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INTRODUCTION 
Cloud computing has gained wider acceptance 
and many organizations worldwide have 
subscribed for cloud services (Armbrust, et. al., 
2010). The cloud computing was popularly 
known as a promising computing paradigm due 
to its ability to remarkably reduce computing 
cost, increase flexibility and scalability (Rimal, 
et. al., 2009). However, with the invention of 
IoT systems, the Internet computing is now 
taking a new dimension (Hong, et. al., 2013; 
Preden, et. al., 2015; Bonomi, et. al., 2012; 
Bonomi, et. al., 2014). It was forecasted by 
Cisco that by the year 2020 over 50 billion 
smart devices resulted from the deployment of 
large scale wireless sensor networks, smart 
vehicles, smart metering, wearable computing, 
smart home etc., will be added to the Internet 
and will generate over 43 trillion gigabytes of 
data (Cisco, 2014; Subhadeep & Sudip, 2016; 
Blesson, et. al., 2017). The Internet of Things is 
considered to be the future Internet and is 
gaining much attention, on its invention, due to 
the limited storage and computational 
capabilities of smart devices, cloud computing 
was chosen as its supportive computing 
paradigm, since the cloud can provide elastic 
storage and computational resources to the 
smart devices on demand (Cisco, 2014; 
Subhadeep & Sudip, 2016; Blesson, et. al., 
2017; Atzori, et. al., 2010). However, the cloud 

computing architecture is completely 
centralized in nature, and most of the cloud 
data centers are located far away from these 
smart devices, making the cloud computing to 
be not the right candidate to augment the IoT 
systems, because most of IoT applications 
require low latency response, location 
awareness, geo-distribution and mobility 
support (Subhadeep & Sudip, 2016). To 
overcome the cloud computing shortcomings 
considering the rapid growth of Internet of 
Things, Cisco proposed a new computing 
paradigm known as fog computing (Cisco, 
2014).  
The idea of fog is to transfer some core cloud 
services towards the edge of the network closer 
to the smart devices in a decentralized fashion. 
The fog computing was defined by Blesson, et. 
al., (2017) as “model to complement the cloud 
by decentralizing the concentration of 
computing resources (for example, servers, 
storage, applications and services) in data 
centers towards users for improving the quality 
of service and their experience”. The fog 
computing’s target is to harness the untapped 
computational capabilities of edge nodes such 
as routers, mobile base stations, switches etc., 
situated closer to the end devices (Blesson, et. 
al., 2017; Atzori, et. al., 2010; Subhadeep, et. 
al., 2015; Yannuzzi, et. al., 2014; Stojmenovic, 
2014; Yi, et. al., 2015; Krishnan, et. al., 2015).   

http://dx.doi.org/10.4314/bajopas.v11i1.66S 

ABSTRACT  
With rapid deployment of Internet of Things (IoT) applications which demand real-time, low-
latency services, fog computing was proposed as a promising distributed computing 
paradigm to support the IoT systems. Unlike the centralized cloud computing architecture, 
fog computing deploys network devices with various degrees of computational and storage 
capabilities at the edge of the network closer to the IoT devices in order to meet the real-
time, low-latency service demands generated by these devices. Considering the rapid growth 
of IoT systems and the huge traffic generated by billions of IoT devices, there is the need to 
have an effective algorithm implemented at the fog gateways for congestion control. In this 
paper a queuing model was proposed to analyze the effectiveness of the Random Early 
Discard (RED) algorithm with generalized nonlinear loss function for edge gateways of fog 
computing architecture which supports the IoT applications. Results of the analysis have 
shown that in high traffic load situations, the probability of service requests’ drop increases 
as the index value of the generalized nonlinear loss function decreases. For light traffic load 
situations, the throughput of service requests increases as the index value of the 
generalized nonlinear loss function increases. 
Keywords: RED, Delay, Congestion Control, IoT, Fog Computing.  
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The advantage of fog computing paradigm over 
the conventional cloud computing for low-
latency services was justified and its suitability 
for IoT applications was also recently 
established (Blesson, et. al., 2017; Subhadeep, 
et. al., 2015). Subsequently, billions of devices 
will be located at edge of the network 
requesting for various services. Most of these 
devices generate real-time traffic which is high 
latency and data loss intolerable. Clearly, 
managing such huge traffic in fog systems 
especially with IoT applications deployed at 
large scale is not easy and requires very 
efficient congestion control algorithm, in order 
to markedly reduce the service latency and 
data loss.  
This paper analyzes the effectiveness of RED 
(Random Early Discard) algorithm with 
generalized nonlinear loss function as 
congestion control algorithm for edge gateways 
of fog computing architecture which supports 
the IoT applications, unlike the traditionally 
known RED algorithm (Floyd & Jacobson, 1993; 
Firoiu & Borden, 2000) which was designed with 
linear drop function. In traditional RED with 
linear drop function the service request drop is 
constant regardless of the nature of the traffic, 
however, RED with generalized nonlinear loss 
function is very flexible, i.e. if the traffic load 
is high, the index value of the drop function is 
decreased to control the congestion, and when 
the traffic load becomes light, the index value 
of the loss function is increased to increase the 
throughput of service requests in the system. 
For the analysis of RED algorithm with 
generalized nonlinear drop function, a queuing 
model was formed and formulas were obtained 
for the computation of system’s key Quality of 
Services (QoS) parameters (Jun, et. al., 2014). 
The rest of the paper is organized as follows. 
Section II provides the detailed description of 
fog computing architecture which supports the 
IoT applications. In section III, a model of the 
system was presented and mathematical 
formulas were obtained for the computation of 
system’s QoS parameters. Section IV presents 
the results of the analysis and section V 
concludes the paper. 
FOG COMPUTING ARCHITECTURE 
Rapid deployment of IoT systems and cloud 
computing limitations to support the real-time 
latency-sensitive service requests generated by 

IoT applications raise the need for a new 
computing paradigm. As a solution, Cisco 
proposed a new computing paradigm termed 
fog computing. Fog computing was designed as 
a distributed computing architecture that is 
capable of handling billions of IoT devices with 
various degrees of QoS demands. The basic idea 
of fog computing was driven from the concept 
of edge computing, where some services are 
hosted within the system’s edge devices such as 
gateways, switches, routers and access points, 
these devices are termed as fog computing 
devices (Blesson, et. al., 2017; Atzori, et. al., 
2010; Subhadeep, et. al., 2015; Yannuzzi, et. 
al., 2014; Stojmenovic, 2014; Yi, et. al., 2015; 
Krishnan, et. al., 2015). However, it’s 
paramount to note that fog computing 
paradigm was designed to augment the cloud 
computing architecture in the context of IoT 
systems by extending some services to the edge 
of the network. 
The fog computing is currently at its infant 
stage, however, some realistic assumptions 
were made with respect to all entities involved 
in fog computing architecture by Subhadeep & 
Sudip, (2016). As mentioned earlier, fog 
computing was proposed to remedy the 
shortcomings of cloud computing in supporting 
IoT systems, hence the two architectures work 
hand in hand with each other, the fog 
computing overcomes the cloud’s shortcoming 
via decentralization of computing resources. 
The fog computing comprises of three (3) tier 
computing architecture, i.e. lower, middle and 
upper tiers. The lower tier also known as 
bottom-most tier consists of smart devices 
termed Terminal Nodes (TNs). Geographically 
closed TNs are grouped together to form a 
virtual cluster (VC). The middle tier is called 
the fog tier and it consists of edge devices 
capable of providing various computational and 
storage services. Due to geographical location 
issues associated to virtual clusters, the fog tier 
is also divided into several fog instances (FIs), 
each fog instance (FI) handles a given VC 
(Figure 1). Service requests from a VC are 
directed to its associated FI. The mapping 
between VCs and FIs is one-to-one mapping; 
however, due to mobility issues of TNs, hence 
mapping between TN to FI is flexible and non-
static. 
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Figure 1. Fog computing architecture 
 

The upper layer consists of the cloud core 
module, unlike the pure cloud architecture, 
with fog computing architecture introduced, 
not all service requests are rendered to the 
cloud core, instead real-time latency sensitive 
service requests are hosted at the fog layer, 
and as such access to the cloud core is done 
periodically in controlled manner. Considering 
the vast number smart devices at the lower 
tier, enormous services requests will be 
subjected to the fog instances; subsequently 

it’s very crucial to have an effective congestion 
control at the fog gateways of fog instances to 
prevent data loss and to satisfy the service 
demands of real-time latency sensitive service 
requests. 
THE MODEL FOR THE ANALYSIS OF CONGESTION CONTROL 

ALGORITHM 
Let’s consider fog instance Фk with its 
associated virtual cluster Vk as in Figure 1. The 
gateway of the above system is model as M/M/1 
queue as shown in Figure 2. 

 
Figure 2. Queuing model of the system 

 
The system consists of a queue with maximum 
capacity M. As contained in the traditional RED 
algorithm (Floyd & Jacobson, 1993, Firoiu & 
Borden, 2000) the queue is divided into three 
(3) sections via two demarcation values m1 and 
m2, where m1 is the minimum threshold and m2 
is the maximum threshold. If a service request 
is currently being served, the other incoming 
service requests are kept in the queue and 
served according to FIFO service discipline. Let 
m be the instantaneous queue length, 

0, , Mm = L . When 1m m<  no service request 

will be dropped, however, when 1 2m m m≤ <  

then service requests will be dropped with 

probability which increases nonlinearly as a 
function of m given by (1),  unlike the 
traditional RED this probability increases 
linearly as a function of average queue length. 

If 2 Mm m≤ < , then service requests will be 

dropped with constant probability p, when 

Mm ≥  then all incoming service requests will 
be dropped. Due to the feedback between the 
queue and the arrival process, whenever a 
service request drop occurs, the arrival is 
decreased. This work introduces into the 
traditional RED algorithm a generalized 
nonlinear loss function with index value n > 0 
presented in equation (1). 
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To analyze the performance of RED algorithm with generalized nonlinear drop function presented in 

(1), let ( )X t , 0t >  be the number of all service requests present in the system, and the state 
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Figure 3. State transition diagram 

To obtain the steady state distribution mp  that in the system there are m service requests, let’s 

consider the steady state equations presented in (2). 
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The average number of service requests in the system is given by 
M

0
m

m
N mp

=
= ∑            (4) 

The average waiting time of a service request in the system is obtained from Little’s law, i.e. 

N
W

T
= ,           (5) 

where 
M

1
m

m
T pµ

=
= ∑  is the system mean throughput. 

Let ∆  be the total drop probability of service requests, and it consists of three (3) components 1∆ , 

2∆  and 3∆  defined as 
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I. SIMULATION RESULTS 
The simulation experiment was conducted with 
OMNet++ simulator (Buzura, et. al., 2013). The 
values of the model parameters used in the 

experiment are 0.02µ = , 1 10m = , 2 30m =  

and M 40= . The input values for the 

experiment were obtained from (Jun, et. al., 
2014; Bonald, et. al., 2000). 
Firstly, the drop probability of service requests 
was analyzed for different index values n of the 
nonlinear loss function under different traffic 
loads. The results of the analysis are presented 
in Figure 4. 

 

 
Figure 4. Drop probability of service requests vs. traffic load and index values n 

 
It can be seen from the graph in Figure 4, for 
large traffic load, the drop probability of 
service requests increases as the index value n 
of the loss function decreases.  
The average number of waiting service requests 
in the system was also analyzed for different 
index values n of the nonlinear loss function. 
The results of the analysis are presented in 
Figure 5, from the graph it can be observed 
that with a fixed value of n, the average 

number of waiting service requests increases as 
the traffic load increases, however, when the 
traffic load becomes high, the average number 
of waiting service request decreases as the 
index value n of loss function decreases. These 
results can be connected to the results found in 
Figure 4, whenever a service request is 
dropped, the flow of incoming service requests 
is reduced. 
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Figure 5. Average number of waiting services requests vs. traffic load and index value n 

 
Further, the average waiting time of a service 
request in the system was also analyzed for the 
considered system, similarly it can be observed 
from the graph presented in Figure 6 that for a 
fixed index value n, the average waiting time 

decreases as traffic load decreases, however, 
for large traffic load, the average waiting time 
decreases as the index value n of the loss 
function decreases. 

 

 
Figure 5. Average waiting time vs. traffic load and index value n 

 
CONCLUSION 

In this paper a model was presented for the 
analysis of congestion control algorithm for the 
edge gateways of fog computing architecture 
which supports the IoT systems. A generalized 
nonlinear drop function was introduced into the 
RED algorithm which makes the algorithm to be 
flexible for high and light traffic load 
situations. Queuing model was developed and 
formulas for computation of key QoS parameter 
for the considered system were obtained. The 
key QoS parameters used were the average 

number of waiting service requests in the 
system, the average waiting time of a service 
request in the system and the drop probability 
of service requests. The results obtained have 
shown that for high traffic load, the drop 
probability of service requests decreases as the 
index value n of nonlinear loss function 
increases. The results have also shown that the 
waiting time and the average number of service 
requests decrease as traffic load increases but 
with decrease in the index values n of the loss 
function. 
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