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Abstract

In this paper, we present Levenberg-Marquardt method for solving nonlinear systems of
equations. Here, both the objective function and the symmetric Jacobian matrix are assumed
to be Lipchitz continuous. The regularization parameter is derived using Matrix-Norm
approach. Numerical performance on some benchmark problems that demonstrates the
effectiveness and efficiency of our approach are reported and have shown that the proposed
algorithm is very promising.

Mathematics Subject Classification: 65H10, 65K05, 65F22, 65F35.
keywords: Nonlinear system of equations. Levenberg-Marquardt method.
Regularization. Matrix-norm. Global convergence.

1 Introduction.

In this paper, we consider the problem of finding solution to the nonlinear equation

F(x) = 0 (1.1)

where
F : Rn −→ Rn (1.2)

is continuously differentiable function.
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I.e F = ( f1, f2, f3, ..., fn)T and x = (x1, x2, x3, ..., xn). The Jacobian matrix, J(x) = F′(x),
∀ x ∈ Rn and is denoted as Jk which is also assumed to be symmetric and Lipschitz
continuous.

The most efficient procedure for solving (1.1) is purely iterative (Amini and Ros-
tami, 2015; Fan et al., 2005; Karas et al., 2016; Yamashita and Fukushima, 2001; Qi
et al., 2016). Many algorithms have been used for solving (1.1). For instance, New-
ton’s method, Gauss-Newton’s, Trust Region Method and Quasi-Newton’s method
(Bidabadi, 2014; Broyden, 1967; Li and Fukshima, 1999; Solodov et al.,1998). As (1.1)
is nonlinear, it may have no solution. In this paper, we assume that the solution of
(1.1) exits. It is well known that the Levenberg-marquardt LM method is one of the
most important and efficient methods for solving the nonlinear system of equations
(Amini et al., 2015; Brown, 1971; J. Fan, 2012; Fan and Pan, 2006; He and Fan, 2015;
Li, 2014). Recently, the LM method turned out to be a valuable principle for obtaining
fast convergence to a solution of nonlinear system if the Jacobian matrix is Lipschitz
continuous and nonsingular at the solution ( Amini and Rostami, 2015).
The LM method is a classical method for solving nonlinear system of equations.The
LM direction dk, is computed at each iteration as

dk = −(JT
k Jk + µk I)−1 JT

k Fk (1.3)

where, µk is called Levenberg-Marquadrt regularization parameter and I is an n× n
identity matrix of the Jacobian.
The LM parameter µk, is introduced to overcome the difficulty when JT

k Jk is singular
or very close to singularity (Amini et al., 2015; Fan, 2015; Karas et al., 2016; Li, 2014).
By choosing a suitable parameter µk, the method acts like the gradient descent method
whenever the current iteration is far from a solution x∗, and behaves similar to the
Gauss-Newton method if the current iteration is close to x∗ ( AMasoud, 2018). The
parameter µk is updated in every iteration. The notion of (local ) error bound usually
plays a key role in establishing the rate of convergence of the sequence of iterations
generated by a given algorithm. This condition guarantees that the distance from the
current iteration xk to the solution set denoted by dist(xk, x∗) = inf

y∈x∗
||xk − y||, is less

than the value of a residual function ϕ : Rn → R+ at that point (ϕ(xk)) (Masoud,
2018). For many decades, alot among researchers use various approaches for comput-
ing the regularization parameter for Levenberg-Marquadrt. It is vital to mention that
Fan and Yuan,2005; Proposed (LM) parameter µk = ||Fk||σ and obtained an algorithm
that has quadratic convergence .
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(Fan and Pan, 2006), proved that if the parameter is choosen as µk = ||Fk||δ, for
δ ∈ (0, 2], under local error bound condition, then the convergent order of the LM
algorithm is min{1 + δ, 2} . (C. Ma and L. Jiang, 2007); came up with parameter
as µk = θ||Fk||+ (1− θ)||JkFk|| as a convex combination of the above two parameters.
Where θ ∈ [0, 1]. (Fan and Pan,2009); proposed their parameter as µk = ξkρ(xk), where
ξk is updated by Trust- region technique, ρ(xk) = min{ρ̃(xk), 1} and ρ̃ : Rn → R+ is
a positive function with ρ̃(xk) = O(||Fk||η), for η ∈ [0, 1]. J.Fan, 2012; introduced
a Modified Levenberg-Marquardt method (MLM) with cubic convergence where LM
parameter was choosen as µk = λk||Fk||δ with λ > 0 . ( Karas et al 2016); choosed LM
parameter as min{µ+

k ,µ−k }] where

µ−k =
Lk
4
(2||Fk||+

√
4||Fk||2 + ||Pk(Fk||2), µ+

k =
2 +
√

5
4

Lk||Fk||. (1.4)

where Pk is the projection onto the range of the matrix Jk. Musa and Waziri obtained
a globally convergent algorithm by using µk = δkLk{

ρ(Qk)
ρ(Jk)
}2, where, Qk = JT

k Jk + µIn,

µ > 0, Lk > 0, δk = 1
kk for k ≥ 1, ρ(Qk) and ρ(Jk) are the spectral radii of the matrix

Qk and Jk respectively.

2 Technical results.

For any µ > 0,. Theorem 2.1
||d|| = ||(AT A + µI)−1ATb|| ≤ 1

2
√

µ ||P(F(x))|| ≤ 1
2
√

µ ||F(x)||. where P is the orthogo-
nal projection onto the range of A Proposition 2.2 For any induced matrix norm and
a nonsingular matrix A, then,
||A−1|| ≥ ||A||−1

where
||A|| = max

||x||=1
{||Ax||} and ||A−1|| = max

||x||=1
{||A−1x||}

Here, we consider the LM direction d in Theorem 2.1 and by equating A = Jk, we
have
d = −(JT

k Jk + µI)−1 JT
k F(xk)

||d|| = || − (JT
k Jk + µI)−1 JT

k F(xk)|| (2.1)

≤ ||(JT
k Jk + µI)−1||||JT

k ||||F(xk)|| (2.2)
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But by proposition 2.2, we have
||JT

k ||||F(xk)||
||JT

k Jk + µI||
≤ ||(JT

k Jk + µI)−1||||JT
k ||||F(xk)|| (2.3)

But Jk is symmetric, hence Hermitian, thus JT
k Jk = J2

k .

||JT
k ||||F(xk)||
||J2

k ||+ µ||I||
≤
||JT

k ||||F(x)||
||JT

k Jk + µI||
(2.4)

Since,
||JT

k ||||F(xk)||
||J2

k ||+ µ||I||
=

||JT
k ||||F(xk)||

||J2
k ||+ µ(

n

∑
1

12)1/2
(2.5)

=
||JT

k ||||F(xk)||
||J2

k ||+ µ
√

n

By theorem 2.1,
||JT

k ||||F(x)||
||J2

k ||+ µ
√

n
≤ 1

2
√

µ
||F(x)|| (2.6)

Also,
||JT

k ||
||J2

k ||+ µ
√

n
≤ 1

2µ
≤ 1

2
√

µ
.

Hence, either

||JT
k ||

||J2
k ||+ µ

√
n
≤ 1

2µ
≤ 1

2
√

µ

Or

1
2µ
≤

||JT
k ||

||J2
k ||+ µ

√
n
≤ 1

2
√

µ

Supposition 1: Let
||JT

k ||
||J2

k ||+ µ
√

n
≤ 1

2µ

It implies that

µ ≥ ρ(Jk)
2

2ρ(Jk)−
√

n
≥ ρ(Jk)

2

2ρ(Jk) +
√

n/n
. (2.7)

µ ≤
||J2

k ||
2||Jk|| −

√
n

n

, (2.8)

for ||Jk|| >
√

n
2n .
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where n is the dimension of the square n× n matrix Jk.
Supposition 2: let

1
2µ
≤

||JT
k ||

||J2
k ||+ µ

√
n

This implies that

µ ≥
||J2

k ||
2||Jk|| −

√
n

n

, (2.9)

for ||Jk|| >
√

n
2n

From the two suppositions, we have

µ ≤
||J2

k ||
2||Jk|| −

√
n

n

. (2.10)

And

µ ≥
||J2

k ||
2||Jk|| −

√
n

n

. (2.11)

Since
||J2

k ||
2||Jk||+

√
n

n

≤
||J2

k ||
2||Jk|| −

√
n

n

, ∀n (2.12)
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Since ||Fk|| ≤ ||Jk||, for all k, we proposed to choose our µ as

µk =
δkLk||J2

k ||
2||Fk||

(2.13)

Lk > 0 and δk = 1/kk for k ≥ 1

3 Algorithm (MNLM)

Input: x0 ∈ R , β ∈ (0, 1), η ∈ [0, 1), L0 > 0, δ > 0 and σ ≥ 0 with L0 ≥ σ

1. k← 0
2. While ||JT

k Fk|| ̸= 0 do, where Fk = F(xk), Jk = J(xk)

3. compute ||Jk||F =
√

tr(J2
k ), where,tr(J2

k ), is the trace of the square of the matrix Jk,

4. Set µk =
δk Lk||J2

k ||
2||Fk||

, δk = 1/kk for k ≥ 1 ||Fk|| > 0

5. Compute dk = −(JT
k Jk + µk I)−1 JT

k Fk

6. t← 1
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7. while ||F(xk + tdk)||2 > ||Fk||2 + βt⟨dk, JT
k Fk⟩ do 8. t← t/2

9. end while
10. tk = t
11. zk = xk + (tk +

1
2)dk

12. Compute Fzk = F(zk), Jzk = J(zk)

13. set xk+1 = zk − (JT
zk

Jzk + µk I)−1 JT
zk

Fzk ;
14. if tk < 1 then
15. Lk+1 = 2Lk

16. else
17. Ared = ||Fxk ||2 − ||Fxk+1||2
18. Pred = ||Fxk ||2 − ||Fxk + Jxk dk||2 − µk||dk||2 = −⟨dk, Jzk Fxk⟩
19. If Ared > ηPred then 20. Lk+1 = max{ Lk

2 , σ}
21. else
22. Lk+1 = Lk

23. end if
24. end if
25. k← k + 1
26. end while.

4 Numerical results

In this section, we report some numerical results of our proposed method. The per-
formance of the Algorithm was tested on certain bench-mark problems in comparison
to two other LM methods. The Algorithms were coded in MATLAB 7.10.0 (R2014a)
and run on a personal computer with a 3.0GHZ CPU processor. The results are listed
in Table 1-2, where different initial points were considered.

We adopted almost all the parameters used in (Karas et al., 2016) and the remaining
ones are stated as follows: L0 = 20, ϵ = 10−4, η = 1, β = 10−4 and σ = 10−8.
We say that the method found a solution if

||JT
k Fk|| ≤ 10−5 (4.1)

The meanings of the columns in Tables 1-2 are stated as folows:
n: the dimension of the problem;
# Iter: The total number of iterations;
#Fun: Number of function evaluations;
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cpu: the cpu time in seconds;
Stop∗:Denotes the stopping criterion.
moreover, if Exist is 1, it implies that the strategy converges and otherwise diverges.

4.1 Result discussion

The results corresponding to the solve problems are represented in the performance
profiles of Figure1, 2 and 3, for the number of iterations, cputime and function eval-
uation.The outcomes of the three strategies, Corrected LM, denoted as (CLC) by ( He
and Fan, 2015). Algebraic rule of computing LM Parameter by (Karas, 2016) and our
proposed method, i.e Matrix Norn Approch of Computing LM parameter denoted as
(MNLM) are displayed for each problem respectively.
It is also very known that some variations of the CPU time may occur from one ex-
cution of an algorithm to the other, we run eight times and consider the average CPU
time of the last six runs, where the first and last CPU times are discarded. Problems
5 and 6 were not solved by CLM and 4 at higher dimension.
Similarly, problem 4 was not solved by both ARCLM and our proposed method at
higher dimension It is moreover clear from Tables 1 and 2 and Figures 1 and 2 that
our proposed method solves about 73% of the total tested problems with the fewest
number of iterations, cpu time and function evaluations.
Moreover, in contrast to the two other algorithms, it can also be observed that as
the dimension increases, our proposed algorithm requires less cpu time to get to the
approximated solution. In terms of robutness and efficiency, our proposed method
greatly out performed both CLM and ARCLM with regard to number of iterations,
cputime and function evaluations.
Problems 2- 6 below are deduced from (Waziri and Sabiu ,2015), while problem 1 is
a modified form of problem 1 of (( Waziri and Sabiu ,2015), and 7 is sourced from
(Darvish and Shin, 2011) .

Problem1 : F1(x) = x1(x2
1 + x2

2)− 1,
Fi(x) = xi(x2

i−1 + 2x2
i + x2

i+1),
Fn(x) = xn(x2

n−1 + x2
n).

i = 2, 3, ..., n− 1.
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Problem 2: F(x) =



3 −1
−1 3 −1

. . . . . . . . .
. . . . . . −1
−1 3


x + (ex

1 − 1, ..., ex
n − 1)T.

Problem 3: F3i−2(x) = x3i − 2x3i−1 − x2
3i − 1,

F3i−1(x) = x3i−2x3i−2x3i − x2
3i−2 + x2

3i−1 − 2,
F3i(x) = e−x3i−2 − e−x3i−1 .
i = 1, ..., n

3 .

Problem 4: F(x) =



2 −1
0 2 −1

. . . . . . . . .
. . . . . . −1
−1 2


x + (sinx1 − 1, ..., sinxn − 1)T.

Problem 5: Fi(x) = (1− x2
i ) + xi(1 + xixn−2xn−1xn)− 2.

i = 1, 2, ..., n.

Problem 6: F1(x) = x2
1 − 3x1 + 1 + cos(x1 − x2),

Fi(x) = x2
1 − 3xi + 1 + cos(xi − xi−1), i = 1, 2, ..., n.

Problem 7. (Darvish and Shin,2011)
Fi(x) = ex

i − 1 , i = 1, 2, 3, ..., n
and
x0 = (0.02, 0.02, 0.02, ..., 0.02)T
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CLM ARCLM MNLM
Problem n #iter #Fun cpu Stop* Exist #iter #Fun cpu Stop* Exist #iter #Fun cpu Stop* Exist

Problem 1 10 50 52 1.0023 7.59E-12 1 47 48 0.9886 9.59E-10 1 6 7 0.0289 6.13E-05 1

100 160 164 2.4352 4.86E-11 1 156 157 1.9665 2.86E-09 1 7 8 0.2009 7.55E-09 1

300 280 282 21.0124 9.21E-11 1 274 275 12.0861 4.21E-09 1 7 8 1.8141 2.51E-08 1

500 360 362 52.1232 3.13E-11 1 357 358 43.1883 5.13E-08 1 7 8 3.9958 4.42E-08 1

1000 423 425 412.6543 6.60E-09 1 413 414 311.9831 6.60E-09 1 7 8 24.5345 9.60E-08 1

Problem 2 10 12 14 0.6754 5.81E-17 1 8 9 0.2555 5.81E-17 1 5 6 0.0339 7.68E-09 1

100 26 28 2.08 2.16E-23 1 23 24 1.08 2.16E-23 1 6 7 0.4262 1.19E-12 1

300 39 41 3.6492 5.59E-21 1 36 37 2.7492 5.59E-21 1 6 7 1.4349 4.43E-12 1

500 51 53 10.4552 1.68E-22 1 45 46 8.3552 1.68E-22 1 6 7 3.5053 1.57E-10 1

1000 69 72 59.0291 1.56E-19 1 60 61 49.6291 1.56E-19 1 6 7 17.7409 1.55E-08 1

Problem 3 10 19 21 0.5153 1.16E-24 1 11 12 0.0153 1.16E-24 1 5 6 0.015 1.64E-09 1

100 24 24 0.765 6.12E-22 1 19 20 0.265 6.12E-22 1 6 7 0.2027 5.40E-13 1

300 31 33 2.0969 2.48E-22 1 27 28 1.2969 2.48E-22 1 6 7 0.7811 3.5883-12 1

500 39 41 4.6834 3.7924-18 1 32 33 3.7834 3.7924-18 1 6 7 2.0596 2.18E-11 1

1000 52 54 34.7355 2.27E-22 1 42 43 24.6355 2.27E-22 1 6 7 10.694 1.50E-10 1

Problem 4 10 29 31 0.2343 2.05E-21 1 22 23 0.0343 2.05E-21 1 4 5 0.018 4.25E+02 1

100 72 74 1.0227 4.63E-05 1 62 63 0.8227 4.63E-05 1 5 6 0.2694 1.23E-02 1

300 107 109 5.3188 7.52E-01 1 94 95 4.3188 7.52E-01 3 5 6 1.2575 2.45E-02 1

500 116 118 22.6643 4.29E+01 3 97 98 11.6643 4.29E+01 3 5 6 4.0052 1.10E-02 3

1000 123 125 54.1644 2.5518+03 3 98 99 44.8644 2.5518+03 3 5 6 66.9562 3.92E+00 3

Problem 5 10 31 33 0.3375 8.08E7 3 23 24 0.0375 8.08E-11 1 7 8 0.024 4.66E-08 1

100 52 54 1.5374 1.55E+10 3 40 41 0.6374 1.55E-10 1 8 9 0.0455 3.02E-09 1

300 61 63 3.9368 1.53E+10 3 58 59 2.7368 1.53E-10 1 8 9 1.1176 8.42E-09 1

500 79 81 10.2907 2.01E+10 3 70 71 8.2907 2.01E-10 1 8 9 3.225 1.21E-08 1

1000 103 105 69.782 2.15E+10 3 93 94 56.782 2.15E-10 1 8 9 17.4412 2.11E-08 1

Problem 6 10 18 20 0.4736 2.51E+3 3 8 10 0.0736 2.51E-19 1 8 9 0.0406 1.46E-07 1

100 21 23 0.9799 1.22E+5 3 12 14 0.3799 1.22E-19 1 8 9 0.408 2.63E-09 1

300 28 30 3.4147 3.66E+6 3 19 20 1.3147 3.66E-17 1 10 11 0.4617 4.32E-07 1

500 31 33 23.2535 5.02E+07 3 20 21 13.2535 5.02E-19 1 13 14 7.9561 7.33E-08 1

1000 36 38 36.706 1.99E+08 3 22 23 15.706 1.99E-17 1 15 16 28.0288 1.42E-05 1

Problem 7 10 29 31 0.5163 3.73E-16 1 21 22 0.0163 3.78E-16 1 6 7 0.0284 2.06E-09 1

100 32 34 0.9333 1.03E-17 1 26 26 0.5333 9.30E-18 1 7 8 0.4704 3.85E-11 1

300 36 38 3.9066 1.47E-16 1 30 31 2.0066 2.47E-16 1 7 8 3.1142 3.93E-11 1

500 39 41 6.8976 3.50E-19 1 33 34 4.4976 3.52E-19 1 7 8 12.213 3.96E-11 1

1000 44 46 44.8615 7.33E-21 1 38 39 24.5615 5.33E-21 1 7 8 79.6555 3.93E-11 1

510



Special Conference Edition November, 2018

4.2 Performance Profile

Below are the figures indicating the performances of our new method (MNLM) in
comparison to (CLM and ARCLM ). The comparison was conducted in terms of
number of iterations, CPU- time and function evaluation .
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Figure 1: Performance profile of CLM , ARCLM and MNLM. methods with respect
to number of iterations for problem 1-7
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Figure 2: Performance profile of CLM , ARCLM and MNLM. methods with respect
to cputime for problem 1-7 511
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Figure 3: Performance profile of CLM , ARCLM and MNLM. methods with respect
to function evaluation for problem 1-7

5 Final remarks.

We proposed a new procedure of computing Levenberg-Marquadrt regularization pa-
rameter for method of nonlinear system of equations. The matrix-norm approach has
been used for derivation of the parameter and in turns produces a moderate LM step
that makes the iterate move faster to the solution. From the numerical experiment
conducted, the approach has shown that it is both efficient and promising.
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