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ABSTRACT 

In this report the trajectories in the Henon-Heiles potential  

were  integrated using the fourth order Runge-Kutta algorithm at some fixed energy levels while 
the initial conditions of the position [y] and the momentum conjugate [Py] were varied, the 
corresponding Poincare maps (surface of sections) were plotted which satisfies the condition for a 
dynamical system to be chaotic. 
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INTRODUCTION 

The dynamics of two-dimensional Hamiltonian has 
been treated extensively by many authors Abraham 

and Marsden, (1978) Rice, (1980). When a dynamic 
system exhibits sensitivity to initial conditions, our 

ability to predict what will happen next decrease 

exponentially over time. Even if it is known that the 
deterministic law relating the states at time t and t + 
1, we will never be able to know the starting states at 
time t with infinite precision. We may be able to 

predict the next state with acceptable accuracy, but as 
we extrapolate further in to the future, the effect of 

initial uncertainty grows so rapidly that it soon 
dominates our results. 

A dynamical system is said to be chaotic if it 
(i) Has a dense collection of points with periodic 

orbits 
(ii) Is sensitive to the initial condition of the 

system, so that initially nearby points 
can evolve quickly into different states. 

(iii) Is topologically transitive Devaney, (1987) 
Chaotic system exhibits irregular and unpredictable 

behavior. The boundary between linear (orderly) and 

chaotic behavior is often characterized by periodic 
doubling Weinstein, (2004) 

 
The Method (Runge-Kutta Method) 

A FORTRAN code written by Koonin and Meredith, 
(1990) was used to determine the surface of section 

(SOS) of a dynamical system by integrating the 
Ordinary Differential Equation (ODE) of motion while 

implementing the Runge-Kutta algorithm. 
The Runge-Kutta method of integrating ODE of the 

form; 

     …………………………..  (1) 

is a step-by-step process of obtaining an 
approximation for yi+1 starting from the value of yi. 

Among its advantages are that no functions other 
than f are used, no subsidiary differentiation is needed 

and no subsidiary starting values needed to be 
calculated Riley, (1974). 

The basis of this method is to simulate the (accurate) 

Taylor series for y(xi + h), not by calculating all the 
higher derivatives of y at point xi, but by making a 

particular combination of the values of the first 
derivative of y evaluated at a number of carefully 

chosen points. Equation (1) is used to evaluate the 

first derivatives; the accuracy of the simulation can be 
made to be up to whatever power is desired but 

naturally the greater the accuracy, the more complex 
the calculation and, in any case rounding errors 

cannot be ultimately avoided. The setting of the 
calculation scheme may be illustrated by considering 

the particular case in which the second order accuracy 
in h is required, Acton F S (1990). The second order 

form of the Taylor expansion series can be; 

yi+1 = y + xi        …………………………(2) 

the use of higher order integration algorithm can then 

produce large errors whenever the surface of 
discontinuity is crossed, because the algorithm is 

implicitly assumes that all derivatives  exists up to its 
order Henon (1982) and  Henon and Charles (1964). 

In order to run this program the Programmers Work 
Bench (PWB) editor was used, Microsoft (1993). The 

Henon-Heiles potential was represented in the code in 

subroutine REAL FUNCTION and the surface of section 
was calculated at a fixed value of the energy while 

varying the initial condition of the position [y] and the 
momentum conjugate [Py]. This variation was done 10 

times for 1000 surface of section points required. This 
was done for two energy levels (E1= 0.05J and E2 

=0.075J) at 0.1 sec time step. 
 

RESULTS 
When the Henon-Heiles potential was integrated at 

different values of the initial conditions while the 
energy level was fixed at E1 = 0.05J, the data 

obtained was used to plot the momentum conjugate 
[Py] against the initial condition of the position [y] and 

is represented below in fig 1; 
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The procedure for the energy level E1 = 0.05J was 

repeated but this time the energy level was changed 
to E2 = 0.075J, the data obtained was used to plot the 

momentum conjugate [Py] against the initial condition 

of the position [y] and is represented below in Figure 
2 

 

 
 

DISCUSSION 
The source code was used to integrate the trajectories 

in the Henon-Heiles potential and construct the 
surface of sections map for the two energy levels E1 

and E2 at different values of initial conditions of 

position and the momentum conjugates, these 
computations was done for all the two energy levels 

at t= 0.1sec while requesting 1000 surface of section 
point for each set of initial condition. The sets of initial 

condition used are; 
Table 1: Initial Conditions 

            y                             Py 

              -0.2                         0.0 
         -0.1                         0.0 

          0.0                         0.0 
          0.1                         0.0 

          0.2                         0.0 
          0.0                         0.06 

          0.0                         0.1 
          0.0                         0.1 

          0.0                         0.14 
          0.0                         0.18 

          0.0                         0.20 
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The graphic output for all the energy levels had been 

represented in Fig 1 and 2. Fig 1 shows the elliptic 
fixed points at E1 while Fig 2 shows the hyperbolic 

fixed points at E2. These graphs indicate that the 
dynamic Hamiltonian system is chaotic since it is 

sensitive to initial conditions Rasband, (1990). This 
result is also in consistent with the work of James, M 

(2004) in his effort to describe the schematic Poincare 
maps (surface of section) for the Henon-Heiles 

system. 
 

 
 

 

CONCLUSION 

The surface of sections (SOS) for the energy levels E1 
= 0.05J and E2 = 0.075J were constructed after 

integrating the Henon-Heiles potential using the origin 
5.0 graphic software,  the elliptic and hyperbolic fixed 

points can be seen on the respective graphs. The 
result shows that the dynamical system is chaotic as it 

is sensitive to initial condition. The Runge-Kutta 
algorithm employed in this work is found to be a 

better approximation method for integrating an 
ordinary differential equation from n to n + 1 starting 

from the initial conditions because of its order of 

accuracy  
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Appendix 1 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
      REAL FUNCTION V(X,Y) 

C Calculates the potential and forces 

C 
C If you change the potential, you may also need to change DY0 and TOLY 

C for Y limit searches, as well as limits for X and Y in TRJINT 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C Passed variables: 
      REAL X,Y                     !coordinates 

C Functions: 
      REAL XDERIV,YDERIV           !x and y derivatives of the potential 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
      V=(X**2+Y**2)/2+X**2*Y-Y**3/3 

      RETURN 
C 

      ENTRY XDERIV(X,Y) 
      XDERIV=X+2*X*Y 

      RETURN 
C 

      ENTRY YDERIV(X,Y) 
      YDERIV=Y+X**2-Y**2 

      RETURN 

C 
      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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