
Special Conference Edition, November, 2018

Bayero Journal of Pure and Applied Sciences, 11(1): 420 - 426
ISSN 2006 – 6996

ANALYSIS OF CONGESTION CONTROL ALGORITHM FOR FOG COMPUTING SYSTEMS

WITH INTERNET OF THINGS

1
Adamu Aminu and

2
Zainab Dahiru Kaita

1Umaru Musa Yar’adua University, Katsina State, Nigeria.
Mathematics and Computer Science Department.

1aminu@mail.ru: +2348031581658; 2kaitazainab@gmail.com: +2348035930018

INTRODUCTION
Cloud computing has gained wider acceptance
and many organizations worldwide have
subscribed for cloud services (Armbrust, et. al.,
2010). The cloud computing was popularly
known as a promising computing paradigm due
to its ability to remarkably reduce computing
cost, increase flexibility and scalability (Rimal,
et. al., 2009). However, with the invention of
IoT systems, the Internet computing is now
taking a new dimension (Hong, et. al., 2013;
Preden, et. al., 2015; Bonomi, et. al., 2012;
Bonomi, et. al., 2014). It was forecasted by
Cisco that by the year 2020 over 50 billion
smart devices resulted from the deployment of
large scale wireless sensor networks, smart
vehicles, smart metering, wearable computing,
smart home etc., will be added to the Internet
and will generate over 43 trillion gigabytes of
data (Cisco, 2014; Subhadeep & Sudip, 2016;
Blesson, et. al., 2017). The Internet of Things is
considered to be the future Internet and is
gaining much attention, on its invention, due to
the limited storage and computational
capabilities of smart devices, cloud computing
was chosen as its supportive computing
paradigm, since the cloud can provide elastic
storage and computational resources to the
smart devices on demand (Cisco, 2014;
Subhadeep & Sudip, 2016; Blesson, et. al.,
2017; Atzori, et. al., 2010). However, the cloud

computing architecture is completely
centralized in nature, and most of the cloud
data centers are located far away from these
smart devices, making the cloud computing to
be not the right candidate to augment the IoT
systems, because most of IoT applications
require low latency response, location
awareness, geo-distribution and mobility
support (Subhadeep & Sudip, 2016). To
overcome the cloud computing shortcomings
considering the rapid growth of Internet of
Things, Cisco proposed a new computing
paradigm known as fog computing (Cisco,
2014).
The idea of fog is to transfer some core cloud
services towards the edge of the network closer
to the smart devices in a decentralized fashion.
The fog computing was defined by Blesson, et.
al., (2017) as “model to complement the cloud
by decentralizing the concentration of
computing resources (for example, servers,
storage, applications and services) in data
centers towards users for improving the quality
of service and their experience”. The fog
computing’s target is to harness the untapped
computational capabilities of edge nodes such
as routers, mobile base stations, switches etc.,
situated closer to the end devices (Blesson, et.
al., 2017; Atzori, et. al., 2010; Subhadeep, et.
al., 2015; Yannuzzi, et. al., 2014; Stojmenovic,
2014; Yi, et. al., 2015; Krishnan, et. al., 2015).

http://dx.doi.org/10.4314/bajopas.v11i1.66S

ABSTRACT
With rapid deployment of Internet of Things (IoT) applications which demand real-time, low-
latency services, fog computing was proposed as a promising distributed computing
paradigm to support the IoT systems. Unlike the centralized cloud computing architecture,
fog computing deploys network devices with various degrees of computational and storage
capabilities at the edge of the network closer to the IoT devices in order to meet the real-
time, low-latency service demands generated by these devices. Considering the rapid growth
of IoT systems and the huge traffic generated by billions of IoT devices, there is the need to
have an effective algorithm implemented at the fog gateways for congestion control. In this
paper a queuing model was proposed to analyze the effectiveness of the Random Early
Discard (RED) algorithm with generalized nonlinear loss function for edge gateways of fog
computing architecture which supports the IoT applications. Results of the analysis have
shown that in high traffic load situations, the probability of service requests’ drop increases
as the index value of the generalized nonlinear loss function decreases. For light traffic load
situations, the throughput of service requests increases as the index value of the
generalized nonlinear loss function increases.
Keywords: RED, Delay, Congestion Control, IoT, Fog Computing.

420

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AJOL - African Journals Online

https://core.ac.uk/display/478434383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Special Conference Edition, November, 2018

The advantage of fog computing paradigm over
the conventional cloud computing for low-
latency services was justified and its suitability
for IoT applications was also recently
established (Blesson, et. al., 2017; Subhadeep,
et. al., 2015). Subsequently, billions of devices
will be located at edge of the network
requesting for various services. Most of these
devices generate real-time traffic which is high
latency and data loss intolerable. Clearly,
managing such huge traffic in fog systems
especially with IoT applications deployed at
large scale is not easy and requires very
efficient congestion control algorithm, in order
to markedly reduce the service latency and
data loss.
This paper analyzes the effectiveness of RED
(Random Early Discard) algorithm with
generalized nonlinear loss function as
congestion control algorithm for edge gateways
of fog computing architecture which supports
the IoT applications, unlike the traditionally
known RED algorithm (Floyd & Jacobson, 1993;
Firoiu & Borden, 2000) which was designed with
linear drop function. In traditional RED with
linear drop function the service request drop is
constant regardless of the nature of the traffic,
however, RED with generalized nonlinear loss
function is very flexible, i.e. if the traffic load
is high, the index value of the drop function is
decreased to control the congestion, and when
the traffic load becomes light, the index value
of the loss function is increased to increase the
throughput of service requests in the system.
For the analysis of RED algorithm with
generalized nonlinear drop function, a queuing
model was formed and formulas were obtained
for the computation of system’s key Quality of
Services (QoS) parameters (Jun, et. al., 2014).
The rest of the paper is organized as follows.
Section II provides the detailed description of
fog computing architecture which supports the
IoT applications. In section III, a model of the
system was presented and mathematical
formulas were obtained for the computation of
system’s QoS parameters. Section IV presents
the results of the analysis and section V
concludes the paper.
FOG COMPUTING ARCHITECTURE
Rapid deployment of IoT systems and cloud
computing limitations to support the real-time
latency-sensitive service requests generated by

IoT applications raise the need for a new
computing paradigm. As a solution, Cisco
proposed a new computing paradigm termed
fog computing. Fog computing was designed as
a distributed computing architecture that is
capable of handling billions of IoT devices with
various degrees of QoS demands. The basic idea
of fog computing was driven from the concept
of edge computing, where some services are
hosted within the system’s edge devices such as
gateways, switches, routers and access points,
these devices are termed as fog computing
devices (Blesson, et. al., 2017; Atzori, et. al.,
2010; Subhadeep, et. al., 2015; Yannuzzi, et.
al., 2014; Stojmenovic, 2014; Yi, et. al., 2015;
Krishnan, et. al., 2015). However, it’s
paramount to note that fog computing
paradigm was designed to augment the cloud
computing architecture in the context of IoT
systems by extending some services to the edge
of the network.
The fog computing is currently at its infant
stage, however, some realistic assumptions
were made with respect to all entities involved
in fog computing architecture by Subhadeep &
Sudip, (2016). As mentioned earlier, fog
computing was proposed to remedy the
shortcomings of cloud computing in supporting
IoT systems, hence the two architectures work
hand in hand with each other, the fog
computing overcomes the cloud’s shortcoming
via decentralization of computing resources.
The fog computing comprises of three (3) tier
computing architecture, i.e. lower, middle and
upper tiers. The lower tier also known as
bottom-most tier consists of smart devices
termed Terminal Nodes (TNs). Geographically
closed TNs are grouped together to form a
virtual cluster (VC). The middle tier is called
the fog tier and it consists of edge devices
capable of providing various computational and
storage services. Due to geographical location
issues associated to virtual clusters, the fog tier
is also divided into several fog instances (FIs),
each fog instance (FI) handles a given VC
(Figure 1). Service requests from a VC are
directed to its associated FI. The mapping
between VCs and FIs is one-to-one mapping;
however, due to mobility issues of TNs, hence
mapping between TN to FI is flexible and non-
static.

421

Special Conference Edition, November, 2018

1V

Figure 1. Fog computing architecture

The upper layer consists of the cloud core
module, unlike the pure cloud architecture,
with fog computing architecture introduced,
not all service requests are rendered to the
cloud core, instead real-time latency sensitive
service requests are hosted at the fog layer,
and as such access to the cloud core is done
periodically in controlled manner. Considering
the vast number smart devices at the lower
tier, enormous services requests will be
subjected to the fog instances; subsequently

it’s very crucial to have an effective congestion
control at the fog gateways of fog instances to
prevent data loss and to satisfy the service
demands of real-time latency sensitive service
requests.
THE MODEL FOR THE ANALYSIS OF CONGESTION CONTROL

ALGORITHM
Let’s consider fog instance Фk with its
associated virtual cluster Vk as in Figure 1. The
gateway of the above system is model as M/M/1
queue as shown in Figure 2.

Figure 2. Queuing model of the system

The system consists of a queue with maximum
capacity M. As contained in the traditional RED
algorithm (Floyd & Jacobson, 1993, Firoiu &
Borden, 2000) the queue is divided into three
(3) sections via two demarcation values m1 and
m2, where m1 is the minimum threshold and m2
is the maximum threshold. If a service request
is currently being served, the other incoming
service requests are kept in the queue and
served according to FIFO service discipline. Let
m be the instantaneous queue length,

0, , Mm = L . When 1m m< no service request

will be dropped, however, when 1 2m m m≤ <

then service requests will be dropped with

probability which increases nonlinearly as a
function of m given by (1), unlike the
traditional RED this probability increases
linearly as a function of average queue length.

If 2 Mm m≤ < , then service requests will be

dropped with constant probability p, when

Mm ≥ then all incoming service requests will
be dropped. Due to the feedback between the
queue and the arrival process, whenever a
service request drop occurs, the arrival is
decreased. This work introduces into the
traditional RED algorithm a generalized
nonlinear loss function with index value n > 0
presented in equation (1).

422

Special Conference Edition, November, 2018

1

1
1 2

2 1

2

0, 0

() ,

, M

n

m m

m m
d m p m m m

m m

p m m

≤ <

 −= ⋅ ≤ < − 
 ≤ <

 (1)

Where 0n > .

To analyze the performance of RED algorithm with generalized nonlinear drop function presented in

(1), let ()X t , 0t > be the number of all service requests present in the system, and the state

space of the system is { }0, ,MΩ = L . Assume that service requests arrive at the system with rate

λ distributed according Poisson distribution and service requests are served at rate µ distributed

according exponential distribution, where λρ µ= . Denote by 1q p= − ,

1

2 1

()
n

m m
m p

m m
π

 −= ⋅ − 
 and () 1 ()m mγ π= − . The state transition diagram of the described

system is presented in Figure 3.

Figure 3. State transition diagram

To obtain the steady state distribution mp that in the system there are m service requests, let’s

consider the steady state equations presented in (2).

0 1

1 1 1

1 1 1 2

1 1 2

M 1 M

, 0

() , 0

() (()) ,

() , M

, M

m m m

m m m

m m m

p p m

p p p m m

m p p m p m m m

qp p q p m m

qp p m

λ µ
λ µ λ µ
λγ µ λγ µ
λ µ λ µ
λ µ

− +

− +

− +

+

= =
 + = + < ≤ + = + ≤ <
 + = + ≤ <

 = =

 (2)

By solving the steady state equations we have,

1

2

1 2

0

0 1

1

0 1 2

1 1

0 2

, 1

, 1

() ,

() , M

m

m
m

m
k m

m m
m

k m k m

p m

p m m

p k p m m m

k q p m m

ρ
ρ

γ ρ

γ ρ

−

=

− −

= =

=
 < ≤


= < ≤∏

   < ≤∏ ∏  

 

 (3)

From the law of total probability
M

0
1m

m
p

=
=∑ , we have,

0
1 2 3

1
p

G G G
=

+ +
, where

1

1
0

m
m

m
G ρ

=
= ∑ ,

2

1 1

1

2
1

()
m m

m

m m k m
G kγ ρ

−

= + =
= ∑ ∏ , and

2
2

2 1

1M

3
1

()
m

m m m

m m k m
G q kγ ρ

−
−

= + =
= ∑ ∏

423

Special Conference Edition, November, 2018

The average number of service requests in the system is given by
M

0
m

m
N mp

=
= ∑ (4)

The average waiting time of a service request in the system is obtained from Little’s law, i.e.

N
W

T
= , (5)

where
M

1
m

m
T pµ

=
= ∑ is the system mean throughput.

Let ∆ be the total drop probability of service requests, and it consists of three (3) components 1∆ ,

2∆ and 3∆ defined as
2

1

1

1 ()
m

m
m m

p mπ
−

=
∆ = ∑ ,

2

M 1

2 m
m m

p p
−

=
∆ = ∑ and 3 Mp∆ = .

1 2 3∆ = ∆ + ∆ + ∆ . (6)

I. SIMULATION RESULTS
The simulation experiment was conducted with
OMNet++ simulator (Buzura, et. al., 2013). The
values of the model parameters used in the

experiment are 0.02µ = , 1 10m = , 2 30m =

and M 40= . The input values for the

experiment were obtained from (Jun, et. al.,
2014; Bonald, et. al., 2000).
Firstly, the drop probability of service requests
was analyzed for different index values n of the
nonlinear loss function under different traffic
loads. The results of the analysis are presented
in Figure 4.

Figure 4. Drop probability of service requests vs. traffic load and index values n

It can be seen from the graph in Figure 4, for
large traffic load, the drop probability of
service requests increases as the index value n
of the loss function decreases.
The average number of waiting service requests
in the system was also analyzed for different
index values n of the nonlinear loss function.
The results of the analysis are presented in
Figure 5, from the graph it can be observed
that with a fixed value of n, the average

number of waiting service requests increases as
the traffic load increases, however, when the
traffic load becomes high, the average number
of waiting service request decreases as the
index value n of loss function decreases. These
results can be connected to the results found in
Figure 4, whenever a service request is
dropped, the flow of incoming service requests
is reduced.

424

Special Conference Edition, November, 2018

Figure 5. Average number of waiting services requests vs. traffic load and index value n

Further, the average waiting time of a service
request in the system was also analyzed for the
considered system, similarly it can be observed
from the graph presented in Figure 6 that for a
fixed index value n, the average waiting time

decreases as traffic load decreases, however,
for large traffic load, the average waiting time
decreases as the index value n of the loss
function decreases.

Figure 5. Average waiting time vs. traffic load and index value n

CONCLUSION

In this paper a model was presented for the
analysis of congestion control algorithm for the
edge gateways of fog computing architecture
which supports the IoT systems. A generalized
nonlinear drop function was introduced into the
RED algorithm which makes the algorithm to be
flexible for high and light traffic load
situations. Queuing model was developed and
formulas for computation of key QoS parameter
for the considered system were obtained. The
key QoS parameters used were the average

number of waiting service requests in the
system, the average waiting time of a service
request in the system and the drop probability
of service requests. The results obtained have
shown that for high traffic load, the drop
probability of service requests decreases as the
index value n of nonlinear loss function
increases. The results have also shown that the
waiting time and the average number of service
requests decrease as traffic load increases but
with decrease in the index values n of the loss
function.

REFERENCES

Armbrust, M., et al. (2010). A view of cloud
computing. ACM Commun. Mag, 53,
(4), 50–58.

Rimal, B.P., et. al. (2009). A taxonomy and
survey of cloud computing systems.
5th Int. Joint Conf. on INC, IMS and
IDC, Seoul, South Korea, 44–51.

425

Special Conference Edition, November, 2018

Hong, K., et al. (2013). Mobile fog: A
programming model for large-scale
applications on the internet of things.
Proc. of the Second ACM SIGCOMM
Workshop on Mobile Cloud Computing,
Hong Kong, China, 15–20.

Preden, J., et al. (2015). Data to decision:
pushing situational information needs
to the edge of the network. IEEE Int.
Inter-Disciplinary Conf. on Cognitive
Methods in Situation Awareness and
Decision Support, Orlando, USA, 158–
164.

Bonomi, F., et al. (2012). Fog computing and its
role in the internet of things. Proc. of
the First Edition of the MCC Workshop
on Mobile Cloud Computing (ACM),
Helsinki, Finland, 13–16.

Bonomi, F., et al. (2014). Fog Computing: A
platform for internet of things and
analytics’, in Bessis, N., Dobre, C.
(Eds.): ‘Big data and internet of
things: a roadmap for smart
environments – part I. Springer
International Publishing, Switzerland,
vol. 546, 169–186.

MarketWatch (2014). Cisco delivers vision of fog
computing to accelerate value from
billions of connected devices.
http://www.theiet.org/resources/
journals/research/index.cfm.

Subhadeep, S., Sudip, M. (2016). Theoretical
modelling of fog computing: a green
computing paradigm to support IoT
applications. IET Networks, vol. 5,
issue 2, 23 – 29.

Blesson, V., et al. (2017). Feasibility of Fog
Computing. arXiv:1701.05451v1
[cs.DC].

Atzori, L., et al. (2010). The internet of things:
A survey. Computer Networks, vol. 54,
no. 15, 2787 – 2805.

Subhadeep, S., et al. (2015). Assessment of the
Suitability of Fog Computing in the
Context of Internet of Things. IEEE
Transactions on Cloud Computing, DOI

10.1109/TCC.2015.2485206, 2168-
7161.

Yannuzzi, M., et al. (2014). Key ingredients in
an IoT recipe: Fog Computing. Cloud
computing, and more Fog Computing.
Athens, Greece, 325–329.

Stojmenovic, I. (2014). Fog computing: A cloud
to the ground support for smart things
and machine-to-machine networks.
Australasian Telecommunication
Networks and Applications Conf.,
Southbank, Australia, 117–122.

Yi, S., et al. (2015). A survey of fog computing:
concepts, applications and issues. ACM
Proc. of the 2015 Workshop on Mobile
Big Data, Hangzhou, China, 37–42.

Krishnan, Y.N., et al. (2015). Fog computing -
Network based cloud computing. 2nd
Int. Conf. on Electronics and
Communication Systems, Coimbatore,
India, 250–251.

Jun, Hu., et al. (2014). Modeling and Analysis
on Congestion Control in the Internet
of Things. IEEE ICC 2014, Ad-hoc and
sensor networking symposium, 434 –
439.

Floyd, S., & Jacobson, V. (1993). Random early
detection gateways for congestion
avoidance. IEEE/ACM Transactions on,
Networking, 1, 4, 397–413.

Firoiu, V and Borden M. (2000). A study of
active queue management for
congestion control. Nineteenth Annual
Joint Conference of the IEEE Computer
and Communications Societies.
Proceedings. IEEE, INFOCOM 2000, 3,
1435–1444.

Buzura, S., et al. (2013). Simulations
framework for network congestion
avoidance algorithms using the
omnet++ ide. Roedunet International
Conference (RoEduNet), 1–8.

Bonald, T., et al. (2000). Evaluation of RED
performance. Proc. of the IEEE
INFOCOM 2000, 1415 – 1424.

426

