
Bajopas Volume 9 Number 1 June, 2016

Bayero Journal of Pure and Applied Sciences, 9(1): 19 - 24
Received: January, 2016
Accepted: May, 2016
ISSN 2006 – 6996

TIME SERIES PREDICTION WITH SIMPLE RECURRENT NEURAL
NETWORKS

Abdulkarim, S. A.

Computer Science Department, Federal University Dutse, Jigawa State, Nigeria
(sakwami@live.com) 08037713775

ABSTRACT
Simple recurrent neural networks are widely used in time series prediction. Most researchers and
application developers often choose arbitrarily between Elman or Jordan simple recurrent neural
networks for their applications. A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural
network is also being used. In this study, we evaluated the performance of these neural networks
on three established bench mark time series prediction problems. Results from the experiments
showed that Jordan neural network performed significantly better than the others. However, the
results indicated satisfactory forecasting performance by the other two neural networks.
Key Words: Time Series Prediction, Artificial Neural Network, Recurrent NN, Resilient Propagation.

INTRODUCTION
The task of predicting future values of a time series is
a problem that has applications in many fields such as
sales, engineering, epidemiology, etc. For efficient
planning, accurate and timely prediction of future
events is required. A lot of research efforts have gone
into the development of prediction models and
improvement of their performances.
Artificial Neural Networks (NN) have been used with
success in prediction applications, and outperformed
classical statistical models such as Auto Regressive
Integrated Moving Average (ARIMA)(Zhang et al.,
2001) (de Almeida and Fishwick 1991). Their salient
features are their non-linearity and ability to handle
time series without prior knowledge of how the series
was generated. Most of the applications of NN are
based on Feed forward architecture (i.e. a structure
where information flows in only one direction) (Zhang
et al. 1998). However, Feedforward neural networks
(FNN) were not designed to handle dynamic systems
and are therefore limited to handling stationary data.
Since practical time series are often dynamic (non-
stationary), a NN structure capable of handling
dynamic systems is required for effective modeling.
Recurrent neural networks (RNNs) are a type of NN
designed with feedback connections that allows
information to also flow in a backward direction.
These connections serve as internal memory for the
network. Introduction of this internal memory enables
RNN to remember its previous state during
processing, thereby giving it the ability to handle
dynamic systems. RNN have been used with success
in grammar/language processing (Lawrence et al.,
2000), gesture recognition (Murakami and Taguchi
1991) and time series applications (Qi and Zhang
2008). The commonly applied RNNs to forecasting are
the Elman and Jordan nets, generally referred to as
Simple Recurrent Neural Networks (SRNN). A hybrid

of Elman and Jordan nets called Multi-Recurrent
Neural Networks (MRNN) has also been used in time
series prediction (Dorffner, 1996).
Researchers and developers often arbitrarily choose
any of the SRNNs for their forecasting applications. To
the knowledge of the authors, there is no study that
recommends which one to use based on their
performance on time series prediction. In this paper,
we aim to do that by carrying out an empirical study
comparing their performances and also that of MRNN
on well-established bench marks.
Since NN are nothing but structure capable of carrying
out nonlinear mapping from a set of input patterns to
desired target output values, they need to be trained
for accurate target output approximation. Back
propagation has been the most widely used NN
training algorithm. Its variant, Resilient propagation
(RPROP) (Riedmiller, 1994) is employed in our work
due to its computational simplicity and fast
convergence.
In the subsequent sections, we present the
background information necessary for the study, the
experimental setup, the results and conclusions.
I. BACKGROUND

A. Elman Neural Network
Elman Neural Network (Elman NN) (ELMAN, 1991), is
a NN structure designed to allow information flow in
both forward and backward direction using feedback
links in order to deal with temporal properties of a
sequential data. As illustrated in Figure I, it has a set
of context units referred to as context set that is
annexed to the input layer. All the context units are
interconnected fully with all units in the hidden layer.
Thus, the input vector;

http://dx.doi.org/10.4314/bajopas.v9i1.4

19

Bajopas Volume 9 Number 1 June, 2016

The hidden layer units are also connected to their
corresponding context layer units with weight values
of one, such that their outputs or previous states are
stored in the context units.

Output of each unit in the output layer is computed
as;

where

Introduction of context units makes
Elman NN capable of performing sequence prediction
that is beyond the power of a standard FNN.
However, Elman NN cannot really deal with an
arbitrarily long history in the data (Bengio, Simard,
and Frasconi 1994). Examples of time series
applications with Elman NN are [10 - 13].
B. Jordan Neural Networks

Jordan Neural Network (Jordan NN) (Jordan 1986), is
a model that realizes functional dependency between
sequence elements and estimates on one hand and
the to-be forecast value on the other (Dorffner 1996).
It is very similar to Elman NN except that the context
layer stores a copy of the output layer instead of
hidden layer(Engelbrecht 2005). Structure of Jordan
NN is shown in Fig II. The input layer becomes

by annexing the context set. The output units are calculated as

where

Due to its recurrent nature, it can efficiently be
applied to time series processing but cannot capture
longer term dependency too like Elman NN (Bengio,
Simard, and Frasconi 1994). (Yasdi 1999) (Song
2011)(Song 2011)(Song 2011)[15] are examples of its
applications to time series forecasting.
C. Multi-recurrent Neural Networks

Multi-recurrent Neural Network (MRNN) is obtained
from combination of Elman and Jordan NNs. As
depicted in Figure III, it has a feedback connection
from both hidden and output layer connecting into the
context set. The context set subjoins the input layer
and interconnects fully to the hidden layer. The input
layer becomes

And each output unit is calculated as

Where

 MRNN has a larger number of degree-of-freedoms
(weights) compared to SRNNs. According to (Dorffner
1996), a number of empirical studies have some

versions of MRNN significantly outperform most other
simple forecasting methods in real world applications.

Input
s

Output
s

Input Output
Input Output

Figure I Elman NN

Figure II Jordan NN

Figure III Multi-Recurrent NN

20

Bajopas Volume 9 Number 1 June, 2016

MATERIALS AND METHODS
In this study, three well-known established
benchmark time-series were used to evaluate the
performances of the prediction models investigated.
The first two series were obtained from online
repository at
https://datamarket.com/data/list/?q=provider:dstl
and the last artificially generated;

1) International airline time series; This series
has a total of 144 observations of monthly
totals of passengers from January, 1949 to
December 1960. It follows a multiplicative
seasonal pattern with upward trend as

shown in Fig I. The dataset is non-stationary
due to the presence of strong seasonal
variation.

2) The Quarterly Standard & Poor’s 500 (S&P
500) indexes (1900 to 1996); It has 388 data
points. Plot of the dataset as shown in Figure
II revealed a constant trend with long-run
cycles.

3) Mackey Glass chaotic time series; This data
set is a solution of the Mackey-Glass
delay-differential equation (Lapedes and
Farber 1987) ;

using , a = 0.2, b = 0.1, c = 10,

initial condition x(t) = 0.9 for 0 ≤ t ≤ , a
500 points dataset was generated for this
study, where 480 data points after the initial
transients were used for training and testing.
Plot of the series is shown in Figure III;

All datasets were scaled to [-1, 1] and normalized
using (Engelbrecht, 2005);

where N is the number of observations in the dataset.
Each of the datasets was divided into two
independent subsets in a chronological order, where
the first 80% of the dataset was used for training and
the last 20% for testing. Note that for parameter
optimization purpose only, the training dataset was
further partitioned where the first 70% was used for
training & the outstanding 30% for validation.

Figure iv: Airline Passengers Time Series Figure v: Airline Passengers Time Series

21

Bajopas Volume 9 Number 1 June, 2016

Figure vi: Mackay-Glass Time Series

In all the experiments, one step-ahead prediction
horizon was considered. This translates to a single
output neuron in all the NN architectures used. For
Airline time series, we used 12 input neurons each
representing month of a year since the data was
collected monthly. For the S&P, we used 4 input

neurons each representing quarter of a year since it is
quarterly based. Four input neurons were used in
Mackay time series prediction, as adopted from
previous work of (Larsen et al., 1998). Criteria
proposed by (Sheela and Deepa 2013) was used in
fixing the number of hidden neurons;

where and are the number of hidden and
input units respectively. The criteria satisfy
convergence theorem and has proven to be an
effective method as evident in their empirical studies.
For all the NNs, linear activation functions were used
in the input layer units. In the hidden and output

layer units, modified hyperbolic tangent functions
were employed as recommended in (LeCun et al.
2012). It is defined as

Starting values for weights were chosen randomly. To
use optimal weight initialization range, we considered
ranges {(-0.01, 0.01), (-0.02, 0.02), (-0.03, 0.03), (-
0.04, 0.04), (-0.05, 0.05)}. The range that gave us
minimum average training and validation error after
30 runs was chosen as optimal.
In the experiments, we used MSE as the performance
measure. All experiments were carried out using
version 1 of Computational Intelligence Library (CILib)
(Cloete et al., 2008)and results reported are averages
over 30 simulations, where 1000 iterations was the
stopping condition for each algorithm.
Two-tailed non-parametric Mann-Whitney U test was
used to statistically determine if the difference in

performance were significant. The null hypothesis �0∶

�1= �2, where �1 and �2 are the means of the two

samples being compared, were evaluated at a

significance level of 95%. �1∶ �1≠ �2 defined the

alternative hypothesis. Thus, any p-value less than
0.05 corresponded to rejection of the null hypothesis
that there is no statistically significant difference
between the sample means. For the sake of
convenience, all p-values were bounded below by
0.0001.
RESULTS AND DISCUSSION
Table 1 presents average training errors (TE) and
generalization errors (GE) with their confidence
interval obtained from predicting the three-time series
considered, where minimum values obtained are
displayed in italics.
For Airline time series, clearly Jordan NN yields the
minimum TE and GE, outperforming Elman NN and
MRNNS. Elman performed worst compared to all the
three RNNs investigated. Mann Whitney test result in
table 2 & 3 showed that Jordan NN performance was
statistically significant in both training and
generalization compared to Elman NN and to MRNN.
Also, from table 2 & 3, the p-values suggested
significant difference in Elman NN Vs. MRNN
performance, with table 1 indicating superiority of
Elman NN performance over MRNN.

22

Bajopas Volume 9 Number 1 June, 2016

Table 1: Mean Errors of the Forecasting Models

In predicting the S&P time series, Jordan NN
outperformed both Elman NN and MRNN by yielding
the lowest average errors as shown in table 1.
However, Mann Whitney (in Table 2 & 3) indicated

that difference in performance between Jordan and
Elman NN in predicting the S&P was not statistically
significant. Compared to MRNN, Jordan NN performed
better at significant level of 95%.

Table 2: Mann-Whitney U p-values obtained for the average training error comparisons on the time series with
reference to the null hypothesis that the means of the compared samples are equal at the significance level of
95%.

Table 3: Mann-Whitney U p-values obtained for the average generalization error comparisons on the time
series with reference to the null hypothesis that the means of the compared samples are equal at the
significance level of 95%.

Time Series Elman Vs Jordan Elman Vs MRNN Jordan Vs MRNN

Airline 0.0289 0.0021 0.0399

S&P 500 0.9411 0.0690 0.0332

Mackay-
Glass

0.0082 0.0002 0.0136

In predicting Mackay time series, Jordan NN yielded
the lowest average errors (TE and GE), outperforming
the other RNNS as shown in table 1. MRNN had the
worst performance. Mann Whitney (in table 2 & 3)
showed that Jordan NN performance was statistically
significant compared to both Elman NN and MRNN.
Elman NN also performed significantly better than
MRNN.
CONCLUSION
The study evaluated the performance of simple
recurrent neural networks and the so called Elman-
Jordan (multi-recurrent) architectures in time series
prediction. Resilient propagation was used to train the
RNNs on three established bench mark time series

prediction problems. Results from the experiments
showed that Jordan NN yielded the lowest average
training and generalization errors, outperforming both
Elman NN and MRNN in all the three prediction
problems. Mann Whitney U test showed that Jordan
NN performed significantly better in two out of the
three problems. The results also indicated that
combining Elman and Jordan architectures (MRNN)
does not necessarily improve performance. Based on
the datasets studied, we therefore recommend using
Jordan NN in time series prediction against Elman NN
and MRNN. However, further investigation using more
dataset is required.

 REFERENCES
de Almeida, C., and P. A. Fishwick. (1991). Time

Series Forecasting Using Neural Networks vs.
Box- Jenkins Methodology. Simulation 57(5):
303–10.
http://sim.sagepub.com/content/57/5/303.short

Bengio, Y, P Simard, and P Frasconi. (1994). Learning
Long-Term Dependencies with Gradient Descent
Is Difficult. IEEE Transactions On Neural
Networks 5(2): 157–66.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnu

mber=279181 (November 16, 2015).
Cloete, T, A P Engelbrecht, and Pampará G. (2008).

CIlib : A Collaborative Framework for
Computational Intelligence Algorithms – Part I.
In Neural Networks, 2008. IJCNN 2008.(IEEE
World Congress on Computational Intelligence).
IEEE International Joint Conference on IEEE, ,
1750–57.

Dorffner, Georg. (1996). Neural Networks for Time
Series Processing. Neural Network World.

Prediction problem Elman Jordan Multi-recurrent

Airline TE
GE

0.000321 0.000203

0.001066 0.001012

0.000375 0.000108

0.000707 0.000120

0.000503 0.000076

0.001007 0.000187

S&P TE

GE

0.000201 0.000097

0.000132 0.000084

0.000134 0.000025

0.000084 0.000027
0.000229±0.000053
0.000139±0.000041

Mackey Glass
TE
GE

0.000094 0.000073

0.000119 0.000100
0.000104±0.000024
0.000106±0.000028

0.000160 0.000038

0.000199 0.000053

Time Series Elman Vs Jordan Elman Vs MRNN Jordan Vs MRNN

Airline 0.0309 0.0003 0.0444

S&P 500 0.8476 0.0565 0.0136

Mackay-Glass 0.0024 0.0001 0.0493

23

Bajopas Volume 9 Number 1 June, 2016

ELMAN, JEFFREY L. (1991). Distributed

Representations, Simple Recurrent Networks,
and Grammatical Structure. Machine learning
7(2-3): 195–225.
http://link.springer.com/article/10.1007/BF0011
4844 (November 15, 2015).

Engelbrecht, AP. (2005). 2nd Ed. Hoboken, US: John
Wiley & Sons, Ltd Fundamentals of
Computational Swarm Intelligence.
http://scholar.google.com/scholar?q=A.P.+Enge
lbrecht.+Fundamentals+of+Computational+Sw
arm+Intelligence.+Wiley%2C+2005&btnG=&hl
=en&as_sdt=0%2C5#0 (July 21, 2014).

Larsen, J. Svarer, C. Andersen, L. N.and Hansen. L. K.
(1998). Adaptive Regularization in Neural
Network Modeling.” Neural Networks: Tricks of
the Trade. Springer: 113–32.

Jordan, MI. (1986). “Attractor Dynamics and
Parallellism in a Connectionist Sequential
Machine.” : 531–46.
http://www.citeulike.org/group/1778/article/932
207 (May 17, 2015).

Lapedes, AS, and RM Farber. 1987. How Neural Nets
Work.” Neural information processing systems.
http://papers.nips.cc/paper/59-how-neural-
nets-work (May 15, 2014).

Lawrence, S, CL Giles, and S Fong. (2000). “Natural
Language Grammatical Inference with
Recurrent Neural Networks.” IEEE Transaction
on Knowledge and Data Engineering 12(1):
126–40.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnu
mber=842255 (December 18, 2015).

Lawrence, Steve (2001). “Noisy Time Series Prediction
Using Recurrent Neural Networks and
Grammatical Inference.” Machine Learning
44(1): 161–83.
http://link.springer.com/article/10.1023/A:1010
884214864 (November 16, 2015).

LeCun, YA, L Bottou, GB Orr, and KR Müller. (2012).
“Efficient Backprop. Neural networks: Tricks of
the trade. Springer Berlin Heidelberg: 9–48.
http://link.springer.com/chapter/10.1007/978-3-
642-35289-8_3 (October 18, 2015).

Murakami, K, and H Taguchi. (1991). Gesture

Recognition Using Recurrent Neural Networks.”
In Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM:
237–42.
http://dl.acm.org/citation.cfm?id=108900
(December 18, 2015).

Qi, Min, and G Peter Zhang. (2008). Trend Time-
Series Modeling and Forecasting with Neural
Networks.” IEEE transactions on neural
networks / a publication of the IEEE Neural
Networks Council 19(5): 808–16.

Riedmiller, Martin. (1994). Rprop - Description and
Implementation Details.

Sheela, K. Gnana, and S. N. Deepa. (2013). Review
on Methods to Fix Number of Hidden Neurons in
Neural Networks.” Mathematical Problems in
Engineering 2013: 1–11.
http://www.hindawi.com/journals/mpe/2013/42
5740/.

Song, Qing. 2011. Robust Jordan Network for
Nonlinear Time Series Prediction. In Neural
Networks (IJCNN), The 2011 International Joint
Conference on IEEE, , 2542–49.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnu
mber=6033550.

Yasdi, R. (1999). Prediction of Road Traffic Using a
Neural Network Approach.” Neural computing &
applications 8(2): 135–42.
http://link.springer.com/article/10.1007/s00521
0050015 (November 16, 2015).

Zhang, G.Peter, B.Eddy Patuwo, and Michael Y. Hu.
(2001). A Simulation Study of Artificial Neural
Networks for Nonlinear Time-Series
Forecasting.” Computers & Operations Research
28(4): 381–96.

Zhang, G. (1998). Forecasting with Artificial Neural
Networks:: The State of the Art.” International
journal of forecasting 14(1): 35–62.
http://www.sciencedirect.com/science/article/pii
/S0169207097000447 (October 28, 2013).

24

