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ABSTRACT  
The SOR is a basic iterative method for solution of the linear 
system 𝐴𝑥 = 𝑏. Such systems can easily be solved using direct 

methods such as Gaussian elimination. However, when the 
coefficient matrix 𝐴 is large and sparse, iterative methods such as 

the SOR become indispensable. A new preconditioner for 
speeding up the convergence of the SOR iterative method for 
solving the linear system 𝐴𝑥 = 𝑏 is proposed. Arising from the 

preconditioner, two new preconditioned iterative techniques of the 
SOR method are developed. The preconditioned iterations are 
applied to the linear system whose coefficient matrix is an 
𝑀 −matrix. Convergence of the preconditioned iterations is 

established through standard procedures. Numerical examples 
and results comparison are in conformity with the analytic results. 
More so, it is established that the spectral radii of the proposed 
preconditioned SOR 𝐺1 and 𝐺2 are less than that of the classical 

SOR, which implies faster convergence.  
 
Keywords: SOR method, preconditioner, M-matrix, convergence, 
spectral radius 
 
INTRODUCTION 
The discretization by finite differences of elliptic partial differential 
equations that appear in many areas of science and engineering 
in most cases results into an associated linear system of 
equations 
𝐴 = 𝑏                                                                                           (1) 
where the coefficient matrix 𝐴, being an 𝑛 × 𝑛 square matrix , is 

large and sparse, and usually, has certain particular structures 
and properties, such as belonging to the class of 𝑀 −matrices 

(that is a matrix for which 𝑎𝑖𝑖 > 0, 𝑎𝑖𝑗 ≤ 0 (𝑖 ≠ 𝑗), 𝐴 is 

nonsingular and 𝐴−1 ≥ 0); and 𝑥 and 𝑏 are 𝑛 −dimensional 
vectors. Suppose 𝐴 = 𝑀 −𝑁 is a regular splitting of the matrix 

𝐴 in (1). Then, the general basic iteration method for solving (1) is 

of the form 

𝑥(𝑘+1) = 𝐺𝑥(𝑘) + 𝑐 ,           𝑘 = 0,1,2,⋯                          (2) 
 where 𝐺 = 𝑀−1𝑁 and  𝑐 = 𝑀−1𝑏. The necessary and 

sufficient condition for convergence of the iterative method (2) 
entails that the spectral radius of the method be less than 1, and 
the smaller it is, the faster its convergence. The goal of 
preconditioning is to speed up the convergence of an iterative 
method by decreasing the spectral radius of the iteration matrix. A 
preconditioned linear system is obtained by applying the matrix 
𝑃 = 𝐼 + 𝑆, where 𝐼 is the identity matrix and 𝑆 is a sparse matrix 

whose nonzero entries are the negatives of the corresponding 
entries of 𝐴, to system (1) thus 

𝑃𝐴𝑥 = 𝑃𝑏                                                                                (3) 
and its corresponding general basic iterative method  
 

   𝑥(𝑘+1) = 𝑀𝑝
−1𝑁𝑝𝑥

(𝑘) +𝑀𝑝
−1𝑃𝑏 ,        𝑘 = 0,1,2,⋯      (4) 

results from the splitting 𝑃𝐴 = 𝑀𝑝 − 𝑁𝑝. It is assumed, for 

simplicity, that the diagonal entries of 𝐴 are unit elements and 

thus 𝐴 has the usual splitting 𝐴 = 𝐼 − 𝐿 − 𝑈, where −𝐿 and 

–𝑈 are strictly lower and strictly upper triangular matrices, 

respectively. Arising from this splitting the iteration matrix of the 

classical SOR method is described by 𝐺𝑆 = (𝐼 − 𝜔𝐿)
−1{(1 −

𝜔)𝐼 + 𝜔𝑈}. The SOR method was developed independently by 

Frankel (1950), Young (1950) and Young (1954).  
A modified SOR method was first proposed by Devogelaere 
(1950). Sisler (1972) and Sisler (1973) focused more on the use 
of more than one parameter for the SOR method. The 
Accelerated Overrelaxation (AOR) method, introduced by 
Hadjidimos (1978), was an improvement of Sisler’s method. Ever 
since, a great number of papers have been written on improving 
the convergence of the SOR method. Bai and Chai (2003) 
proposed a new class of SOR methods called asymptotically 
optimal SOR (AOSOR) methods for solving large sparse linear 
systems by choosing the relaxation parameter in a dynamic 
fashion according to known information at the current iterate step. 
Dehghan and Hajarian (2009) applied two new preconditioner 

techniques, 𝑃̅ = 𝐼 + 𝑆̅ and 𝑃̃ = 𝐼 + 𝑆̃, to the successive 

overrelaxation iterative method for solving 𝐿 −matrix linear 

systems under mild assumptions on the coefficient matrix 𝐴. 

Moussavi (2009) generalized the method of Sisler and provided a 
range for the second parameter on which the two-parameter 
method proved to be better than the SOR method. Youssef 
(2012) introduced the KSOR, a new variant of the SOR method 
that results from exploitation of the hidden explicit characterization 
of linear functions. It was proved that the KSOR can converge for 
all values of the relaxation parameter 𝜔∗ ∈ ℝ − [−2, 0] not only 
for 𝜔 ∈ (0, 2) as in the SOR method. Ndanusa and Adeboye 

(2012) proposed a preconditioned SOR method of the type 𝐼 + 𝑆 

for accelerating the convergence of the classical SOR method. 
Youssef et al. (2016) introduced a line version of the KSOR 
method for solving systems of linear equations, the LKSOR. 
Adapted from the KSOR method, the LKSOR employs the same 
philosophy as obtained in the line SOR method, LSOR. The 
LKSOR exploits the advantages of the LSOR in addition to those 
of the KSOR to obtain an efficient iterative algorithm. Zhang et al. 
(2016) proposed some necessary and sufficient conditions for 
convergence of the SOR iterative methods, including FSOR, 
BSOR and SSOR, for linear systems with weak 𝐻 −matrices. 

This present work is a further attempt at accelerating the rate of 
convergence of the SOR method by introducing a preconditioned 
version of the method. 
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MATERIALS AND METHODS 
Preliminaries 
To provide the preconditioned effect on (1) we let 𝑃 = 𝐼 + 𝑆 in 

(3)  where 𝐼 is the identity matrix and 𝑆 is a sparse matrix whose 
nonzero entries are the negatives of corresponding entries of 𝐴.   

𝑆 = {
−𝑎𝑖𝑗 ,   𝑗 = 𝑖 + 1,   for  𝑖 < 2 and 𝑗 = 𝑖 − 1 for 𝑖 > 𝑗

0,              otherwise 0  0000000000000000000
 

Equation (3) is now written in the form  

𝐴̃𝑥 = 𝑏̃                                                                                 (5) 

where 𝐴̃ = 𝑃𝐴 and 𝑏̃ = 𝑃𝑏. Equation (5), which has the same 
solution as equation (1), is referred to as a preconditioned system 
while the transformation matrix 𝑃 is called the preconditioning 

matrix or the preconditioner. Thus the preconditioner 𝑃 must be 

nonnegative so as to make  𝐴̃ an 𝐿 −matrix. From (5) results  

𝐴̃ = 𝑃𝐴 = (𝐼 + 𝑆)(𝐼 − 𝐿 − 𝑈) 
= 𝐼 − 𝐿 − 𝑈 + 𝑆 − 𝑆𝐿 − 𝑆𝑈 

= 𝐼 − 𝐿 − 𝑈 − 𝐿𝑆 − 𝑈𝑆 +𝐷1 − 𝐿1 − 𝑈1 

where 𝑆 = −𝐿𝑆 − 𝑈𝑆 and −𝑆𝐿 − 𝑆𝑈 = 𝐷1 − 𝐿1 −𝑈1 

Therefore,  

𝐴̃ = (𝐼 + 𝐷1) − (𝐿 + 𝐿𝑆 + 𝐿1) − (𝑈 + 𝑈𝑆 + 𝑈1) 
That is, 

𝐴̃ = 𝐷̃ − 𝐿̃ − 𝑈̃ 

Where  𝐷̃ = 𝐼 + 𝐷1,  𝐿̃ = 𝐿 + 𝐿𝑆 + 𝐿1 and  𝑈̃ = 𝑈 + 𝑈𝑆 +
𝑈1. 

The application of overrelaxation parameter 𝜔 to (5) results in the 

following 

 𝜔𝐴̃𝑥 = 𝜔𝑏̃                                                                      (6) 
The matrix 𝜔𝐴̃ is subjected to a regular splitting   

𝜔𝐴̃ = 𝜔(𝐷̃ − 𝐿̃ − 𝑈̃) 

= 𝜔(𝐼 + 𝐷1 − 𝐿̃ − 𝑈̃) 

𝐼 − 𝐼 +  𝜔𝐼 + 𝜔𝐷1 − 𝜔𝐿̃ − 𝜔𝑈̃ 

= 𝐼 − 𝜔𝐿̃ + 𝜔𝐷1 − 𝐼 + 𝜔𝐼 − 𝜔𝑈̃ 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)] − {(1 − 𝜔)𝐼 + 𝜔𝑈̃} 

= 𝑀 − 𝑁 

where 𝑀 = [𝐼 − 𝜔(𝐿̃ − 𝐷1)] and 𝑁 = {(1 − 𝜔)𝐼 + 𝜔𝑈̃}. 

Hence, the preconditioned SOR scheme is defined as  

𝑥(𝑘+1) = [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{(1 − 𝜔)𝐼 + 𝜔𝑈̃}𝑥(𝑘)

+ [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
𝜔𝑏′ 

 That is, 

𝑥(𝑘+1) = 𝐺1𝑥
(𝑘) + 𝑐                                                           (7) 

where 𝐺1 = [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{(1 − 𝜔)𝐼 + 𝜔𝑈̃} is the 

preconditioned SOR iteration matrix. 
Also, from (6)  

𝜔𝐴̃ = 𝜔(𝐷̃ − 𝐿̃ − 𝑈̃) 

= 𝜔𝐷̃ − 𝜔𝐿̃ − 𝜔𝑈̃ 

𝐷̃ − 𝐷̃ + 𝜔𝐷̃ − 𝜔𝐿̃ − 𝜔𝑈̃ 

= (𝐷̃ − 𝜔𝐿̃) − [(1 − 𝜔)𝐷̃ + 𝜔𝑈̃] 

is another splitting of the preconditioned coefficient matrix 𝜔𝐴′ =

𝑀 − 𝑁, where 𝑀 = (𝐷̃ − 𝜔𝐿̃) and 𝑁 = [(1 − 𝜔)𝐷̃ + 𝜔𝑈̃], 

from whence the second preconditioned SOR iterative scheme is 
defined thus  

𝑥(𝑘+1) = 𝐺2𝑥
(𝑘) + 𝑐                                                         (8) 

where 𝐺2 = 𝑀
−1𝑁 = (𝐷̃ − 𝜔𝐿̃)

−1
[(1 − 𝜔)𝐷̃ + 𝜔𝑈̃] and  

𝑐 = 𝑀−1𝜔𝑏′ = (𝐷̃ − 𝜔𝐿̃)
−1
𝜔𝑏′. 

 

The resultant entries of the matrix 𝐴̃ = (𝑎̃𝑖𝑗) are characterized 

as follow. 
𝑎̃𝑖𝑖 = 1 − 𝑎𝑖𝑠𝑎𝑠𝑖 ,               (𝑖, 𝑠) = (1,2), (𝑛, 𝑛 − 1)

𝑎̃𝑖𝑖 = 1 − 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 − 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 ,      𝑖 = 2(1)𝑛 − 1

𝑎̃𝑖𝑗 = 0,                  (𝑖, 𝑗) = (1,2), (𝑛, 𝑛 − 1)

𝑎̃𝑖,𝑖−1 = −𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖−1, 𝑖 = 2(1)𝑛 − 1

𝑎̃𝑖,𝑖+1 = −𝑎𝑖,𝑖−1𝑎𝑖−1,𝑖+1, 𝑖 = 2(1)𝑛 − 1

𝑎̃1,𝑖 = 𝑎1,𝑖 − 𝑎12𝑎2,𝑖 , 𝑖 = 3(1)𝑛

𝑎̃𝑛,𝑖 = 𝑎𝑛,𝑖 − 𝑎𝑛−1,𝑖𝑎𝑛,𝑛−1, 𝑖 = 1(1)𝑛 − 2

𝑎̃𝑖,𝑖−2 = 𝑎𝑖,𝑖−2 − 𝑎𝑖−1,𝑖−2𝑎𝑖,𝑖−1 − 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖−2, 𝑖 = 3(1)𝑛 − 1

𝑎̃𝑖,𝑖+2 = 𝑎𝑖,𝑖+2 − 𝑎𝑖−1,𝑖+2𝑎𝑖,𝑖−1 − 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖+2, 𝑖 = 2(1)𝑛 − 2

𝑎̃𝑖,1 = 𝑎𝑖,1 − 𝑎𝑖−1,1𝑎𝑖,𝑖−1 − 𝑎𝑖,𝑛𝑎𝑛,1, 𝑖 = 4(1)𝑛 − 1

𝑎̃𝑖,𝑛 = 𝑎𝑖,𝑛 − 𝑎𝑖−1,𝑛𝑎𝑖,𝑖−1 − 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑛 , 𝑖 = 2(1)𝑛 − 2 }
 
 
 
 
 
 

 
 
 
 
 
 

  (9) 

 

The 𝑀 −matrix structure of 𝐴̃ entails that  

1 − 𝑎𝑖𝑠𝑎𝑠𝑖 > 0,      (𝑖, 𝑠) = (1,2), (𝑛, 𝑛 − 1) 
and  

1 − 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 − 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 > 0,      𝑖 = 2(1)𝑛 − 1 

 
That is, 1 > 𝑎𝑖𝑠𝑎𝑠𝑖 ≥ 0 and 1 > 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 ≥

0. Hence, we must have that  

0 ≤ 𝑎𝑖𝑠𝑎𝑠𝑖 < 1, (𝑖, 𝑠) = (1,2), (𝑛, 𝑛 − 1) and 0 ≤
𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 < 1, 𝑖 = 2(1)𝑛 − 1 

 
Convergence Theorems 
The following lemmas are needed in order to prove our main 
theorems. 
 
Lemma 1 (Varga (1981)) Let 𝐴 ≥ 0 be an irreducible 𝑛 ×
𝑛 matrix. Then, 

i. 𝐴 has a positive real eigenvalue equal to its spectral 

radius. 
ii. To 𝜌(𝐴) there corresponds an eigenvector 𝑥 > 0. 

iii. 𝜌(𝐴) increases when any entry of 𝐴 increases. 

iv. 𝜌(𝐴) is a simple eigenvalue of 𝐴. 

 
Lemma 2 (Varga (1981)) 

i. Let 𝐴 be a nonnegative matrix. Then 

If 𝛼𝑥 ≤ 𝐴𝑥 for some nonnegative vector 𝑥, 𝑥 ≠ 0, then 𝛼 ≤
𝜌(𝐴). 
ii. If 𝐴𝑥 ≤ 𝛽𝑥 for some positive vector 𝑥, then 𝜌(𝐴) ≤ 𝛽. 

Moreover, if 𝐴 is irreducible and if 0 ≠ 𝛼𝑥 ≤ 𝐴𝑥 ≤ 𝛽𝑥 

for some nonnegative vector 𝑥, then 𝛼 ≤ 𝜌(𝐴) ≤ 𝛽 and 

𝑥 is a positive vector. 

 
Lemma 3 (Li and Sun(2000)) Let 𝐴 = 𝑀 − 𝑁 be an 

𝑀 −splitting of 𝐴. Then the splitting is convergent, i.e., 

𝜌(𝑀−1𝑁 < 1), if and only if 𝐴 is a nonsingular 𝑀 −matrix. 
 

Theorem 1 Let 𝐺𝑆𝑂𝑅 = (𝐼 − 𝜔𝐿)
−1{(1 − 𝜔)𝐼 +

𝜔𝑈}, 𝐺1 = [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{(1 − 𝜔)𝐼 + 𝜔𝑈̃} and 𝐺2 =

(𝐷̃ − 𝜔𝐿̃)−1{(1 − 𝜔)𝐷̃ + 𝜔𝑈̃} be the SOR, first 

preconditioned SOR and second preconditioned SOR iteration 
matrices respectively. If 𝐴 is an irreducible 𝑀 −matrix with 0 ≤
𝑎𝑖𝑠𝑎𝑠𝑖 < 1, (𝑖, 𝑠) = (1,2), (𝑛, 𝑛 − 1), 0 ≤ 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 +
𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 < 1, 𝑖 = 2(1)𝑛 − 1 and 0 < 𝜔 < 1, then 𝐺𝑆𝑂𝑅, 

𝐺1 and 𝐺2 are nonnegative and irreducible matrices. 
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Proof: The 𝐺𝑆𝑂𝑅, 𝐺1 and 𝐺2 reduce to 𝐼 when 𝜔 = 0. For 

𝜔 < 0 and 𝜔 > 1, negative entries appear in these matrices. 

Thus range of values of 𝜔  that ensures nonnegativity of these 

matrices is, 0 < 𝜔 < 1.  

Given 0 < 𝜔 < 1, (1 − 𝜔 )𝐼 + 𝜔𝑈 ≥ 0, since 𝑈 ≥ 0. Also, 

(𝐼 − 𝜔𝐿)−1 = 𝐼 + 𝜔𝐿 + 𝜔2𝐿2 + ∙∙∙  +𝜔𝑛−1𝐿𝑛−1 ≥ 0, since 

𝐿 ≥ 0. Hence 𝐺𝑆𝑂𝑅 = (𝐼 − 𝜔𝐿)
−1[(1 − 𝜔)𝐼 + 𝜔𝑈] ≥ 0, 

that is, a nonnegative matrix. For 0 < 𝜔 < 1, 

𝐺𝑆𝑂𝑅 = [𝐼 + 𝜔𝐿 + 𝜔
2𝐿2 + ∙∙∙  +𝜔𝑛−1𝐿𝑛−1][(1 − 𝜔)𝐼

+ 𝜔𝑈] 
= (1 − 𝜔)𝐼 + 𝜔(1 − 𝜔)𝐿 + 𝜔𝑈 +𝜔2𝐿𝑈 + 𝜔2(1 − 𝜔)𝐿2

+ 𝜔3𝐿2𝑈 + ∙∙∙  
= (1 − 𝜔)𝐼 + 𝜔(1 − 𝜔)𝐿 + 𝜔𝑈 + nonnegative terms 

Since 𝐴 = 𝐼 − 𝐿 − 𝑈  is irreducible, so also is the matrix 
(1 − 𝜔)𝐼 + 𝜔(1 − 𝜔)𝐿 + 𝜔𝑈 because  the coefficients of 
𝐼, 𝐿 and 𝑈 are not zero and less than 1 in absolute value. Hence, 

𝐺𝑆𝑂𝑅 is an irreducible matrix. 

The iteration matrix 𝐺1 is defined by  

𝐺1 = [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1{(1 − 𝜔)𝐼 + 𝜔𝑈̃} 

Since 𝐿̃ ≥ 0, 𝑈̃ ≥ 0, −𝐷1 ≥ 0, and for 0 < 𝜔 < 1, (1 −
𝜔)𝐼 + 𝜔𝑈̃ ≥ 0 and [𝐼 − 𝜔(𝐿̃ − 𝐷1]

−1 = 𝐼 + 𝜔(𝐿̃ − 𝐷1) +

𝜔2(𝐿̃ − 𝐷1)
2
+ ∙∙∙  +𝜔𝑛−1(𝐿̃ − 𝐷1)

𝑛−1
≥ 0. Hence, 𝐺1 =

[𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1{(1 − 𝜔)𝐼 + 𝜔𝑈̃} ≥ 0, and therefore 𝐺1 

is a nonnegative matrix. 
 
Let the coefficient matrix 𝐴 = 𝐼 − 𝐿 − 𝑈 be an irreducible 

matrix; then the preconditioned matrix 𝐴̃ is defined by   

𝐴̃ = 𝑃𝐴 = (𝐼 + 𝑆)𝐴 = (𝐼 − 𝐿𝑠 − 𝑈𝑠)𝐴 

= (𝐼 − 𝐿𝑠 −𝑈𝑠)(𝐼 − 𝐿 − 𝑈) 
= 𝐼 − 𝐿𝑠 − 𝑈𝑠 − 𝐿 + 𝐿𝑠𝐿 + 𝑈𝑠𝐿 − 𝑈 + 𝐿𝑠𝑈 + 𝑈𝑠𝑈 

= 𝐼 − 𝐿𝑠 − 𝑈𝑠 − 𝐿 + 𝐿𝑠𝐿 − (𝑈𝑠𝐿)𝐿 − (𝑈𝑠𝐿)𝑈 − 𝑈
− (𝐿𝑠𝑈)𝐿 − (𝐿𝑠𝑈)𝑈 + 𝑈𝑠𝑈 

= 𝐼 − 𝐿 − 𝐿𝑠 + 𝐿𝑠𝐿 − (𝐿𝑠𝑈)𝐿 − (𝑈𝑠𝐿)𝐿 −𝑈 − 𝑈𝑠 + 𝑈𝑠𝑈
− (𝑈𝑠𝐿)𝑈 − (𝐿𝑠𝑈)𝑈 

= 𝐼 − (𝐿 + 𝐿𝑠 − 𝐿𝑠𝐿 + (𝐿𝑠𝑈)𝐿 + (𝑈𝑠𝐿)𝐿)
− (𝑈 + 𝑈𝑠 −𝑈𝑠𝑈 + (𝑈𝑠𝐿)𝑈
+ (𝐿𝑠𝑈)𝑈) 

= 𝐼 − 𝐿̃ − 𝑈̃ 

where 𝐿̃ = 𝐿 + 𝐿𝑠 − 𝐿𝑠𝐿 + (𝐿𝑠𝑈)𝐿 + (𝑈𝑠𝐿)𝐿 , 𝑈̃ = 𝑈 +
𝑈𝑠 − 𝑈𝑠𝑈 + (𝑈𝑠𝐿)𝑈 + (𝐿𝑠𝑈)𝑈 and −(𝑇)𝐿 and −(𝑇)𝑈 

denote the strictly lower and strictly upper parts of the matrix 𝑇 

respectively. Since 𝐴 is irreducible, it is obvious that 𝐴̃ = 𝐼 −
𝐿̃ − 𝑈̃  is irreducible, since it inherits the nonzero structure of the 

irreducible matrix 𝐴. Now, 

𝐺1 = [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1{(1 − 𝜔)𝐼 + 𝜔𝑈̃} 

= [𝐼 + 𝜔(𝐿̃ − 𝐷1) + 𝜔
2(𝐿̃ − 𝐷1)

2
+ ∙∙

∙  +𝜔𝑛−1(𝐿̃ − 𝐷1)
𝑛−1

]{(1 − 𝜔)𝐼

+ 𝜔𝑈̃} 

= (1 − 𝜔)𝐼 + 𝜔𝑈̃ + 𝜔(1 − 𝜔)(𝐿̃ − 𝐷1) + 𝜔
2(𝐿̃ − 𝐷1)𝑈̃

+ 𝜔2(1 − 𝜔)(𝐿̃ − 𝐷1)
2
+⋯ 

= (1 − 𝜔)𝐼 + 𝜔(1 − 𝜔)𝐿̃ + 𝜔𝑈̃ + 𝜔(1 − 𝜔)(−𝐷1)

+ 𝜔2(𝐿̃ − 𝐷1)𝑈̃

+ 𝜔2(1 − 𝜔)(𝐿̃ − 𝐷1)
2
+⋯ 

= (1 − 𝜔)𝐼 + 𝜔(1 − 𝜔)𝐿̃ + 𝜔𝑈̃ + nonnegative terms 
Since 𝐴̃ = 𝐼 − 𝐿̃ − 𝑈̃ is irreducible, it implies, for 0 < 𝜔 < 1, 

the matrix (1 − 𝜔)𝐼 + 𝜔(1 − 𝜔)𝐿̃ + 𝜔𝑈̃ is also irreducible, 

because the coefficients of 𝐼, 𝐿̃ and 𝑈̃ are different from zero and 

less than one in absolute value. Therefore, the matrix 𝐺1 =
[𝐼 − 𝜔(𝐿̃ − 𝐷1)]

−1{(1 − 𝜔)𝐼 + 𝜔𝑈̃} is irreducible. Hence 𝐺1 

is a nonnegative and irreducible matrix. 
Similarly,  

𝐺2 = (𝐷̃ − 𝜔𝐿̃)
−1
[(1 − 𝜔)𝐷̃ + 𝜔𝑈̃] 

= [𝐷̃(𝐼 − 𝜔𝐷̃−1𝐿̃)]−1[(1 − 𝜔)𝐷̃ + 𝜔𝑈̃] 

= [𝐷̃(𝐼 − 𝜔𝐷̃−1𝐿̃)]−1[(1 − 𝜔)𝐷̃ + 𝜔𝑈̃] 

= (𝐼 − 𝜔𝐷̃−1𝐿̃)
−1
𝐷̃−1[(1 − 𝜔)𝐷̃ + 𝜔𝑈̃] 

= (𝐼 − 𝜔𝐷̃−1𝐿̃)
−1
[(1 − 𝜔)𝐼 + 𝜔𝐷̃−1𝑈̃] 

= [𝐼 + 𝜔𝐷̃−1𝐿̃ + 𝜔2(𝐷̃−1𝐿̃)2 +⋯

+ 𝜔𝑛−1(𝐷̃−1𝐿̃)𝑛−1][(1 − 𝜔)𝐼

+ 𝜔𝐷̃−1𝑈̃] 

= (1 − 𝜔)𝐼 + 𝜔(1 − 𝜔)𝐷̃−1𝐿̃ + 𝜔𝐷̃−1𝑈̃
+ nonnegative terms 

Using similar arguments it is conclusive that 𝐺2 =

(𝐷̃ − 𝜔𝐿̃)
−1
[(1 − 𝜔)𝐷̃ + 𝜔𝑈̃] is a nonnegative and 

irreducible matrix. 
 

Theorem 2 Let 𝐺𝑆𝑂𝑅 = (𝐼 − 𝜔𝐿)
−1{(1 − 𝜔)𝐼 +

𝜔𝑈} and 𝐺1 = [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{(1 − 𝜔)𝐼 + 𝜔𝑈̃} be the 

SOR and the preconditioned SOR iteration matrices respectively. 
If 0 < 𝜔 < 1 and 𝐴 is an irreducible 𝑀 −matrix with 0 ≤
𝑎𝑖𝑠𝑎𝑠𝑖 < 1, (𝑖, 𝑠) = (1,2), (𝑛, 𝑛 − 1), 0 ≤ 𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 +

𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 < 1, 𝑖 = 2(1)𝑛 − 1, then 

a) 𝜌(𝐺1) < 𝜌(𝐺𝑆𝑂𝑅), if  𝜌(𝐺𝑆𝑂𝑅) < 1 

b) 𝜌(𝐺1) = 𝜌(𝐺𝑆𝑂𝑅), if  𝜌(𝐺𝑆𝑂𝑅) = 1 

c) 𝜌(𝐺1) > 𝜌(𝐺𝑆𝑂𝑅), if  𝜌(𝐺𝑆𝑂𝑅) > 1 

 
Proof: It is established in Theorem 1 that the 𝐺𝑆𝑂𝑅 and 𝐺1 are 

nonnegative and irreducible matrices. Now, suppose that 
𝜌(𝐺𝑆𝑂𝑅) = γ, then there exists a positive vector 𝑦 =
(𝑦1, 𝑦2, ⋯ , 𝑦𝑛) such that  

𝐺𝑆𝑂𝑅𝑦 = 𝛾𝑦 
which implies  

(𝐼 − 𝜔𝐿)−1{(1 − 𝜔)𝐼 + 𝜔𝑈}𝑦 = 𝛾𝑦 
(1 − 𝜔)𝐼 + 𝜔𝑈 = 𝛾(𝐼 − 𝜔𝐿)                                      (10) 

And for this 𝑦 > 0 

𝐺1𝑦 − 𝛾𝑦 = [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{(1 − 𝜔)𝐼 + 𝜔𝑈̃}𝑦 − 𝛾𝑦 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{(1 − 𝜔)𝐼 + 𝜔𝑈̃}𝑦

− 𝛾[𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
[𝐼

− 𝜔(𝐿̃ − 𝐷1)]𝑦 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{(1 − 𝜔)𝐼 + 𝜔𝑈̃ − 𝛾𝜔𝐷1 − 𝛾(𝐼

− 𝜔𝐿̃)}𝑦 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{(1 − 𝜔 − 𝛾)𝐼 + 𝜔𝑈̃ + 𝛾𝜔𝐿̃

− 𝛾𝜔𝐷1}𝑦 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{(1 − 𝜔 − 𝛾)𝐼 + 𝜔(𝑈 + 𝑈𝑠 + 𝑈1)

+ 𝛾𝜔(𝐿 + 𝐿𝑠 + 𝐿1) − 𝛾𝜔𝐷1}𝑦 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{(1 − 𝜔 − 𝛾)𝐼 + (𝜔𝑈 + 𝛾𝜔𝐿)

+ (𝜔𝑈𝑠 + 𝜔𝐿𝑠) + (𝛾𝜔𝐿𝑠 − 𝜔𝐿𝑠)
+ (−𝜔𝐷1 + 𝜔𝐿1 + 𝜔𝑈1)
+ (𝛾𝜔𝐿1 − 𝜔𝐿1) + (−𝛾𝜔𝐷1
+𝜔𝐷1)}𝑦 
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Since from (10), 
𝜔𝑈 + 𝛾𝜔𝐿 = −(1 − 𝜔 − 𝛾) 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{−𝜔𝑆 + 𝜔𝑆𝐿 + 𝜔𝑆𝑈 + (𝛾 − 1)𝜔𝐿𝑠

+ (𝛾 − 1)𝛾𝜔𝐿1 + (𝛾 − 1)(−𝐷1)}𝑦 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{𝜔(𝛾 − 1)(𝐿1 + 𝐿𝑠 − 𝐷1) + 𝑆 − 𝜔𝑆

− 𝑆 + 𝜔𝑆𝐿 + 𝜔𝑆𝑈}𝑦 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{𝜔(𝛾 − 1)(𝐿1 + 𝐿𝑠 − 𝐷1) + (1

− 𝜔)𝑆 − 𝑆(𝐼 − 𝜔)𝐿 + 𝜔𝑆𝑈}𝑦 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{𝜔(𝛾 − 1)(𝐿1 + 𝐿𝑠 −𝐷1) + 𝑆[(1

− 𝜔)𝐼 + 𝜔𝑈 − (𝐼 − 𝜔)𝐿]}𝑦 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{𝜔(𝛾 − 1)(𝐿1 + 𝐿𝑠 −𝐷1)

+ 𝑆[𝛾(𝐼 − 𝜔𝐿) − (𝐼 − 𝜔)𝐿]}𝑦 

= [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{𝜔(𝛾 − 1)(𝐿1 + 𝐿𝑠 − 𝐷1)

+ 𝛾𝑆(𝐼 − 𝜔𝐿) − 𝑆(𝐼 − 𝜔)𝐿}𝑦 

= (𝛾 − 1)[𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{𝜔(𝐿1 + 𝐿𝑠 − 𝐷1)

+ 𝑆(𝐼 − 𝜔𝐿)}𝑦 

= [(𝛾 − 1) 𝛾⁄ ][𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{𝛾𝜔(𝐿1 + 𝐿𝑠 −𝐷1) + (1

− 𝜔)𝑆 + 𝜔𝑆𝑈}𝑦 

Suppose 𝑇 = 𝑉𝑦, where 𝑉 = [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{𝛾𝜔(𝐿1 +

𝐿𝑠 − 𝐷1) + (1 − 𝜔)𝑆 + 𝜔𝑆𝑈}. Then 𝑉 = [𝐼 −

𝜔(𝐿̃ − 𝐷1)]
−1
{𝛾𝜔(𝐿1 + 𝐿𝑠 −𝐷1) + (1 − 𝜔)𝑆 + 𝜔𝑆𝑈} ≥

0, since 𝛾𝜔(𝐿1 − 𝐷1) ≥ 0, 𝛾𝜔𝐿𝑠 + (1 − 𝜔)𝑆 ≥ 0 and 

𝜔𝑆𝑈 ≥ 0. Also, [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
= 𝐼 + 𝜔(𝐿̃ − 𝐷1) +

𝜔2(𝐿̃ − 𝐷1)
2
+ ∙∙∙  +𝜔𝑛−1(𝐿̃ − 𝐷1)

𝑛−1
≥ 0, since 𝐿̃ ≥ 0 

and −𝐷1 ≥ 0. Therefore, 𝑉 = [𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{𝛾𝜔(𝐿1 +

𝐿𝑠 − 𝐷1) + (1 − 𝜔)𝑆 + 𝜔𝑆𝑈} ≥ 0. Consequently, 𝑇 =

[𝐼 − 𝜔(𝐿̃ − 𝐷1)]
−1
{𝛾𝜔(𝐿1 + 𝐿𝑠 −𝐷1) + (1 − 𝜔)𝑆 +

𝜔𝑆𝑈}𝑦 ≥ 0, since 𝑦 > 0.  

a) If 𝛾 < 1, then 𝐺1𝑦 − 𝛾𝑦 ≤ 0 but not equal to 0. Therefore, 

𝐺1𝑦 ≤ 𝛾𝑦. Hence, 

𝜌(𝐺1) < 𝛾 = 𝜌(𝐺𝑆𝑂𝑅) 
b) If 𝛾 = 1, then 𝐺1𝑦 − 𝛾𝑦 = 0. Therefore, 𝐺1𝑦 = 𝛾𝑦. 

Hence, 
𝜌(𝐺1) = 𝛾 = 𝜌(𝐺𝑆𝑂𝑅) 

c) If 𝛾 > 1, then 𝐺1𝑦 − 𝛾𝑦 ≥ 0 but not equal to 0. Therefore, 

𝐺1𝑦 ≥ 𝛾𝑦. Hence, 
𝜌(𝐺1) > 𝛾 = 𝜌(𝐺𝑆𝑂𝑅) 

 

Theorem 3 Let 𝐺𝑆𝑂𝑅 = (𝐼 − 𝜔𝐿)
−1{(1 − 𝜔)𝐼 +

𝜔𝑈} and 𝐺2 = (𝐷̃ − 𝜔𝐿̃)
−1
{(1 − 𝜔)𝐷̃ + 𝜔𝑈̃} and  be the 

SOR and preconditioned SOR iteration matrices respectively. If 
0 < 𝜔 < 1 is and 𝐴 ∈ ℝ𝑛𝑥𝑛 is an irreducible 𝑀 −matrix with 

0 ≤ 𝑎𝑖𝑠𝑎𝑠𝑖 < 1, (𝑖, 𝑠) = (1,2), (𝑛, 𝑛 − 1), 0 ≤
𝑎𝑖−1,𝑖𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1𝑎𝑖+1,𝑖 < 1, 𝑖 = 2(1)𝑛 − 1, then 

a) 𝜌(𝐺2) < 𝜌(𝐺𝑆𝑂𝑅), if  𝜌(𝐺𝑆𝑂𝑅) < 1 

b) 𝜌(𝐺2) = 𝜌(𝐺𝑆𝑂𝑅), if  𝜌(𝐺𝑆𝑂𝑅) = 1 

c) 𝜌(𝐺2) > 𝜌(𝐺𝑆𝑂𝑅), if  𝜌(𝐺𝑆𝑂𝑅) > 1 

 
Proof: Theorem 1 established that 𝐺𝑆𝑂𝑅 and 𝐺2 are 

nonnegative and irreducible matrices. Let 𝜌(𝐺𝑆𝑂𝑅) = 𝛾, then 

there exists a positive vector 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛)
𝑇, such that  

𝐺𝑆𝑂𝑅𝑦 = 𝛾𝑦 

Or, 
(𝐼 − 𝜔𝐿)−1{(1 − 𝜔)𝐼 + 𝜔𝑈}𝑦 = 𝛾𝑦 

(1 − 𝜔)𝐼 + 𝜔𝑈 = 𝛾(𝐼 − 𝜔𝐿)                                              (11) 
Therefore, for this 𝑦 > 0, 

𝐺2𝑦 − 𝛾𝑦 = (𝐷̃ − 𝜔𝐿̃)
−1
{(1 − 𝜔)𝐷̃ + 𝜔𝑈̃}𝑦 − 𝛾𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(1 − 𝜔)𝐷̃ + 𝜔𝑈̃}𝑦

− (𝐷̃ − 𝜔𝐿̃)
−1
(𝐷̃ − 𝜔𝐿̃)𝛾𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(1 − 𝜔)𝐷̃ + 𝜔𝑈̃ − 𝛾(𝐷̃ − 𝜔𝐿̃)}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(1 − 𝜔 − 𝛾)𝐷̃ + 𝛾𝜔𝐿̃ + 𝜔𝑈̃}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(1 − 𝜔 − 𝛾)(𝐼 + 𝐷1) + 𝛾𝜔(𝐿 + 𝐿𝑆 + 𝐿1)

+ 𝜔(𝑈 + 𝑈𝑆 + 𝑈1)}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(1 − 𝜔 − 𝛾)𝐷1 + 𝛾𝜔𝐿1 + 𝛾𝜔𝐿𝑆 + 𝛾𝜔𝐿

+ 𝜔𝑈𝑆 +𝜔𝑈1 + (1 − 𝜔 − 𝛾)𝐼
+ 𝜔𝑈}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(1 − 𝜔 − 𝛾)𝐷1 + 𝛾𝜔𝐿1 + 𝛾𝜔𝐿𝑆 +𝜔𝑈𝑆
+ 𝜔𝑈1}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(1 − 𝜔 − 𝛾)𝐷1 + 𝛾𝜔𝐿1 + 𝛾𝜔𝐿𝑆 +𝜔𝑈𝑆

+ 𝜔𝑈1}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(𝛾 − 1)(−𝐷1) + (𝛾 − 1)𝜔𝐿1 − 𝜔(𝐷1 − 𝐿1

− 𝑈1) + 𝛾𝜔𝐿𝑆 + 𝜔𝑈𝑆}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(𝛾 − 1)(−𝐷1 + 𝜔𝐿1) + 𝜔𝑆𝐿 + 𝜔𝑆𝑈

+ (𝛾 − 1)𝜔𝐿𝑆 + 𝜔(𝐿𝑆 + 𝑈𝑆)}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(𝛾 − 1)(−𝐷1 + 𝜔𝐿1 + 𝜔𝐿𝑠) + (1 − 𝜔)𝑆

+ 𝜔𝑆𝑈 − 𝑆(𝐼 − 𝜔𝐿)}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(𝛾 − 1)(−𝐷1 + 𝜔𝐿1 + 𝜔𝐿𝑠) + 𝑆[(1 − 𝜔)𝐼

+ 𝜔𝑈] − 𝑆(𝐼 − 𝜔𝐿)}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(𝛾 − 1)(−𝐷1 + 𝜔𝐿1 + 𝜔𝐿𝑠)

+ 𝛾𝑆(𝐼 − 𝜔𝐿) − 𝑆(𝐼 − 𝜔𝐿)}𝑦 

= (𝐷̃ − 𝜔𝐿̃)
−1
{(𝛾 − 1)(−𝐷1 + 𝜔𝐿1 + 𝜔𝐿𝑠)

+ (𝛾 − 1)𝑆(𝐼 − 𝜔𝐿)}𝑦 

= (𝛾 − 1)(𝐷̃ − 𝜔𝐿̃)
−1
{(−𝐷1 + 𝜔𝐿1 + 𝜔𝐿𝑠)

+ [(𝛾 − 1)𝑆(𝐼 − 𝜔𝐿)] 𝛾⁄ }𝑦 

= [(𝛾 − 1) 𝛾⁄ ](𝐷̃ − 𝜔𝐿̃)
−1
{𝛾(−𝐷1 +𝜔𝐿1 +𝜔𝐿𝑠)

+ (1 − 𝜔)𝑆 + 𝜔𝑆𝑈}𝑦 
 

Let 𝑇 = 𝑉𝑦, where 𝑉 = (𝐷̃ − 𝜔𝐿̃)
−1
{𝛾(−𝐷1 + 𝜔𝐿1 +

𝜔𝐿𝑠) + (1 − 𝜔)𝑆 + 𝜔𝑆𝑈}. It is obvious that 𝛾(−𝐷1 + 𝜔𝐿1 +
𝜔𝐿𝑠) + (1 − 𝜔)𝑆 + 𝜔𝑆𝑈 ≥ 0, (1 − 𝜔)𝑆 ≥ 0 and 𝛾(−𝐷1 +
𝜔𝐿1 + 𝜔𝐿𝑠) ≥ 0. Since 𝐷̃ is a nonsingular matrix, we let 𝐷̃ −
𝜔𝐿̃ be a splitting of some matrix 𝐽, i.e., 𝐽 = 𝐷̃ − 𝜔𝐿̃. Also, 𝐷̃ is 

an 𝑀 −matrix and 𝜔𝐿̃ ≥ 0. Thus, 𝐽 = 𝐷̃ − 𝜔𝐿̃ is an 

𝑀 −splitting. Now, 𝜔𝐷̃−1𝐿̃ is a strictly lower triangular matrix, 
and by implication its eigenvalues lie on its main diagonal; in this 

case they are all zeros. Therefore, 𝜌(𝜔𝐷̃−1𝐿̃) = 0. since 

𝜌(𝜔𝐷̃−1𝐿̃) < 1, 𝐽 = 𝐷̃ − 𝜔𝐿̃ is a convergent splitting. By the 

foregoing, 𝐽 = 𝐷̃ − 𝜔𝐿̃ is an 𝑀 −splitting and 𝜌(𝜔𝐷̃−1𝐿̃) < 1, 

we employ Lemma 3 to establish that 𝐽 is an 𝑀 −matrix. Since 𝐽 
is an 𝑀 −matrix, by definition, 𝐽−1 = (𝐷̃ − 𝜔𝐿̃)−1 ≥ 0. Thus, 
𝑉 ≥ 0 and 𝑇 ≥ 0. 

(i) If 𝛾 < 1, then 𝐺2𝑦 − 𝛾𝑦 ≤ 0 but not equal to 0. Therefore, 

𝐺2𝑦 ≤ 𝛾𝑦. From Lemma 2, we have 𝜌(𝐺2) < 𝛾 =
𝜌(𝐺𝑆𝑂𝑅). 

(ii) If 𝛾 = 1, then 𝐺2𝑦 − 𝛾𝑦 = 0. Therefore, 𝐺2𝑦 = 𝛾𝑦. 

From Lemma 2, we have 𝜌(𝐺2) = 𝛾 = 𝜌(𝐺𝑆𝑂𝑅). 
If 𝛾 > 1, then 𝐺2𝑦 − 𝛾𝑦 ≥ 0 but not equal to 0. Therefore, 
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𝐺2𝑦 ≥ 𝛾𝑦. From Lemma 2, we have 𝜌(𝐺2) > 𝛾 = 𝜌(𝐺𝑆𝑂𝑅). 
 
NUMERICAL EXAMPLES 
Some numerical examples are presented here to demonstrate the 
convergence results obtained in the preceding section. 
 
Example 1    Let the coefficient matrix 𝐴 of the linear system (1) 

be given by the following 4 × 4 matrix 

𝐴 = (

1
−15 49⁄

−13 49⁄
0

 

−12 43⁄
1
0

−13 55⁄

 

−10 43⁄
0
1

−3 11⁄

 

0
−10 49⁄

−12 49⁄
1

) 

 
Example 2    Let the coefficient matrix 𝐴 of the linear system (1) 
be given by the following 6× 6 matrix 

𝐴 =

(

 
 
 

1
−0.2
−0.2
−0.1
−0.3
−0.2

  

−0.5
1

−0.1
0

−0.2
−0.3

  

−0.1
0
1

−0.2
−0.1
−0.2

  

−0.1
0

−0.3
1

−0.1
−0.1

  

−0.1
0

−0.1
−0.3
1

−0.1

  

−0.1
−0.5
−0.2
−0.1
−0.2
1 )

 
 
 

 

 
In what follows, the computations on the spectral radii 𝜌(𝐺𝑆𝑂𝑅), 
𝜌(𝐺1), 𝜌(𝐺2) and 𝜌(𝐺𝑀) of SOR, Equation (7), Equation (8) 

and Milaszewicz (1987) iterative matrices respectively are 
performed with Maple 2019 to yield some comparison results 
which are presented in Tables I and II. 
 
TABLE I: Comparison of results for Example 1 

 
 
TABLE II: Comparison of results for Example 2 

 
It is shown in Table I that 𝜌(𝐺1) is far less than the 𝜌(𝐺𝑆𝑂𝑅) with 

𝜔 increasing from 0.1 to 0.9, an indication of effectiveness of the 

preconditioned SOR scheme whose iteration matrix is given by 
𝐺1. More so, 𝜌(𝐺1) exhibited better convergence than the 

𝜌(𝐺𝑀). On the whole, 𝜌(𝐺2) showed  better performance than 

the 𝜌(𝐺𝑆𝑂𝑅), 𝜌(𝐺1) and 𝜌(𝐺𝑀). Similarly, the results of 

Example 2, presented in Table II, the 𝜌(𝐺2) performs better than 

the 𝜌(𝐺1), 𝜌(𝐺𝑀) and 𝜌(𝐺𝑀) in that order. It follows from 

Tables I and II that the two preconditioned SOR schemes 
introduced in this paper are superior to the classical SOR method 
of Young (1950). 

Conclusion 
In this paper, two preconditioned versions of the SOR iterative 
method are proposed. Some necessary and sufficient conditions 
for convergence of the modified SOR methods are imposed on 
the linear systems with 𝑀 −matrices. Numerical experiments 

revealed that the modified methods have smaller spectral radii 
than the SOR, which indicates their effectiveness in accelerating 
the convergence of the existing method 
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