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Abstract 
 
In this paper, we examine the use of the artificial neural network method as a forecasting 
technique in financial time series and the application of a Kalman filter algorithm to improve 
the accuracy of the model.  Forecasting accuracy criteria are used to compare the two models 
over different set of data from different companies over a period of 750 trading days. In all 
the cases we find that the Kalman filter algorithm significantly adds value to the forecasting 
process. 
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1. INTRODUCTION  
 
In this paper, we show that the post-processing of forecasts produced by an artificial neural 
networks (ANN) model using a Kalman filter leads to significant improvements in 
forecasting accuracy.  Various attempts have been made in using ANN models for forecasting 
financial time series.  The growing interest in this nonlinear method can be explained by the 
poor performance of classical methods for financial forecasting.  In fact, the uncertainty 
associated with the pricing of financial derivatives was first dealt by the random walk 
hypothesis, also known as the efficient market model (Panda et al. (2003)).  Later linear 
regression models such as ARIMA and VAR models were developed but their out-sample 
results were not better than the random walk model (Panda et al. (2003)).  Since the linear 
models could not be used to accurately fit the financial market models, more research work 
was directed towards the development of nonlinear models such as the threshold model, the 
bilinear model and the artificial neural network model (Franses et al. (1998)).  Kuan et al. 
(1995) showed that ANN model gave better predictions than the random walk model.    
The ANN model is often classified as a nonlinear, non parametric and data driven modeling 
method. The input data is fully used and it determines the structure and parameters of the 
model.  Neural networks are universal approximators capable of simulating any continuous 
function and they usually require a few a priori assumptions about the model under study.  
Other applications of ANN have been discussed for airline modeling and river flow 
forecasting (Atiya et al. (1999), Faraway et al. (1998)).  
The performance of the ANN model depends upon the type of data, the choice a suitable 
model and the numerical method used for fitting the model and computing the forecasts.  
Faraway et al. (1998) showed that linear models give better forecasts than ANN for linear 
data. Other drawbacks of ANN are excessive training times, danger of over-fitting and the 
large number of parameters required for training. Hence the determination of an appropriate 
network is often a trial and error issue. 
Our aim here is to add value to the performance of ANN by using a post-conditioner.  Some 
recent works, (Galanis et al. (2006), Emmanouil et al. (2006), Louka et al. (2005)) have 
shown that the use of the Kalman filter produced high improvement in the accuracy of 
meteorological and wind power predictions.  The novelty of this paper is the application of 
the Kalman filter on the predictions obtained by the ANN model for forecasting stock prices.  
The outline of our work is as follows. In sections 2 and 3, we briefly describe the ANN 
method and the Kalman filter algorithm. In section 4, we explain our methodology and 
finally, based on our results, we draw some concluding remarks. 
 
2. ARTIFICIAL NEURAL NETWORKS 
 
The ANN method imitates the way by which the brain processes information. Given an input 
vector , the network produces an output vector  
where  indicates the number of inputs and m  the number of output units. A neural network 
is typically organized into several layers of nodes.  The first layer is the input layer, the 
number of nodes corresponding to the number of variables, and the last layer is the output.  
The input and output layer can be separated by one or more hidden layers.  The nodes in 
adjacent layers are fully connected.  Each neuron receives information from the preceding 
layer and transmits to the following layer only.  The neuron then performs a weighted 
summation of its inputs; if the sum passes a threshold, the neuron transmits, otherwise it 
remains inactive.  An example of a fully connected ANN model with one hidden layer is 
shown in Fig.1, 
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Fig. 1: An artificial neural network model. 
 
where , are the inputs at time t , , are the hidden outputs.  The 
variables and  are the actual and ANN model output respectively. The vector 
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represents the strength of the connection between the input and the unit .  There may 
also be the input bias 
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jϑ  modulated with the weight  associated with the inputs.  The total 
input of the node  is the dot product between vectors 
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then passed through a nonlinear activation function to produce the output value of processing 
unit , which is defined as  
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The activation function introduces a degree of nonlinearity to the model and prevents the 
output from reaching very large values that can paralyze ANN models and inhibit training.  In 
this paper we choose  as the activation function as these have been 
extensively and successfully used in previous studies.  The modeling process begins by 
assigning random values to the weights.  The output value of the processing unit is passed on 
to the output layer.  If the output is optimal, the process is halted. Else the weights are 
adjusted by using an appropriate algorithm, which we choose as the back propagation 
algorithm for our work. The process continues until an optimal solution is found.  The output 
error, which is the difference between the actual value and the ANN model output, is also 
known as the optimisation error.  

)/()()( xxxx eeeexf −− +−=

 
3. KALMAN FILTER 
 
In this section the Kalman filter algorithm used for the improvement of neural network 
forecasts is described. The main idea is the estimation of the bias of the neural network model 
as a polynomial function of the model direct output. More precisely, if rt denotes the direct 
output of the model at time t and yt the bias of this forecast, we realize yt by means of rt as a 
3-rd order polynomial (Galanis et al. (2006)):  
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The coefficients (xi,t)i=0,..,3 are the parameters that have to be estimated by the filter and vt the 
Gaussian non-systematic error in the previous procedure.  
In this way, the state vector of the procedure is formed by the coefficients (xi,t), namely 

, the scalar observation parameter is the bias y[ T
t,t,t,t,t xxxxx 3210= ] t and the 

observation matrix [ ]321H tttt rrr= . We choose the identity matrix as the system matrix. 
Therefore, the system and observation equations take the following form:  

tttt1tt vxy,wxx +⋅=+= − tH  . 
Kalman filter gives a method for the recursive estimation of the unknown state xt based on all 
observation values y up to time t. The evolution of the filter from time t-1 to t is described by 
the following equations:  

xt = xt-1 + Kt⋅(yt -Ht⋅ xt-1) , 
Kt = (Pt-1

 + Wt)·Ht
T·(Ht·(Pt-1

 + Wt)·Ht
T + Vt)-1,  

Pt = (I - Kt·Ht)· (Pt-1
 + Wt). 

In the above algorithm, Kt is the Kalman gain that arranges how easily the filter adjusts to 
possible new conditions or alternations of the type of data. On the other hand, Pt denotes the 
covariance matrix of the state vector xt. 
Kalman filters of the above type have been used in several different frameworks including 
meteorological and wind power applications with excellent results (Galanis et al. (2006), 
Emmanouil et al. (2006), Louka et al. (2005)). The proposed algorithm permits the estimation 
of non-linear time series since it encapsulates in the classical Kalman filter procedure non-
linear polynomial functions.  
 
4. METHODOLOGY 
 
We consider the stock prices of four leading companies operating in Mauritius, which are 
namely, Mauritius Commercial Bank Ltd (MCB), Ireland Blyth Ltd (IBL), Rogers and Co. 
Ltd (ROGERS) and the State Bank of Mauritius Ltd (SBM). These daily stock prices, which 
have been collected during the period September 17, 2001 to September 16, 2004, amount to 
a total of 750 observations as shown in Fig. 2.   
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Fig. 2 Plots of the data set for IBL, ROGERS, SBM and MCB. 

 
Denoting  to be the stock price at time t , we define the price log differences as 

. We consider the first 500 observations which are used for the training 
set as the in sample set and the remaining 250 observations as the out sample set.  The latter 

tsp

1loglog −−= ttt spsps
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is used for testing the accuracy of the forecasted prices. We present the statistics for our data 
set in Table 1. 
 

Table 1: Summary statistics for data set: Log first difference. 
 MCB IBL ROGERS SBM 

Mean -0.0011 8.2E-4 5.4E-4 8.9E-4 
Standard 
Deviation 

0.0601 0.0155 0.0107 0.0128 

Skewness -24.6931 0.0646 -0.3955 2.1205 
Kurtosis 653.8821 23.7965 14.4222 30.3580 
Maximum 0.1372 0.1369 0.0651 0.1386 
Minimum -1.5904 -0.1223 -0.0621 -0.0780 

 
The parameters used for our neural network are a single hidden layer with three nodes and a 
linear transfer function for the output and the number of iterations and epochs are chosen as 
2000 and 5000 respectively. After carrying out the simulations with the Neural Network 
toolbox in MATLAB, we have based the selection of the best training sets for each company 
on the smallest root mean sum square error (RMSE) criteria. These errors are minimized 
through the adjustments of weights.  The training set is used to develop the model and the test 
set measures how well the model interpolates over the training set. Training normally stops 
when the test set error reaches its lowest point.  This stopping rule reduces the likelihood of 
over fitting.   The same model is then applied to the test set. Using the forecasted values 
obtained by the ANN model, we then apply the Kalman filter algorithm to these values. We 
measure the accuracy of the forecasted values obtained from ANN and from our new method 
through RMSE, MAE (Mean absolute error), and MAPE (Mean absolute percentage error). 
Their formulas are given below 
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5. OUT-OF SAMPLE FORECASTING ACCURACY RESULTS 
 
The forecasting accuracy statistics are shown in Table 2 for the four different companies.  A 
general observation is that the ANN model gives a satisfactory forecast but the application of 
the Kalman Filter to these predicted values improves the result significantly in all the cases.  
This can be seen from the graphs in Fig. 3 – Fig. 6 where the Kalman filtered values are 
shown to be closer to the actual values. 
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Table 2: Bias for the forecasted out-sample stock prices by using the ANN model and with 
Kalman Filter. 
MCB IBL  

ANN Kalman 
Filter 

ANN Kalman 
Filter 

RMSE 7.91 0.91 1.87 0.81 
MAE 7.45 0.56 1.43 0.44 
MAPE 0.22 0.02 0.05 0.02 

Rogers SBM  
ANN Kalman 

Filter 
ANN Kalman 

Filter 
RMSE 7.80 2.34 46.81 0.4 
MAE 6.66 1.59 33.61 0.26 
MAPE 0.05 0.01 1.47 0.01 

 
From Table 2, we find that for the four companies, the RMSE, MAE and MAPE are much 
smaller for the filtered forecasted values. We also note that in the case of SBM, even if we do 
have a good set of predicted prices, we can obtain a good forecast by using the Kalman filter 
algorithm as shown in Fig. 5. The RMSE for SBM falls from 46.81 to 0.4. 
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Fig. 3:Forecasted values for MCB out-sample set.              Fig. 4:Forecasted values for IBL out-sample set. 
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Fig. 5: Forecasted values for ROGERS out-sample set.   Fig. 6: Forecasted values for SBM out-sample set. 
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6. CONCLUSION 
 
In this paper we have forecasted the stock prices of four companies based in Mauritius by 
using the ANN model. We have then applied the Kalman filter algorithm to these predicted 
prices and we find that this process has significantly improved their accuracy as illustrated by 
our simulations.   
 
7. REFERENCES 
 
Atiya, AF, El-Shoura, SM, Shaheen, SI, & El-Sherif, MS 1999, ‘A comparison between 
neural-network forecasting techniques – case study: river flow forecasting’, IEEE 
Transactions on Neural Networks, Vol. 10, No. 2, pp. 402-409. 
 
Galanis, G, Louka, P, Katsafados, P, Kallos, G, & Pytharoulis, I 2006, ‘Applications of non-
linear Kalman filters to numerical weather predictions’, Annales Geophysicae, Vol. 24, pp. 
2451-2460. 

 
Emmanouil, G, Galanis, G, & Kallos, G 2006, ‘Statistical methods for the prediction of night 
time cooling and minimum temperature’, Meteorol. Appl. Vol. 13, pp. 1–11.  

 
Faraway J. & Chatfield C 1998, ‘Time series forecasting with neural networks: a comparative 
study using the airline data’, Appl. Statist. Vol. 47, Part 2, pp. 231-250. 

 
Franses, PH & van Griensven K 1998, ‘Forecasting exchange rates using neural networks for 
technical trading rules’, Studies in nonlinear dynamics and econometrics, Vol. 2, No. 4, pp. 
109-114. 

 
Kuan CM & Liu T 1995, ‘Forecasting exchange rates using feedforward and recurrent neural 
networks’, Journal of Applied Econometrics, Vol. 10, pp. 347-364. 

 
Louka P, Galanis G, Sibert, N & Kariniotakis G 2005, ‘Improvements in wind speed 
forecasts for wind power prediction purposes using Kalman filtering’, Proceedings of the 
2005 Conference on Computational and Mathematical Methods on Science and Engineering. 
 
Panda C & Narasimhan V 2003, ‘Forecasting daily foreign exchange rate in India with 
artificial neural network’, The Singapore Economic Review, Vol. 48, No. 2, pp. 181-199. 
 

 33


