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ABSTRACT  
In this paper, a numerical technique for solving fractional Integro-
Differential Equations (FIDEs) is presented. The fractional 
derivative is considered in the Caputo sense. The proposed 
method is Bernstein Least- Squares Technique (BLST) via 
Bernstein polynomials as basis functions. The suggested new 
technique reduced this type of problem to the solution of a system 
of linear algebraic equations and then solved using MAPLE 18. 
To demonstrate the accuracy and applicability of the presented 
method, some numerical problems are provided. Numerical 
results show that the method is easy to implement and accurate 
when applied to FIDEs. The graphical solution of the method is 
displayed.  
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INTRODUCTION 
Fractional calculus is a field dealing with integral and derivatives 
of arbitrary orders, and their applications in science, engineering 
and other fields. The idea is from the ordinary calculus.  
According to Leibniz [Adam, 2004; Caputo, 1967; Momani & 

Qaralleh, 2006; Samko et al., 1993]. It was discovered by 

Leibniz in the year 1695 a few years he discovered ordinary 
calculus by later forgotten due to the complexity of the formula. 
Many real-world physical problems can be models by fractional 
integrodifferential equations e.g the modeling of the earthquake, 
reducing the spread of the virus, control the memory behavior of 
electric socket and many others. There are many fascinating or 
exciting books about fractional calculus and fractional differential 
equations (Caputo, 1967; Munkhammar, 2005; Samko et al., 

1993; Podlubny, 1999).  Many FIDEs cannot be solved 

analytically, and hence finding good approximate solutions, using 
numerical techniques, will be very helpful. Several numerical 
methods to solve the FIDEs have been. The author in (Mittal & 
Nigam, 2008) applied the Adomian decomposition method (ADM) 
for the solution of FIDEs. Polynomial spline function was 
introduced in Rawashdeh (2006) for solving FIDEs. Cubic B- 
spline wavelets were introduced in Khowsrow et al. (2013)  for the 
numerical solution of FIDEs. Mohamed et al. (2016) employed 
homotopy analysis transform method for solving FIDEs. 
Reference Taiwo et al. (2015) used Perturbed Chebyshev 
Polynomials for solving FIDEs. In their work, an approximate 
solution taken together with the Least - Squares method (LSM) is 
utilized to reduce the fractional Integra-differential equations to a 
system of algebraic equations, which are solved for the unknown 
constants associated with the approximate solution.  Momani et 

al. (2006) applied an efficient method for finding the solution of 
systems of fractional integro-differential equations. Oyedepo et. al  
(2016) employed a method called numerical studies for solving 
fractional FIDEs using Least Squares Method and Bernstein 
Polynomials. The author in Oyedepo et al. (2019) applied 
Homotopy perturbation and LSM for solving FIDEs. Construction 
of orthogonal polynomials was introduced by Oyedepo et al. 
(2019) for the solution of FIDEs. Mohammed (2014) employed 
LSM for solving FIDEs using shifted Chebyshev polynomial of the 
first kind as the basis function. In other to improve on the existing 
methods in the literature, in this paper Bernstine Least-Squares 
Technique with the aid of Bernstein Polynomials is applied to 
solving FIDEs. The general form of the class of problem 
considered in this work is given as: 
 

𝐷𝛼𝑢(𝑥) = 𝑝(𝑥)𝑢(𝑥) + 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑥)𝑑𝑡,   𝑜 ≤
𝑥

0

𝑥, 𝑡 ≤ 1,                       (1)                                

 With the following supplementary conditions: 

 𝑢(𝑗)(0) = 𝛿𝑗,𝑗 = 0,1,2,… ,𝑚 − 1,𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈,𝑁    (2) 

Where 𝐷𝛼𝑢(𝑥) indicates the ∝ 𝑡ℎ Caputo fractional derivative of  

𝑢(𝑥);  𝑝(𝑥),𝑓(𝑥), 
 𝐾(𝑥, 𝑡) are given smooth functions, 𝛿𝑗   are real constant, 𝑥  

and 𝑡 are real variables varying [0, 1] and 𝑢(𝑥) is the unknown 

function to be determined. 
 
Some relevant basic definitions 
 
Definition 1. 
Fraction Calculus involves differentiation and integration of 
arbitrary order (all real numbers and complex values). Example, 

𝐷
1

2 , 𝐷𝜋 , 𝐷2+𝑖 e.t.c 
 
Definition 2. 
Gamma function is defined as 

       𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0
           (3) 

This integral converges when the real part of 𝑧 is 

positive (𝑅𝑒(𝑧) ≤ 0). 
 𝛤(1 + 𝑧) = 𝑧𝛤(𝑧)          (4) 

When 𝑧 is a positive integer 

      𝛤(𝑧) = (𝑧 − 1) !           (5) 

 
Definition 3. 
Beta function is defined as 

𝐵(𝑣,𝑚) = ∫ (1 − 𝑢)𝑣−1𝑢𝑚−1𝑑𝑢 =
𝛤(𝑣)𝛤(𝑚)

𝛤(𝑣+𝑚)

1
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𝐵(𝑣,𝑚),Where𝑣,𝑚 ∈ 𝑅+                (6) 

Definition 4. 
 Riemann – Liouville fractional integral is defined as 

 𝐽𝛼𝑓(𝑥) = 
1

Γ(α)
∫

𝑓(𝑥)

(𝑥−𝑡)1−𝛼
𝑑𝑡, 𝛼 > 0, 𝑥 > 0,

𝑥

0
     (7)  

𝐽𝛼  denotes the fractional integral of order ∝    

 
Definition 5. 
Riemann – Liouville fractional derivative denoted 𝐷∝is defined as 

𝐷∝𝐽𝛼𝑓(𝑥) = 𝑓(𝑥)                (8) 

                                                                                                             
Definition 6. 
Riemann-Liouville fractional derivative defined as 

𝐷𝛼𝑓(𝑥) =
1

Γ(n−∝)
∫ (𝑥 − 𝑠)𝑛−∝−1𝑓𝑛(𝑠)𝑑𝑠,
𝑥

0
             (9)                                                                   

𝑚 is positive integer with the property that  𝑚 − 1 <∝< 𝑚. 
 
Definition 7. 
The Caputor Factional Derivative is defined as 

𝐷𝛼𝑓(𝑥) =
1

Γ(n−∝)
∫ (𝑥 − 𝑠)𝑛−∝−1𝑓𝑚(𝑠)𝑑𝑠  
𝑥

0
  (10)                                                                      

Where 𝑚 is a positive integer with the property that  𝑛 − 1 <∝<
𝑛 

For example, if  0 <∝< 1 the caputo fractional derivative is   

𝐷𝛼𝑓(𝑥) =
1

Γ(1−∝)
∫ (𝑥 − 𝑠)−∝𝑓1(𝑠)𝑑𝑠  
𝑥

0
    (11)  

Hence, we have the following properties: 
(1)  𝐽𝛼 𝐽𝑣 𝑓 = 𝑗𝛼+𝑣 𝑓, 𝛼, 𝑣 > 0, 𝑓 ∈ 𝐶𝜇, 𝜇 > 0 

(2) 𝐽𝛼𝑥𝛾=
𝛤(𝜆+1)

𝛤(𝛼+𝛾+1)
𝑥𝛼+𝛾, 𝛼 > 0, 𝛾 > −1, 𝑥 > 0 

(3) 𝐽𝛼 𝐷𝛼 𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓𝑘(0)
𝑥𝑘

𝑘!
𝑛−1
𝑘=0 ,         𝑥 > 0, 𝑛 −

1 < 𝛼 ≤ 𝑛 
(4) 𝐷𝛼 𝐽𝛼 𝑓(𝑥) = 𝑓(𝑥),    𝑥 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛, 
(5) 𝐷𝛼𝐶 = 0, 𝐶  is the constant, 

(6) {
   0,                                                𝛽 ∈ 𝑁0, 𝛽 < [𝛼],             

 𝐷𝛼𝑥𝛽 =
𝛤(𝛽+1)

𝛤(𝛽−𝛼+1)
𝑥𝛽−𝛼 ,                𝛽 ∈ 𝑁0, 𝛽 ≥ [𝛼],   

                 

Where [𝛼] denoted the smallest integer greater than or equal to 

𝛼  and  𝑁0 = {0,1.2,… } 
 
Definition 8. 
Bernstein basis polynomials: A Bernstein polynomial of degree   
𝑁 is defined by     

𝐵𝑖,𝑚(𝑥) = (
𝑚
𝑖
) 𝑥𝑖(1 − 𝑥)𝑚−𝑖     𝑖 = 0, 1. . . 𝑛,               (12)       

where,  

     (𝑚
𝑖
) =

𝑚!

𝑖!(𝑚−1)!
                   (13)                                                                     

Often, for mathematical convenience, we set    𝐵𝑖,𝑚(𝑥) = 0   if  <

0  𝑜𝑟  𝑗 > 𝑚   
 
Definition 9. 
Bernstein polynomials: A linear combination Bernstein basis 
polynomials 
 𝑢𝑚(𝑥) = ∑ 𝑎𝑗𝑢𝑗(𝑥)

𝑚
𝑗           (14)  

The Bernstein polynomial of degree n where  𝑎𝑗,     𝑗 =

0,1,2,…… ..  are constants 

 
Examples 
The first few Bernstein basis polynomials are: 
𝑢0(𝑥) = 1, 𝑢1(𝑥) = 𝑎0(1 − 𝑥) + 𝑎1𝑥, 𝑢2(𝑥) =
 𝑎0(1 − 2𝑥 + 𝑥

2) +  

𝑎1(2𝑥 − 2𝑥
2) + 𝑎2𝑥

2          
 
Definition 10 
 In this work, we defined absolute error as: 
Absolute Error =|𝑈(𝑥) − 𝑢𝑚(𝑥)|;    0 ≤ 𝑥 ≤ 1,           (15) 
where 𝑈(𝑥) is the exact solution and 𝑢𝑚(𝑥) is the approximate 

solution. 
Where 𝑢𝑚(𝑥)  Bernstein polynomial of degree 𝑚   where𝑎𝑗 , j =

0,1, 2, …     
are constants. 
 
DEMONSTRATION OF THE PROPOSED METHOD 
In this section, we demonstrated the two proposed methods 
mentioned above  
 
Bernstein Least- Squares Technique (BLST) 
The new technique via Bernstein polynomials as basis function is 
applied to find the numerical solution of fractional 
integrodifferential equation of the type in (1) and (2). This 
method is based on approximating the unknown function 𝑢(𝑥) by 

assuming an approximation solution of the form defined by 
(Rawashdeh, 2006). 
 
Consider equation (1) operating with  𝐽∝ on both sides as 
follows: 

 𝐽∝𝐷𝛼𝑢(𝑥) = 𝐽∝𝑓(𝑥) + 𝐽∝(∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡)
𝑥

0
   (16) 

𝑢(𝑥) =  ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!
𝑛−1
𝑘=0 + 𝐽∝𝑓(𝑥) + 𝐽∝[∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡]

𝑥

0
   (17) 

Substituting (14) into  (17) 

∑ 𝑎𝑗𝑢𝑗(𝑥)
𝑚
𝑗 = ∑ 𝑢𝑘(0)

𝑥𝑘

𝑘!
𝑛−1
𝑘=0 + 𝐽∝𝑓(𝑥) +

𝐽∝[∫ 𝑘(𝑥, 𝑡)∑ 𝑎𝑗𝑢𝑗(𝑡)
𝑚
𝑗 𝑑𝑡]

𝑥

0
         (18) 

 
Hence, the residual equation is obtained as                                                                                         

𝑅(𝑎0,𝑎1, ……… . , 𝑎𝑛)  =∑ 𝑎𝑗𝑢𝑗(𝑥)
𝑚
𝑗 − {∑ 𝑢𝑘(0)

𝑥𝑘

𝑘!
𝑛−1
𝑘=0 +

𝐽∝𝑓(𝑥) + 𝐽∝[∫ 𝑘(𝑥, 𝑡)∑ 𝑎𝑗𝑢𝑗(𝑡)
𝑚
𝑗=0 𝑑𝑡]}

𝑥

0
              (19)   

Let   

𝑆(𝑎0,𝑎1, …… . , 𝑎𝑚) =

∫ [𝑅(𝑎0,𝑎1, …… , 𝑎𝑚)]
2
𝑤(𝑥)𝑑𝑥

1

0
                                                (20)                                                 

Where 𝑤(𝑥) is the positive weight function defined in the 

interval, [a, b]. In this work, 
 we take  𝑤(𝑥) = 1 for simplicity. Thus, 

𝑆(𝑎0,𝑎1, ……… . , 𝑎𝑚) = ∫  {∑ 𝑎𝑗𝑢𝑗(𝑥)
𝑚
𝑗 − {∑ 𝑢𝑘(0)

𝑥𝑘

𝑘!
𝑚−1
𝑘=0 +

1

0

𝐽∝𝑓(𝑥) + [∫ 𝑘(𝑥, 𝑡) ∑ 𝑎𝑗𝑢𝑗(𝑡)
𝑚
𝑗 𝑑𝑡]}

𝑥

0
 }
2
𝑑𝑥           (21) 

In order to minimize equation (22), we obtained the values of  𝑎𝑗  

(𝑗 ≥ 0) by finding 

 the minimum value of  𝑆  as:                                                                                                                                                            

   
𝜕𝑆

𝜕𝑎𝑗
= 0,   𝑗 = 0,1,2… ,𝑚                                  (22) 

Applying  (22) on  (21), we have 

∫ {∑𝑎𝑗𝑢𝑗(𝑥)

𝑚

𝑗=0

− {∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!

𝑛−1

𝑘=0

+ 𝐽∝𝑓(𝑥)
1

0

+ 𝐽∝[∫ 𝑘(𝑥, 𝑡)∑𝑎𝑗𝑢𝑗(𝑡)

𝑚

𝑖=0

𝑑𝑡]}
𝑥

0

 } 𝑑𝑥 
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× ∫ {𝑢𝑗
∗(𝑥) − 𝐽∝(∫ 𝑘(𝑥, 𝑡)𝑢𝑗(𝑡)𝑑𝑡)

𝑥

0
}𝑑𝑥

1

0
   (23) 

Thus,  (23) are then simplified for 𝑗 = 0,1,… 𝑛 to obtain (𝑚 +
1) algebraic  

system of equations in (𝑚 + 1) unknown 𝑎′𝑖 s which are put in 

matrix form as follow: 
𝐴

=

(

 
 
 
 
 
∫ 𝑅(𝑥, 𝑎0)ℎ0𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝑎1)ℎ0𝑑𝑥
1

0

⋯∫ 𝑅(𝑥, 𝑎𝑚)ℎ0𝑑𝑥
1

0

∫ 𝑅(𝑥, 𝑎0)ℎ1𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝑎1)ℎ1𝑑𝑥
1

0

⋯       ∫ 𝑅(𝑥, 𝑎𝑚)ℎ1𝑑𝑥
1

0

⋮             ⋮                                    ⋱                                  ⋮

∫ 𝑅(𝑥, 𝑎0)ℎ𝑚𝑑𝑥
1

0

 ∫ 𝑅(𝑥, 𝑎1)ℎ𝑚𝑑𝑥
1

0

…∫ 𝑅(𝑥, 𝑎𝑚)ℎ𝑚𝑑𝑥
1

0 )

 
 
 
 
 

, 

   
 

  𝐵 =

(

 
 
 
∫ [𝐽∝𝑓(𝑥) + ∑ 𝑢𝑘(0)

𝑥𝑘

𝑘!
𝑛−1
𝑘=0 ] ℎ0𝑑𝑥

1

0

∫ [𝐽∝𝑓(𝑥) + ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!
𝑛−1
𝑘=0 ] ℎ1𝑑𝑥

1

0

⋮

∫ [𝐽∝𝑓(𝑥) + ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!
𝑛−1
𝑘=0 ] ℎ𝑚𝑑𝑥

1

0 )

 
 
 

    (24) 

 
Where 

ℎ𝑗 = 𝑢𝑗
∗(𝑥) − 𝐽∝[∫ 𝑘(𝑥, 𝑡)𝑢𝑗(𝑡)𝑑𝑡], 𝑗 = 0,1,… ,𝑚

𝑥

0

 

𝑅(𝑥, 𝑎𝑗) =∑𝑎𝑖𝑢𝑗(𝑡)

𝑚

𝑖=0

− 𝐽∝[∫ 𝑘(𝑥, 𝑡)∑𝑎𝑖𝑢𝑗(𝑡)

𝑚

𝑖=0

𝑑𝑡]
𝑥

0

, 𝑗

= 0,1, … ,𝑚 

  The (m + 1) linear equations are then solved using maple 18 

to obtain the unknown constants 𝑎𝑗(𝑗 = 0(1)𝑚), which are then 

substituted back into the assumed approximate solution to give 
the required approximation solution. 
 Numerical Examples 
In this section, the technique discussed above is implemented on 
some problems. The problems are solved via Bernstein 
polynomials as basis functions. The problems are solved to 
illustrate the computational cost accuracy and efficiency of the 
proposed methods using Maple 18. 
 
Example 1: Consider the following fractional Integro-differential  

𝐷
3

4𝑢(𝑥) = −
𝑥2𝑒𝑥

5
𝑢(𝑥) +

6𝑥2.25

𝛤(3.25)
+ 𝑒𝑥 ∫ 𝑡𝑢(𝑡)𝑑𝑡

𝑥

0
   (25)            

Subject to 𝑢(0) = 0. The exact solution is 𝑈(𝑥) = 𝑥3                                                                

Applying  BLST with the aid of Bernstein polynomials on  (25) to 

get the exact solution as: 

𝑢(𝑥) = 𝑥3        (26)            
       
Example 2: Consider the following fractional Integro-differential  

𝐷
1

2𝑢(𝑥) = 𝑢(𝑥) +
8𝑥2.25

3𝛤(0.5)
− 𝑥2 −

1

2
𝑥3 + ∫ 𝑡𝑢(𝑡)𝑑𝑡

𝑥

0
  (27)                                                 

Subject to 𝑢(0) = 0. The exact solution is 𝑈(𝑥) = 𝑥2    
                                                            
Applying BLST with the aid of Bernstein polynomials on  (27) to 

get the required approximate solution as: 

𝑢(𝑥) = 1.74052882 × 10−10𝑥2 + 0.9999999990𝑥2 +
 4.179314726 × 10−10𝑥3 − 1.479653948 × 10−10    (28) 

 

Example 3: Consider the following fractional Integro-differential  

𝐷
1

2𝑢(𝑥) = (cos(𝑥) − sin(𝑥)) 𝑢(𝑥) + 𝑓(𝑥) +

∫ 𝑥 sin(𝑡) 𝑢(𝑡)𝑑𝑡
𝑥

0
      (29) 

 

𝑓(𝑥) =
2𝑥1.5

𝛤(2.5)
+

1

𝛤(1.5)
𝑥0.5 + 𝑥(cos(𝑥) − 𝑥 sin(𝑥) +

𝑥2 cos(𝑥))                                  (30) 
 

Subject to 𝑢(0) = 0. The exact solution is 𝑈(𝑥) = 𝑥2 + 𝑥                                                       
Applying BLST with the aid of Bernstein polynomials on  (30) to 

get the required approximate solution as: 

𝑢(𝑥) = −3.48 × 10−8𝑥3 + 1.000000052𝑥2 +
0.9999999810𝑥 + 1.410809629 × 10−9   (31) 
 
Table 1:  Numerical Results of Example 1 

 
 
Table 2: Numerical Results of Example 2 

 
 
Table 3: Numerical Results of Example 3 
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Graphical Representation of the Method 

 
Figure 1: Showing the graph of approximation solution and exact 
solution of example 1 
 

 
Figure 2: Showing the graph of approximation solution and exact 
solution of example 2 
 

 
Figure 3: Showing the graph of approximation solution and exact 
of example 3 
 
DISCUSSION  
All the problems presented in this study were solved using maple 
18. Table 1 for problem 1 shows that the new technique in this 
study is more accurate than the method of Rawashdeh (2006). 
Table 2 for example 2 reveals the new technique via the 
Bernstein Polynomial as basis function is more accurate than the 
method of Mohamed et al. (2016). Also Table 3 for example 3, a 

comparison was made with the method of Rawashdeh (2006), 
where again the new technique was seen to be better in terms of 
accuracy. It is to be noted that these comparisons were made for 
only those values that are available in the existing literature. The 
graphs in figures 1 − 3 are presented to further buttress the above 
observation. However, it was clear that errors of the new method 
are smaller than that of Rawashdeh (2006) and Mohamed et al.  
(2016) 
 
 
 Conclusion 
The study applied the new technique via Bernstein polynomial as 
basis functions to find the solution of FIDEs. Some problems were 
solved using the BLST. The results obtained compared with 
Rawashdeh (2006) and Mohamed et al. (2016) showed that 

BLST is more accurate than Rawashdeh (2006) and Mohamed et 
al. (2016). Hence, calculation showed that BLST is a powerful 

and efficient technique in finding a very good solution for this type 
of equation. Also, the results were presented in graphical forms to 
further demonstrate the method. 
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