requirements.

Thus, the requirement specifications of new projects

(software systems) to be built serve as queries that are

compared with requirement specifications of existing

projects stored in a repository. Once the most similar

requirements are found, the corresponding artifacts

can be adapted to meet the needs of the new software

system. Moreover, since UML is the de facto language

for modeling software requirements, the requirement

specifications to be compared are described using UML.

This section gives an overall picture of our reuse

system by describing the sequence of steps needed to

reuse software contained in a repository. More details

about the reuse system can be found in [5]. The

prerequisite for using the reuse system is that

requirement specification for the query and repository

projects should contain class and sequence diagrams.

Figure 1 illustrates the steps involved in the reuse

process. These steps are described below:

Figure 1: Concept of operation of reuse system

1. The user presents a query requirement specification

which contains class and sequence diagrams.

2. The pre-filtering features for the query are

computed. These features consist of size and

complexity metrics such as total number of classes

in a class diagram, number of messages exchanged

by objects in a sequence diagram, and the number of

attributes and operations of classes. These metrics

can be used to filter out repository projects whose

sizes are significantly different from that of the new

system.

MMMMINIMIZATION OINIMIZATION OINIMIZATION OINIMIZATION OF F F F RRRRETRIEVAL ETRIEVAL ETRIEVAL ETRIEVAL TTTTIME IME IME IME DDDDURING URING URING URING SSSSOFTWARE OFTWARE OFTWARE OFTWARE RRRREUSEEUSEEUSEEUSE,,,, H. O. Salami H. O. Salami H. O. Salami H. O. Salami

Nigerian Journal of Technology, Vol. 34, No.2, April 2015 394

3. Pre-computed features for each project in the

repository are retrieved. By comparing the features

of query and repository projects, a tentative

similarity score between the query and each

repository project is obtained.

4. Based on the initial similarity scores, a list of

repository projects that are potentially similar to the

query is created.

5. The requirement specifications for each shortlisted

repository project are retrieved from the repository.

6. The query (i.e., the requirement specifications for

the new software system) is presented to the

retrieval stage.

7. During retrieval, the actual degrees of similarity

between the query and requirement specifications

of shortlisted repository projects are computed.

From the similarity scores, the most similar existing

project to the query is determined.

8. A copy of all the artifacts for the most similar

repository project is returned to the user. These

artifacts include design, source code, documentation

and test data.

9. The user adapts the artifacts to suit the needs of the

new software system being developed. S/he stores

all the artifacts for the new project in the repository,

so that the project can be reused in the future. Note

that at this time, the set of pre-filtering features for

the new project is also stored in the repository.

4. PRE4. PRE4. PRE4. PRE----FILTERING APPROACHFILTERING APPROACHFILTERING APPROACHFILTERING APPROACH

The proposed method of selecting a subset of

repository projects involves comparing the set of

features of the query to those of all repository projects.

The features for repository projects are obtained when

the projects are saved to the repository, while those of

the query are gotten as soon as the query is presented

to the reuse system. The features comprise a set of

software metrics that capture information about the

size and complexity of UML models. It is expected that

corresponding metrics for similar software should not

differ significantly. The set of metrics for query and

repository models are represented by n-dimensional

feature vectors, where n is the number of metrics. Each

dimension of the vector holds the value of a particular

metric. The pre-filtering similarity score for two

software systems is the Euclidean distance between

their feature vectors. In order to ensure that features

contribute equally to the similarity score, values of

each feature are normalized by dividing by the

maximum value of the feature.

Table 1: Description of metrics used for pre-filtering

Metric
No

Metric Description Reference Metric is
applicable to

1 Total number of classifiers in a class diagram. NC [6] class diagram

2 Total number of methods in a class diagram NM [6] class diagram

3 Total number of attributes in a class diagram class diagram

4 Total number of associations in a class diagram NAssoc[6] class diagram

5 Total number of aggregation relationships diagram (each whole-part pair in an

aggregation relationship) in a class diagram

NAgg[6] class diagram

6 Total number of dependency relationships in a class diagram NDep[6] class diagram

7 Total number of generalization relationships (each parent-child pair in a generalization

relationship) within a class diagram

NGen[6] class diagram

8 Total number of generalization hierarchies in a class diagram NgenH[6] class diagram

9 Maximum of the Depth of Inheritance Tree (DIT) values obtained for classes in the class

diagram. The DIT value for a class within a generalization hierarchy is the longest path

from the class to the root of the hierarchy.

MAXIMUM

DIT[6]

class diagram

10 Maximum of the HAgg values obtained for classes in the class diagram. The HAgg value

for a class within an aggregation hierarchy is the longest path from the class to the

leaves.

MAXIMUM

HAGG[6]

class diagram

11 Number of messages in a sequence diagram Sequence

diagramb

12 Number of classes per use casea [7] Sequence

diagramb

13 Number of use casesa per class [7] Sequence

diagramb

a: use case refers to sequence diagram in this paper

b: values need to be averaged over number of classifiers or number of sequence diagrams, as the case may be, in order to obtain a
single value for the metric

MMMMINIMIZATION OINIMIZATION OINIMIZATION OINIMIZATION OF F F F RRRRETRIEVAL ETRIEVAL ETRIEVAL ETRIEVAL TTTTIME IME IME IME DDDDURING URING URING URING SSSSOFTWARE OFTWARE OFTWARE OFTWARE RRRREUSEEUSEEUSEEUSE,,,, H. O. Salami H. O. Salami H. O. Salami H. O. Salami

Nigerian Journal of Technology, Vol. 34, No.2, April 2015 395

Table 2: Details of query and repository projects for a hypothetical example

 Actual

similarity

with

query

Rank after

retrieval

stage (no

pre-

filtering)

Pre-filtering feature vector Pre-

filtering

similarity

score

Selected

after

pre-

filtering?

Rank after

retrieval

stage (with

pre-

filtering)

Query - - <0.8, 0.3, 1.0, 0.8, 0.7, 0.7,

0.7, 1.0, 0.7, 1.0, 0.8, 0.7, 0.8>

- - -

Repository

Project 1

0.29 3 <0.9, 0.5, 0.5, 1.0, 1.0, 0, 0.3,

0.8, 1.0, 0.5, 0.3, 0.1, 0.2>

1.56 No -

Repository

Project 2

0.22 1 <0.7, 0.6, 0.8, 0.7, 0.7, 0.5,

1.0, 0.7, 0.5, 0.8, 0.6, 0.6, 1>

0.73 Yes 1

Repository

Project 3

0.56 5 < 0.9, 1.0, 0.1, 0, 0.4, 0, 0, 0.5,

0.7, 0.3, 0.7, 0.3, 0.3>

2.04 No -

Repository

Project 4

0.25 2 < 0.6, 0.2, 0.7, 0.8, 0.7, 0.9,

0.6, 0.8, 0.7, 0.8, 0.9, 1.0, 0.5>

0.68 Yes 2

Repository

Project 5

0.31 4 < 1.0, 0.6, 0.9, 0.9, 0.7, 1.0,

0.5, 0.9, 0.5, 0.7, 1.0, 0.3, 0.5>

0.84 Yes 3

Table 1 describes the 13 metrics that form the

features of each software system. Typically, there are

several sequence diagrams for each software system.

However, because the number of dimensions for the

feature vector (i.e., n) is fixed, metrics that are

applicable to individual sequence diagrams are

averaged to obtain single values. Similarly, metrics

that measure values for classifiers need to be averaged

over the number of classifiers in the class diagram. A

classifier refers to a class or interface in a class diagram.

In the remainder of this section, a hypothetical

example is presented to illustrate how pre-filtering

works. Assume that a repository contains five

software projects, and three of them are to be selected

at the end of pre-filtering.

Table 2 provides details of the query as well as

repository projects. The second column of the table

shows the similarity scores computed in a retrieval

stage, between the query and each repository project.

It is worth mentioning that throughout this paper,

lower similarity values indicate better degrees of

similarity. Note that the manner in which similarity

scores are computed during the retrieval stage is not

described in this paper. The third column shows the

ranking of repository projects based on the similarity

values in the previous column. Feature vectors for the

query and repository projects are shown in the fourth

column. The pre-filtering similarity scores on the fifth

column are the Euclidian distances between feature

vectors on the preceding column. Based on the pre-

filtering similarity scores, three of the five repository

projects are shortlisted as shown on the sixth column.

The last column of Table 2222 shows that the three

selected projects from the repository are ranked

based on the similarity scores from the retrieval stage

(i.e., from the second column of the table).

The following observations can be made from the

above example:

a. Based on the pre-filtering similarity scores, the

fourth, second and fifth projects are the most

similar to the query, whereas from the actual

similarity scores obtained during the retrieval

stage, the second, fourth and first projects are the

most similar to the query. These differences

arisebecause the computations in the retrieval

stage are more detailed than during pre-filtering.

This also explains why repository project 1, which

is the third most similar project to the query is not

among the three shortlisted projects.

b. As shown in the last column of Table 2, Projects 1

and 3 from the repository are not compared with

the query, because they were not selected after

pre-filtering. Thus, pre-filtering helps to minimize

retrieval time by limiting the number of repository

projects that are compared with the query.

5.5.5.5. EXPERIMENTSEXPERIMENTSEXPERIMENTSEXPERIMENTS

This section describes experiments for assessing the

proposed pre-filtering technique. All experiments

were carried out on a personal computer having the

following configuration: 2.67 GHz Intel Core 2 Quad

processor; 4 GB RAM; and 32-bit Windows 7 operating

system.

MMMMINIMIZATION OINIMIZATION OINIMIZATION OINIMIZATION OF F F F RRRRETRIEVAL ETRIEVAL ETRIEVAL ETRIEVAL TTTTIME IME IME IME DDDDURING URING URING URING SSSSOFTWARE OFTWARE OFTWARE OFTWARE RRRREUSEEUSEEUSEEUSE,,,, H. O. Salami H. O. Salami H. O. Salami H. O. Salami

Nigerian Journal of Technology, Vol. 34, No.2, April 2015 396

Table 3: Description of software systems used for experiment

Software

Family
Brief Description Versions

Label in

repository

No. of

classifiers in

class

diagrams

No. of

sequence

diagrams

No. of

messages in all

sequence

diagrams

Java Game

Maker

(JGM)

game engine for

developing java games

1.9, 2.1, 2.2,

2.9, 3.1
R1 – R5 27 – 37 54 – 98 581-1838

Plot

Digitizer

(PD)

For digitizing data

points off of scanned

plots, scaled drawings,

etc.

2.3.0, 2.4.1,

2.5.0, 2.6.0,

2.6.2

R6 – R10 44 – 66 48 – 69 648 – 942

Open Stego

(OG)
steganography tool

0.2.0, 0.3.0,

0.4.0, 0.5.0,

0.5.2

R11 – R15 11 – 59 15 – 92 172 – 3895

JOrtho (JO)
Java based spell

checker

0.2, 0.3, 0.4,

0.5, 1.0
R16 – R20 22 – 56 66 – 88 419 – 2175

51 Degrees

(51D)

For detecting mobile

devices that browse a

website

2.2.8.5,

2.2.8.6,

2.2.8.7,

2.2.8.8,

2.2.8.9

R21 – R25 52 77 – 84 1331 - 1366

Jcurses

(JC)

Console toolkit for

Windows®

0.91, 0.92,

0.94, 0.95,

0.95b

R26 – R30 57 - 66 178 - 254 4991 – 9291

5.1 Evaluation Criteria5.1 Evaluation Criteria5.1 Evaluation Criteria5.1 Evaluation Criteria

The following criteria would be used to assess the pre-

filtering approach described in this paper.

5.1.1 5.1.1 5.1.1 5.1.1 Mean Average Mean Average Mean Average Mean Average Precision (MAP)Precision (MAP)Precision (MAP)Precision (MAP)

The average precision (AP) for a query is obtained

using precision values calculated at each point when a

new relevant document is retrieved (using precision

= 0 for each relevant document that was not

retrieved). Mean Average Precision, also referred to as

mean precision at seen relevant documents for a set of

queries is the mean of the AP scores for each query

[8]. The formula for MAP is given in (1).

∑ ∑
= =

==

N

j

Q

ij

j

irelP
QN

MAP
1 1

)(
11

 (1)

In (1),N is the number of queries, Qj is the number of

relevant documents for query j and P (rel = i) is the

precision at the ith relevant document. MAP was

chosen to measure retrieval efficiency because it is

widely used to evaluate ranked information retrieval

systems.

5.1.2 5.1.2 5.1.2 5.1.2 Retrieval TimeRetrieval TimeRetrieval TimeRetrieval Time

Since the main reason for employing pre-filtering is to

minimize retrieval time, it is important to measure

retrieval time with and without pre-filtering.

5.1.3 5.1.3 5.1.3 5.1.3 Correlation between Similarity ScCorrelation between Similarity ScCorrelation between Similarity ScCorrelation between Similarity Scores and ores and ores and ores and

Estimated Reuse EffortEstimated Reuse EffortEstimated Reuse EffortEstimated Reuse Effort

Even though a reuse system is able to retrieve

relevant projects from a repository with high MAP, it

is possible that it is only good at ranking the

repository projects but the similarity scores

themselves are meaningless. To address this

possibility, we shall examine the degree of correlation

between the similarity scores returned by the reuse

system and estimated modification (reuse) effort.

Since a significant amount of reuse effort is dedicated

to programming, code-based sizing metrics will be

used to estimate reuse effort. The formula employed

by Basili et al. [9] for predicting software maintenance

effort will be used to predict reuse effort in this paper.

We reasoned that maintenance effort is more or less

proportional to reuse effort since they both involve

efforts to modify existing software to meet some

current needs.(Reuse) effort in man hours is

estimated as follows [9]:

Effort = 0.36 * effective SLOC + 1040. (2)

In (2), effective source lines of code (SLOC) is the sum

of added, deleted and modified SLOC. A strong degree

of correlation between similarity scores and estimated

reuse effort shows that similarity scores returned by

the reuse system can provide a reuser with a rough

estimate of the amount of effort needed to adapt

MMMMINIMIZATION OINIMIZATION OINIMIZATION OINIMIZATION OF F F F RRRRETRIEVAL ETRIEVAL ETRIEVAL ETRIEVAL TTTTIME IME IME IME DDDDURING URING URING URING SSSSOFTWARE OFTWARE OFTWARE OFTWARE RRRREUSEEUSEEUSEEUSE,,,, H. O. Salami H. O. Salami H. O. Salami H. O. Salami

Nigerian Journal of Technology, Vol. 34, No.2, April 2015 397

retrieved software artifacts to suit the needs of the

software system being developed.

5.2 Experimental Data5.2 Experimental Data5.2 Experimental Data5.2 Experimental Data

Data scarcity is a common problem for software

engineering research [10]. Due to the unavailability of

software reuse repositories containing UML diagrams,

we reverse engineered class and sequence diagrams

for six families of open source software using Altova®

UModel®. The software was obtained from

SourceForge, a popular web-based source code

repository. The repository contained five versions of

each software family, making a total of 30 projects.

Furthermore, 30 queries Q1 … Q30 were formed by

using each of the repository models in turn (i.e., Qi =

Ri, 1 ≤ i ≤ 30). The similarity between each query and

every repository project was determined. Intuitively,

Ri is relevant to Qi (1 ≤ i ≤ 30) only if Qi and Riare

versions of the same software family. For example,

R1…R5 are relevant to Q1…Q5, while R26…R30 are

relevant to Q26…Q30. A brief description of the various

software families is presented in Table 3.

5.3 Results5.3 Results5.3 Results5.3 Results

The first experiment was aimed at determining the

performance of the pre-filtering stage without any

retrieval stage. Table 4 shows shows the retrieval time

as well as correlation between pre-filtering similarity

scores and reuse effort when pre-filtering is

considered as a stand-alone retrieval stage. In another

experiment, we measured the MAP as the number of

projects returned by the pre-filtering stage is varied.

The horizontal axis of Figure 2 shows that the number

of projects returned after pre-filtering is varied from 5

to 30. The vertical axis shows the MAP.

The final experiment studied the effect of pre-filtering

on MAP and retrieval time, by comparing these values

when retrieval is performed with and without pre-

filtering. The number of projects returned after pre-

filtering was set to 10. Figure 3 and Figure 4 show

how pre-filtering affects MAP and retrieval time,

respectively.

5.4 Discussion of Results5.4 Discussion of Results5.4 Discussion of Results5.4 Discussion of Results

As can be inferred from and Figure 2, the proposed

pre-filtering approach meets its objective; it is

computationally inexpensive. Moreover, it returns

many of the relevant repository projects in response

to the queries, since the MAP is 76.34% when only five

projects are shortlisted (see Figure 2). However, the

correlation between the pre-filtering similarity score

and predicted reuse effort is only 0.61, compared to a

correlation coefficient of 0.78 when the similarity

scores from the retrieval stage were compared with

estimated reuse effort. It is inconsequential that pre-

filtering similarity scores do not have a high

correlation with reuse effort, because the actual

similarity scores between query and repository

projects will be determined in the retrieval stage.

Nonetheless, these results indicate that it is not

advisable to rely on pre-filtering alone (i.e., without a

retrieval stage) during software reuse.

Figure 3 shows that pre-filtering caused MAP to drop

from 92.74% to 84.94%. This decrease in MAP is

expected since pre-filtering inadvertently omits some

relevant repository projects as a result of its shallow

comparison, which is based on only 13 metrics.

Furthermore, it can be observed from Figure 4that

pre-filtering led to a sharp decline in retrieval time.

The retrieval time dropped from 2,473 seconds to 888

seconds. This represents a speed-up of approximately

2.8.

Figure 2: Relationship between MAP and number of

projects selected after pre-filtering
Figure 3: Effect of pre-filtering on MAP

0%

20%

40%

60%

80%

100%

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

(M
A

P
) no pre-filtering

with pre-filtering

MMMMINIMIZATION OINIMIZATION OINIMIZATION OINIMIZATION OF F F F RRRRETRIEVAL ETRIEVAL ETRIEVAL ETRIEVAL TTTTIME IME IME IME DDDDURING URING URING URING SSSSOFTWARE OFTWARE OFTWARE OFTWARE RRRREUSEEUSEEUSEEUSE,,,, H. O. Salami H. O. Salami H. O. Salami H. O. Salami

Nigerian Journal of Technology, Vol. 34, No.2, April 2015 398

Figure 4: Effect of pre-filtering on retrieval time

Table 4: Performance of pre-filtering stage without a
retrieval stage

Correlation with reuse effort

Time to search

repository
(milliseconds)

Correlation Coefficient = 0.6130

Significance Level = 2.56 x 10-49
3.99

6. 6. 6. 6. CONCLUSION AND FUTURE WORKCONCLUSION AND FUTURE WORKCONCLUSION AND FUTURE WORKCONCLUSION AND FUTURE WORK

In order to minimize retrieval time during software

reuse, this paper proposed a technique for pre-

filtering repository projects prior to retrieval.

Experimental results show that pre-filtering results in

very substantial decrease in retrieval time. Pre-

filtering led to a slight reduction in MAP, owing to its

use of a superficial approach for selecting projects’

based on supposed similarity. It does not matter that

there is a low degree of correlation between pre-

filtering scores and estimated reuse effort since pre-

filtering is expected to be followed by the retrieval

stage, which has been shown to produce a strong

degree of correlation with reuse effort.

Our pre-filtering technique can be extended in several

ways. Firstly, if it takes into account the names of

concepts that occur in the models, it will help to sieve

out projects that belong to application domains

different from that of the query. Secondly, the number

of repository projects returned after pre-filtering was

fixed in the experiment. More research is needed to

automatically determine the proportion of repository

projects to be returned after pre-filtering. On one

hand, selecting a large fraction of repository projects

after pre-filtering defeats the aim of pre-filtering. On

the other hand, choosing a small proportion of

repository projects may lead to a significant decrease

in MAP, since many relevant projects may not be

shortlisted at the end of pre-filtering. Thirdly, more

experiments can be performed to determine if the

effect of pre-filtering can be improved by adding or

removing from the metrics listed in Table 1.

7. ACKNOWLEDGMENT7. ACKNOWLEDGMENT7. ACKNOWLEDGMENT7. ACKNOWLEDGMENT

The author would like to acknowledge the support

provided by the Deanship of Scientific Research at

King Fahd University of Petroleum & Minerals

(KFUPM), Saudi Arabia under Research Grant 11-

INF1633-04.

8. REFERENCES8. REFERENCES8. REFERENCES8. REFERENCES

[1] I. Sommerville, Software Engineering, 9th ed.: Pearson

Addison Wesley, 2010.

[2] S. Channarukul, S. Charoenvikrom, and J. Daengdej,

"Case-based reasoning for software design reuse," in

Aerospace Conference, 2005 IEEE, 2005, pp. 4296-

4305.

[3] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. L.

Ferreira, and C. Bento, "Case-Based Reuse of UML

Diagrams," in The Fifteen International Conference on
Software Engineering and Knowledge Engineering
(SEKE 2003), 2003, pp. 335-339.

[4] W.-J. Park and D.-H. Bae, "A two-stage framework for

UML specification matching," Inf. Softw. Technol., vol.

53, pp. 230-244, 2010.

[5] H. O. Salami and M. A. Ahmed, "A framework for reuse

of multi-view UML artifacts," International Journal of
Soft Computing and Software Engineering, vol. 3, pp.

156 - 162, 2013.

[6] M. Genero and M. Piattini, "Empirical validation of

measures for class diagram structural complexity

through controlled experiments," in 5th International
ECOOP Workshop on Quantitative Approaches in
object-oriented Software Engineering (QAOOSE 2001),

2001.

[7] J. Muskens, M. Chaudron, and C. Lange, "Investigations

in applying metrics to multi-view architecture models,"

in 30th Euromicro Conference, 2004, pp. 372 - 379.

[8] S. Teufel, "An overview of evaluation methods in TREC

ad hoc information retrieval and TREC question

answering," Evaluation of Text and Speech Systems, pp.

163-186, 2007.

[9] V. Basili, L. C. Briand, S. Condon, Y.-m. Kim, W. L. Melo,

and J. D. Valettt, "Understanding and Predicting the

Process of Software Maintenance Releases," in in
proceedings of the 18th international conference on
software engineering, 1996, pp. 464-474.

[10] D. Zhang and J. J. P. Tsai, Advances in Machine Learning
Applications in Software Engineering: IGI Global, 2007.

0

500

1,000

1,500

2,000

2,500

ti
m

e
 t

o
 s

e
a

rc
h

 r
e

p
o

si
to

ry

(s
e

co
n

d
s)

no pre-filtering

with pre-filtering

