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Abstract 

 

We describe how to use Exponential Time Differencing with Runge-Kutta time 

stepping (ETDRK) for convectively dominated financial problems. For European 

options with low volatility, we illustrate how the use of ETDRK with flux limiters 

gives non-oscillatory prices and sensitivity parameters. We also show how accurate 

Asian option prices can be efficiently obtained by combining high resolution 

methods with ETDRK to solve the resulting two-dimensional convection 

dominated Black-Scholes type PDE. 

 

 

Keywords: Exponential time integrators, Runge-Kutta, Option pricing, TVD 

discretisations.  

 

 
*For correspondences and reprints 
 

 



D. Y. Tangman, A. Gopaul & M. Bhuruth 

 374 

1. I.TRODUCTIO. 

 

It is well known in the financial community (Zvan et al. 1998) that spurious 

oscillations occur if a central approximation is used for the spatial discretisation for 

convectively dominated financial problems. This is due to the slow decay of longer 

wavelengths components (Tavella & Randall 2000). Therefore special TVD 

discretisations involving high-order non-linear flux limiters have been employed 

by Zvan et al. (1998) in order to obtain non-oscillatory solutions. However, this 

procedure results in non-linear equations which are computationally expensive to 

solve using Newton iterations. 

 

We describe here a resourceful scheme based on ETDRK to avoid the non-linear 

problem. ETDRK methods have been recently introduced by Cox & Matthews 

(2002) and more recently by Kassam & Trefethen (2005) to solve PDEs that 

combine high order linear terms with low order nonlinear terms. Most of the test 

cases considered by these authors involve periodic or constant boundary 

conditions. Here we show how to incorporate time dependent boundaries in order 

to apply such schemes in the financial settings. Indeed, using exponential time 

integrators with Runge-Kutta time stepping allows us to treat the stiff linear part 

through the exponential operator while the Runge-Kutta time stepping is used to 

integrate the non-linear advection discretisation terms explicitly. We then show 

how to price Asian options using ETDRK. 

 

We use in this paper, the two-dimensional PDE as in Wilmott et al. (1995) and 

Hugger (2004) to price Asian options under the Black-Scholes (BS) model. An 

Asian option is a path-dependent security since its payoff depends on the average 

a  of the underlying asset price S  over a given period of time. However no 

diffusion terms exist in the average spatial dimension making the pricing equation 

convectively dominated. Hugger (2004) has tried to prevent the use of non-linear 

discretisations by adding artificial diffusion but his procedure does not give 

accurate prices. This means that the high resolution methods proposed in Zvan et 

al. (1998) and Oosterlee et al. (2004) are essential. 

 

This paper is structured as follows. In section 2, we describe the PDE approach for 

pricing European options and fixed strike arithmetic Asian options. Next in section 

3, we show how to use of ETDRK in combination with various special spatial 

discretisation for hyperbolic problems such as Kappa schemes with flux limiters, 

ENO and WENO discretisations. We also include numerical experiments which 

confirm the efficiency of the proposed methodology. Finally our conclusion is 

found in section 4. 

 

2. OPTIO.S PRICI.G I. THE BLACK-SCHOLES FRAMEWORK 

 

We consider a financial market with a single asset with price S  which follows the 

geometric Brownian motion 

,)( tdWSdtSrdS σδ +−=  



Exponential Time Differencing With Runge-Kutta Time Stepping for Convectively 

Dominated Financial Problems 

 375 

where r  is the interest rate, δ  the amount of dividend, σ  the volatility and tdW  

is the standard Weiner process at time t . The value ),( τSV  of a European option 

on the asset, solves the initial boundary value problem of the Black Scholes  
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where tT −=τ  is the time from expiry and T  is the expiry time. It is the feature 

of each option that characterises the condition at expiry and the boundary 

conditions at the ends of our computational domain. We now describe these 

conditions for the well-posed formulation of European and Asian option pricing 

problems. 

 

European options can only be exercised at maturity and admit an analytical (Black 

& Scholes1973). So they serve as a guideline to evaluate the effectiveness of our 

schemes in cases when (1) is convection dominated. We distinguish between a call 

and a put option which give its holder the right to buy or sell at a fixed strike price 

E . For a call option, boundary and initial conditions are given by 

 

.),(

,0),0(

),0,max()0,(

ττδτ

τ
rEeSeSV

V

ESSV

−− −=

=

−=

          )2(  

 
Asian options are strongly path dependent. The payoff 
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of the underlying asset price. It is because of this extra independent variable that it 

does not satisfy the one dimensional Black-Scholes PDE (1), but rather a two 

dimensional PDE of the form (Hugger 2004,Wilmott et al. 1995) 
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In the case 0=S , the option value is just the discounted payoff 
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T

a
eaSV rττ     (5) 

 

Also, a  is a non-decreasing function of τ−  and for ETa ≥ , we are guaranteed a 

positive payoff. For the case 0=δ , the Feynman-Kac theorem (Barraquand & 
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Pudet 1996, Tavella & Randall 2000) states that under the risk neutral process 

uŜ where 

[ ] ,,ˆ τττ −≤=Ε −− TuSS TuT  and 
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The extension to dividend yield is straightforward. First we notice that 

),,(),,( ττ τδ aSVeaSw =  will satisfy (4) with r  replaced by δ−r  in the 

coefficient of the reaction term (Wilmott et al.1995). So using (6), the Asian option 

value with dividend will be 
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Similarly for 0=σ , it can be shown that the option value will be 
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and this can be regarded as a boundary condition for large asset price .ˆ
maxS  With 

the boundary conditions (3), (5), (7) and (8) defined over the whole surface edge of 

our two-dimensional computational domain, we can compute the option value for 

0=a . The boundary value formulation for the fixed strike Asian option has been 

shown to be well-posed by Hugger (2003). We notice that (4) differs from (1) by 

the addition of a first order derivative in the average spatial dimension. Also, no 

diffusion exists in a  so that with central differencing, the slow decay of longer 

wavelengths components causes oscillations (Tavella & Randall 2000). As a result, 

more sophisticated spatial discretisations are necessary. 

 

3. EXPO.E.TIAL TIME DIFFERE.CI.G SCHEMES 

 
To describe ETD schemes for the pricing of different options, we first consider a 

European call option without dividend. For a finite difference discretisation of the 

spatial derivatives in 
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(1), we need to truncate the semi-infinite S -domain ( )∞,0  to a bounded domain 

).,0( maxSS =Ω  We therefore consider a computational grid SS Ω⊂Ω∆  defined 

by 

 

{ },,,,1,0,: max mSSmiSiSS iiS =∆=∆=ℜ∈=Ω +∆ K  

 
and define the central second order approximations to the first and second order 

spatial derivatives with respect to S  by the difference matrices 
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respectively. Then, by discretising the spatial operator in (1), we obtain the matrix 
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where 
11 −×−ℜ∈ mm

SI  is the identity matrix for S . Thus PDE (1) becomes the 

ODE system 
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To derive an exponential time difference scheme, we multiply (10) by the 

integrating factor 
τAe−  and integrate over the time interval T≤≤ τ0 . This gives 
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The special structure of the vector )(τb  allows a closed form expression for the 

integral term in (12). For this, we write ( ) 11)( −
−

− −= m

r

mm eEeSb τγτ  where 1−me  

is the last vector in the canonical basis of 
1−ℜm
. It is then easy to prove the 

following result. 
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Since the matrices A  and )( rIA+  are tridiagonal, we observe that the 

implementation of the formula (13) can be efficiently carried out. The term 

( ) 1−
−− m

rTAT eIee  simply equals the )1( −m th column of the matrix ( )Iee rTAT −−  

and this term is easily computed once the matrix 
ATe  is available. 

 

3.1 Dominant Convection 

When the Black-Scholes PDE (1) is convection-dominated, the central spatial 

discretisation (9) will cause oscillations in the calculation of the option's price as 

well as in the greeks delta and gamma. To restore the positivity of the schemes, we 

use an approximation similar to that used by Zvan, Forsyth & Vetzal (1998) for the 

convective term. This takes the form 
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for the first order upwind scheme. The κ  schemes (van Leer 1977); see also 

(Wesseling 2000, p.149) provide a framework for formulating upwind biased 

schemes when convection is dominant. A higher order term is added to the 

convective flux as follows: 
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For typical financial parameters, we usually have δ≥r  and the flux difference 

will be 
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The case 31=κ  gives a third order upwind biased scheme (Anderson et al. 1986) 

and 21=κ  gives the QUICK scheme of Leonard (1979). These schemes are still 

linear and can be implemented as previously as a one-time step algorithm. The 
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only difference is to incorporate the ghost cell boundaries in the boundary vector 
.g  

 

However the κ  schemes are not monotone and produce spurious oscillations at 

places that have a discontinuity or a strong gradient. Thus, to make the schemes 

TVD, we apply flux limiters to the high-order terms as follows: 
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is the van Leer limiter in van Leer (1974). For 1=κ , we obtain the scheme 

proposed by Zvan, Forsyth & Vetzal (1998) to solve the convectively dominated 

Black-Scholes PDE. 

 

Another way to obtain nonoscillatory solutions for problems with high drift term 

and low volatility is to use a WENO scheme (Liu et al. 1994, Jiang & Shu 1996). 

For example a fifth-order WENO scheme computes the upwinding cell-

reconstructions over the 5-point stencil ),,()( 31 +−= iir SSiS K  for δ≥r  as 
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are third order accurate. To avoid oscillations, the reconstruction containing the 

discontinuity is discounted automatically by weights 
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with 
6

210 10,3.0,6.0,1.0 −==== εddd  and 
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represent the smoothness indicators. 

 

It is the way the weights are computed that introduces non-linearity into the 

discretisation. The Newton iteration for solving the flux limiter scheme with 

Crank-Nicolson timestepping has been considered in Zvan et al. (1998) and 

multigrid techniques for fifth-order WENO with Blended Backward Differentiation 

Formula (BDF2) were studied in Oosterlee et al. (2004). However such techniques 

are computationally costly. Here we show how flux limiting can be efficiently 

implemented with ETD and a combination of Runge-Kutta (RK) steps. For a non-

linear scheme, the semi-discrete system (10) becomes 

 

( ) ( ) ( ) ( )( ),1 ττττ V�bVV ++Β=      ,0 T≤≤τ    (14) 

 

where ( )( )τV�  represents the extra nonlinear term due to the flux limiter. Here 

the matrix B  comprises of only diffusion and reaction terms that have been 

discretised by central difference approximations. Now, integrating (14) over a time 

step τ∆  gives the exact equation 
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It is the way we approximate the integral term that characterizes the order of an 

ETDRK scheme. A second order ETD scheme with Runge Kutta time stepping 

(ETDRK2) (Cox & Matthews 2002) can be formulated as follows. First we use a 

constant approximation ( )( ) ( )( )kV�V� τς ≈  over the interval 1+≤≤ kk τττ  to 

obtain 
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where zIez z )()(1 −=ϕ  and the update 
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incorporates the boundaries for RK-timestepping. We then use the approximation 
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( )( ) ( )( ) ( )( ) ( )( )( ),kkk V�a�V�V� ττςτς −+≈  

 
to obtain 
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where zIzz ))(()( 12 −= ϕϕ . For an efficient implementation, the matrix vector 

multiplications in g  can be precomputed once at the start since they do not depend 

on kτ . Then only vector manipulations remain to be done at each time step. We 

numerically illustrate the superior performance of the ETDRK2 scheme described 

by equations (15) and (16) for a European call option with parameters 

15,01.0,15.0 === Er ο  and 1=T  and from Table 1, it is the Van Leer flux 

limiter scheme with 1=κ  that produces numerical solutions with errors of least 

magnitude. For central schemes )1( =κ  without limiter, we can see oscillations in 

delta and gamma in Figure 1 while its TVD version computes accurately the option 

price and the hedging parameters. For this test example we use MATLAB
®
 6.1 on 

a computer with 256 MB RAM and 2.8 GHZ, and found that ETDRK2 is about 60 

times faster than the Newton iteration used in Zvan et al. (1998) and runs in 0.5470 

seconds with an error of lesser magnitude. 

 

 κ -Schemes Upwind WENO5 

1=κ  1=κ  1=κ  
No limiter 0.0303 0.0082 0.0100 0.1247 0.0055 

Van Leer Limiter 0.0023 0.0301 0.0257 - - 
Table 1. Infinity norm error for various schemes. 
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Figure 1. Accuracy of central and flux discretisation with the ETDRK scheme. 

 
For an Asian option, semi-discretisation of (4) gives 
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where ( )( )ςV�S  is the advection in the S  spatial direction and ( )( )ςV�a  is the 

advection in a . Similar formulas as (15) and (16) can be easily derived for the 

ETDRK2 version of (17). However when the van Leer flux limiter is used to 

discretise the convective term, a difficulty is encountered since there exists no 

boundary condition at 0=a . Hugger (2004) proposed to extend the computational 

domain in the negative a  direction and impose the analytic solution for 0=σ  as 

boundary. We propose here a better approach which computes a second order 

upwind approximations for aV ∂∂  only at 0=a . Such a procedure does not 

result in extra computations due to a grid extension. Note that the way of 

formulating (17) to separate the linear and non-linear part, has also separated S  

and a . In fact, the matrix B  which consists of diffusion and reaction terms has the 

same size 1−m  as for the one dimensional problem (14). In comparison to the 

method used in Zvan et al. (1998), the discretisation matrix will have rank 
2)1( −m  

and will be truly two dimensional if both S  and a  are discretised simultaneously 

with the same number of grid nodes. We solve the two dimensional PDE with the 

van Leer flux limiter and we use ETDRK2 for the time stepping. The numerical 



Exponential Time Differencing With Runge-Kutta Time Stepping for Convectively 

Dominated Financial Problems 

 383 

results for 100=E  and 1.0=r  are given in Table 2 for a wide range of 

parameters. They clearly show that the new scheme is faster and more accurate 

than if the Crank-Nicolson scheme was employed with a central spatial 

discretisation (CNCentral). Also, we observed in Figure 2 that there is no 

oscillation in the computation of both the delta and gamma when using ETDRK2. 

This is not the case for CNCentral. 

 

σ  T  ETDRK2 Bounds ZFV CNCentral 

 

0.1 

0.25 1.8834 1.851 1.793 2.0320 

0.5 3.1136 3.104 3.052 2.9006 

1 5.2990 5.255 5.261 4.8458 

 

0.2 

0.25 2.9289 2.932 2.928 2.8547 

0.5 4.5053 4.505 4.511 4.3234 

1 7.0477 7.042 7.042 6.8328 

 

0.4 

0.25 5.1564 5.168 5.175 5.0315 

0.5 7.5642 7.572 7.574 7.4194 

1 11.1211 11.121 11.115 10.961 

CPU 0.9690  29.346 
Table 2. Results for Asian fixed strike call option (The bounds are from the paper by 

Rogers & Shi (1995) and the prices under the column heading ZFV are from Zvan, Forsyth 

& Vetzal (1998)). 
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Figure 2. Delta and Gamma for a fixed strike Asian call using Crank-�icolson and 

ETDRK2. 

 

 
4. CO.CLUSIO.S 

 
The new approach of using ETD with Runge-Kutta time stepping schemes for 

option pricing proves to be very effective. This is because ETD solves the stiff 

linear part exactly through the integrating factor 
τ∆−Ae  so that explicit Runge-

Kutta can be applied for the nonlinear part. This gives an algorithm that is faster 

than the Newton's non-linear iterative solver since no linear or nonlinear solvers 

are required at each time step. The framework developed in this paper is robust 

enough to price with reliable accuracies convectively dominated European and 

Asian pricing problems. 
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