
Science World Journal Vol 14(No 2) 2019
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Early Detection and Containment of Network Worm

EARLY DETECTION AND CONTAINMENT OF NETWORK WORM

1* Muhammad Aminu Ahmad and 2Abdullahi Ismai’la Jihad.
1,2Department of Computer Science, Kaduna State University, Kaduna, Nigeria.

* Authors Email Addresses: 1muhdaminu@kasu.edu.ng 2a.ismaila@kasu.edu.ng

ABSTRACT
This paper presents a network security framework for containing
the propagation of network worms. The framework employs a
detection mechanism at the network layer to identify the presence
of a network worm and a data-link containment solution to block
the infected host. A prototype of the mechanism has been used to
demonstrate the effectiveness of the developed framework. An
empirical analysis of network worm propagation has been
conducted to test the framework. The results show that the
developed framework is effective in containing network worms
with almost no false positives.

Keywords: Containment, worm detection, malware, cyber
defence.

1. INTRODUCTION

The Internet has provided a medium for communication and
sharing of information amongst people, businesses, governments
and organisations. Therefore, the Internet must be kept
continuous and secured from any form of malicious activities such
as unauthorised access to computer system and malware attacks.
Malware can be classified under a number of headings, including
viruses, worms, Trojans, spyware, adware, rootkits, drive-by
downloads and other malicious and unwanted software (Jarno
and Pirkka, 2013). Self-propagating malware, termed a worm, is a
malicious software program that propagates across a network by
infecting hosts and in some cases launching malicious activities.
A scanning network worm propagates by probing pseudo-random
addresses looking for vulnerable hosts, which makes the malware
highly virulent in nature. Fast scanning network worms are a
particularly dangerous sub-class of such software.

The Internet has experienced a number of notable worm
outbreaks that caused disruption of services (Ahmad and
Woodhead, 2015), damage to targeted systems (Falliere et al.,
2011), cyber espionage (Boldizsár et al., 2012) and financial
losses ranging from millions to billions of US Dollars (Craig,
2005). Common countermeasures to worm infection are
signature-based antivirus software, network intrusion detection
systems and host intrusion detection systems. However, the
ability of such systems to counter the effects of fast scanning
network worms is limited because their high propagation and
infection rates pose a significant security threat, with consequent
damage to networks and the Internet. Thus it is important to
effectively identify and counter the propagation of worms,
particularly fast scanning network worms, using a mechanism that
must first work without the need to rely on signatures (sequence
of byte-stream), because methods which rely on content
signatures are unlikely to detect zero-day network worms.
Additionally, due to the high propagation rates of fast scanning
network worms, the traditional approach of waiting for patches to
be released by vendors to fix vulnerabilities is not viable.
This article presents a cross-layer detection and containment

technique as an improvement over the NEDAC mechanism
reported by Ahmad and Woodhead (2015). The NEDAC
mechanism uses datagram-header information at the network
layer to detect the presence of fast scanning worms and a
containment solution at data-link layer to block outgoing traffic
from a host that has been identified as infected. The rest of the
paper is organised as follows. Section 2 summarises related work
on worm detection and containment systems. Section 3 presents
a description of the NEDAC mechanism. Section 4 presents the
evaluation method used to test the NEDAC mechanism. Section 5
presents and discusses the experimental results. Section 6
concludes this article and points out possible future work.

2. Related Works

A range of anomaly-based network intrusion detection systems
have been developed to identify the presence of worms using
datagram header information and payload information (Faisal et
al., 2009).
Guofei et al. (2004) developed an algorithm, termed DSC, that
correlates incoming and outgoing traffic, i.e., if a host received a
datagram on port i, and then starts sending datagrams destined
for port i, it becomes a suspect. Jung et al. (2004) proposed an
algorithm, termed TRW, which identifies a remote host attempt to
establish a new TCP connection to a local destination as normal if
there is a corresponding TCP reply. On the other hand, failure to
establish a successful TCP connection is considered suspicious.
Nicholas et al. (2004) simplified the TRW scheme by considering
all new connections to be a failure until a response is received.
The algorithm drops a datagram if it does not match an existing
and successfully-established connection after a predefined
threshold count. These techniques only slow worm infections.
David et al. (2005) used DNS-based rate limiting to suppress
scanning worms in an enterprise network by identifying the
absence of DNS resolution before a new connection as
anomalous. Shahzad and Woodhead (2014) proposed a scheme
that uses the absence of DNS lookup action prior to an outgoing
TCP SYN or UDP datagram to a new destination IP address to
detect worm propagation, and a protocol termed Friends to
spread reports of an identified worm event to potentially
vulnerable and uninfected peer networks within the scheme. Li
and Stafford (2014) proposed a worm detector, which they termed
SWORD. SWORD comprises two main modules; a Burst Duration
Detector (BDD) and a Quiescent Period Detector (QPD). The
BDD module encompasses a burst detection algorithm to prevent
fast scanning worms by creating a window for every different size
of first-contact connections. The QPD module ensures that
quiescent periods in network activity do not disappear because of
constant worm scanning. These techniques consume resources
in order to keep track of distinct connection and host information,
especially in large networks (Pele et al., 2008) and they can only
slow worm infections.
Additionally, Wang and Salvatore (2004) and Kim et al. (2012)
proposed payload-based anomaly detection schemes. Wang

F
u

ll
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

118

http://www.scienceworldjournal.org/
mailto:muhdaminu@kasu.edu.ng

Science World Journal Vol 14(No 2) 2019
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Early Detection and Containment of Network Worm

Salvatore (2004) proposed a detection scheme known as PAYL to
detect and generate signatures for zero-day worms. PAYL uses a
training phase to create a profile during normal operation, and
produces a byte frequency distribution as a model for normal
payloads. Based on this information, a centroid model is created
and then during the detection phase, the Mahalanobis distance of
each datagram payload from the centroid model is calculated. A
datagram is considered to be anomalous based on its distance
from the normal behaviour. Kim et al. (2012) proposed a detection
scheme using a standalone device. The scheme employed the
detection method reported by in Kim and Nnamdi (2008). During
the training phase, the mean and standard deviation scores for all
datagrams are computed. In the detection phase, a score is
computed by counting the number of datagram bytes that fall
outside the range defined for each byte. These above mentioned
mechanisms have limitations such as computational complexity
(Jyothsna, 2011), management overhead (Garcia-Teodoro et al.,
2009), high rates of false positives (Pele et al., 2008) and incur
significant delays in deployment and detection Kim et al. (2012).

3. The NEDAC Mechanism

The NEDAC mechanism comprises a network layer detection
system and a containment system at the data-link layer that work
together to provide a countermeasure solution, with a connection
maintained between the two systems to enable continuous data
transmission. The detection system detects anomalies from client
hosts and server hosts in a network using different techniques.
The detection system maintains a list of server IP addresses in
order to differentiate client and server hosts in a network. Client
hosts are defined as network hosts which typically consume
Internet services (e.g. workstations, laptops, tablets, smart-
phones, etc.) while server hosts are network hosts used to serve
client requests (e.g. web servers and email servers).
The detection system keeps track of inbound and outbound TCP
SYN and UDP datagrams for a window of time with value T to
determine anomalies that exceed a threshold. The threshold is a
maximum allowable count of anomalous datagrams a host can
send before T has elapsed. The containment system receives the
MAC address of an identified infected host from the detection
system and then blocks all traffic originating from the host using
MAC address access control. The working mechanism of NEDAC
is presented in Listing 1.

Listing 1: The NEDAC Algorithm

11: Begin

2: /* Initialize tables */

3: initializeTable(inboundTable)

4: initilaizeTable(resolutionTable)

5: initilaizeTable(noResolutionTable)

6: /* initialize exempt table*/

7: initializeTable(exemptTable)

8: /* Set timer */

9: T = SetTimerSignal()

10: /* open interface */

11: openInterface(interface)

12: /* do in parallel */ process 1

13: while (there are datagrams to process) do

14: getDatagram()

15: uniqueMAC = getMACAddress(datagram)

16: headerInfo = getHeaderInfo(srcIP,dstIP,sPort,dPort)

17: if datagram is inbound then

18: if packet is DNS reply then

19: updateResolutionTable()

20: else

21: updateInboundTable(dstIP)

22: updateInboundTable(dPort)

23: end if

24: else

25: if headerInfo is not found in exemptTable[] then

26: if source host not a server then

27: if IP addresses not in resolutionTable then

28: updateNoResolutionTable(headerInfo)

29: if (dPortCounter > threshold) then

30: containHost(MAC)

31: if dPort in inboundTable then

32: blockInbound(dPort)

33: end if

34: end if

35: else

36: getNextDatagram()

37: end if

38: else

39: correlate(headerInfo)

40: if dport in inboundTable then

41: updateInboundTable(headerInfo)

42: end if

43: if (dPortCounter > threshold) then

44: containHost(MAC)

45: if dport in inboundTable then

46: blockInbound(dPort)

47: end if

48: end if

49: end if

50: else

51: getNextDatagram()

52: end if

53: end if

54: end while

55: /* do in parallel */ process 2

56: while true do

57: if (T generates timeout signal) then

58: for entries in resolutionTable do

59: if (TTL >= 86400) then

60: delete entry

61: end if

62: end for

63: for entries in noResolutionTable and inboundTable do

64: if (TTL >= 60) then

65: delete entry

66: end if

67: halveThresholds()

68: end for

69: end if

70: end while

71: End

119

http://www.scienceworldjournal.org/

Science World Journal Vol 14(No 2) 2019
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Early Detection and Containment of Network Worm

The NEDAC algorithm monitors TCP SYN and UDP datagrams
from hosts in a network. For client hosts, the algorithm observes
DNS resolution datagrams and records the IP address of the host
that made the resolution and the resolved address in the
resolution table. The destination IP address and port of an
inbound datagram (excluding a DNS reply) is recorded in the
inbound table for both client and server hosts. Outgoing datagram
header information (source IP addresses and ports) is associated
to entries in an exempt table. The exempt table comprises a list of
IP addresses and ports that are exempt from the algorithm. If the
header information results in a miss, the algorithm determines
whether there is a recent DNS query by a client host for the
destination IP address prior to sending the datagram by checking
the resolution cache. If there is a miss, the algorithm records the
destination port in the no-resolution cache, increments its counter
and then determines excess using the threshold with value V.
For server hosts, the algorithm checks the presence of the
destination port of outbound TCP SYN and UDP datagrams in the
inbound table. If there is a hit, a counter for such entry is
incremented for TCP datagrams. An additional verification of the
destination IP address is made to determine a reply UDP
datagram, and if the destination IP address does not match the IP
address recorded for such entry in the inbound table, its counter
is incremented and then excess in threshold is also determined.
Upon a host exceeding the set threshold by a server or client
host, the algorithm invokes the containment system and then
checks the presence of the suspect port in the inbound cache. If
there is a hit, an additional countermeasure is applied at the
network layer using an access control list (ACL) to block all
inbound datagrams destined for the suspect port in the network
segment. A time-to-live (TTL) is provided for entries in all the
caches. The default TTL value for DNS (86400 seconds) is
applied to the resolution cache and 60 seconds is applied to the
no-resolution and inbound caches. Furthermore, the algorithm
decrements the counters in the no-resolution and inbound tables
by half after the expiration of a timing window of T, and then
checks all caches to determine and remove entries with expired
TTL values.
The improvements of the countermeasure mechanism on the
previous technique (Ahmad and Woodhead, 2015) are (1)
separate detection techniques for client and server hosts to
improve effectiveness of the system (2) an additional
countermeasure mechanism for inbound worm traffic to block
remote to local worm infection and (3) time-to-live for records
maintained in caches to reduce excessive resource consumption.

4. Evaluation Procedure

To evaluate the proposed mechanism, a software prototype was
developed and tested using worm propagation experiments in a
controlled environment. The NEDAC mechanism was tested
along with two previously reported worm detection techniques
namely DSC and DNS-based detection schemes. The schemes
were also implemented in software based on the description
provided by their authors. The DNS-based scheme was termed
DNS-RL.

The testing environment used for the evaluation process is a
virtualised testbed reported Ahmad et al. (2015). The testbed
contains four virtualised enterprise networks comprising a number
of virtual network cells. The testbed has a scale of 1200 virtual
machines, supports the use of worm daemons and has utilities for

replaying network traces as background traffic. To generate
background traffic during the worm propagation experiments, the
evaluation used the DARPA 1999 evaluation dataset (Lippmann
et al., 2000) The “inside” traces of weeks 1 and 3 of the dataset
meet the requirements of the evaluation because they are attack
free traces that contain payload information for the variety of
protocols needed. Additionally, the traces include a wide range of
collected traffic from 31 network hosts.

The evaluation process used two contemporary pseudoworms
that were developed based on the Microsoft RDP (CVE-2012-
0002) vulnerability (CVEa, 2014) of 2012 and the ShellShock
vulnerability (CVEb, 2014) of 2014. Ahmad and Woodhead (2015)
reported the likely susceptible population values and potential
datagram sizes of the Microsoft RDP and ShellShock
vulnerabilities as circa 16.5 M and 3800 bytes and 42.5 k and
2000 bytes respectively.

Additionally, the bandwidth available for an infected host and the
worm datagram size determine how fast a worm can send
datagrams. The average Internet connection speed was
estimated to be within the range 10 Mbps to 1000 Mbps
(NetIndex, 2014). Although it is impossible for a host to achieve
the maximum speed of a network card, the vast majority of
Internet connected hosts are capable of transmitting data at 60
Mbps to 120 Mbps (Marshini et al., 2011). Thus based on the
assumption that the Internet connected hosts exhibit an average
data transmission rate of 90 Mbps, the scan rate S, required for a
single worm instance to transmit a datagram of size M (in bytes),
over a C megabits Internet connection per second can be
determined using equation 1.

 𝑠 =
𝐶

𝑀∗8
 (1)

Therefore, the likely scan rates for the RDP and ShellShock

pseudo-worms are (
9,000,000

3800∗8
) = 2960 and (

9,000,000

2000∗8
) =

5625 datagrams per second respectively.

The scan rates of the pseudo-worms were scaled down by a
factor of 24 and 45 for the RDP and ShellShock pseudoworms
respectively to avoid overloading server resources. The resulting
scan rates employed in the experiments are 125 “infectious”
datagrams per second for RDP and ShellShock. Furthermore, the
results of the experiments were scaled up by a factor of 24 and 45
for the RDP and ShellShock pseudoworms respectively.

Ahmad and Woodhead (2015) reported the number of susceptible
hosts per million Internet hosts for RDP and ShellShock pseudo-
worms as 4454 and 12 respectively. Thus, due to the scale of the
testbed used, which has a maximum number of 1200 hosts, four
class B size 216 networks were used for RDP and five class A size
224 networks were used for ShellShock. Thus, the resulting values

were [(216) ∗ 4 ∗ (
4454

1,000,000
)] = 1168 and [(224) ∗ 5 ∗

(
12

1,000,000
)] = 1007 susceptible hosts respectively, within the

relevant network address space.

A. Experimentation Setup

The evaluation experiments were conducted using the software
prototypes of NEDAC DSC and DNS-RL. During the evaluation, a
prototype of a detection scheme was positioned on the gateways

120

http://www.scienceworldjournal.org/

Science World Journal Vol 14(No 2) 2019
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Early Detection and Containment of Network Worm

of each network, and for NEDAC, the containment system was
positioned on the switches as depicted in Fig. 1.
The RDP and ShellShock worm propagation experiments were
conducted using random and then hit-list scanning behaviours for
each detection scheme. The random scanning technique probes
IPv4 addresses within the routable address space. The hit-list
scanning technique infects a list of pre-compiled vulnerable hosts
and then each infected host uses random scanning. For each
pseudo-worm experiment, a number of hosts (1168 for RDP and
1007 for ShellShock) were configured with the correct daemon to
make them vulnerable to worm attack datagrams while other
hosts were configured to replay the DARPA traces as background
traffic. The worm attack and traffic replay events were executed
concurrently in each experiment. The experiments were
conducted without any countermeasures in place, then repeated
with the countermeasures and the DARPA dataset as background
traffic using threshold values of 100 through 400 anomalous
datagrams sent by a host in a timing window of 10 seconds. The
worm infection event was initiated by sending a UDP datagram to
one of the vulnerable hosts.

RDP Pseudo-worm
The RDP pseudo-worm experiment was conducted using 1160
client hosts and 8 server hosts. The pseudo-worm daemon was
configured to listen on UDP port 3389 and then transmit UDP
datagrams to port 3389 at a scan rate of 125 “infectious”
datagrams per second, once “infected”. Five RDP pseudo-worm
experiments were conducted using one initially infected host. The
RDP-based worm experiment was repeated with a hitlist [25] of
10 and 20 hosts.

ShellShock Pseudo-worm
The ShellShock pseudo-worm experiment was conducted using
996 client hosts and 10 server hosts. The pseudo-worm daemon
was configured to listen on UDP port 8080 and then transmit UDP
datagrams to port 8080 at a scan rate of 125 “infectious”
datagrams per second, once “infected”. Five ShellShock pseudo-
worm experiments were conducted using one initially infected
host. As with RDP, the ShellShock worm experiment was
repeated with a hit-list (Staniford, 2002) of 10 and 20 hosts.

5. RESULTS

This section discusses the results of the experiments conducted

using the candidate pseudo-worms for random and hit-list
scanning and the false positives observed during the
experiments. The results of the worm propagation and detection
performance are presented in Fig. 2 through Fig. 9.

A. Random Scanning Infection

The results of random infection behaviours for the RDP and
ShellShock pseudo-worms using a threshold value of 100 are
presented in Fig. 2 and Fig. 5. When no countermeasure solution
was in place, the RDP pseudo-worm infected 95% (1110) of the
hosts in eight seconds as shown in Fig. 2. Additionally, the
ShellShock pseudo-worm infected 95% (956) of its susceptible
hosts in 145 seconds as shown in Fig. 5. When the detection
schemes were applied, the infections were delayed and
suppressed by DSC and DNS-RL and blocked completely by
NEDAC. With DSC and DNS-RL, the RDP pseudo-worm infection
was delayed by 12 seconds and suppressed to 44% (510) and
50% (580) respectively. The worm infections were detected by the
DSC and DNS-RL schemes and the countermeasure solution was
applied, but the initially infected host continued sending infectious
datagrams, which infected a large number of hosts. However, with
NEDAC, the initially infected host, for each pseudo-worm
experiment, was detected and then blocked from sending out
datagrams at the data-link layer, which stopped the infection
completely for each of the two worm outbreak scenarios.
Additionally, the NEDAC scheme blocked inbound traffic destined
for the destination port used by the identified worm infection at the
network layer, which also enable the mechanism to contain the
worm infection quickly.

B. Hit-list Scanning Infection

Fig. 3 and Fig. 6 show the results of the worm experiments
conducted with a hit-list of 10 hosts. When no countermeasure
was in place, the RDP pseudo-worm infected 95% (1110) of the
hosts in 6 seconds as shown in Fig. 3. The ShellShock pseudo-
worm attained 95% (956) infection in 55 seconds as shown in Fig.
6. With the DSC and DNS-RL scheme, the RDP pseudoworm
infection attained 95% in 19 and 15 seconds respectively

Fig. 1: Prototype setup

121

http://www.scienceworldjournal.org/

Science World Journal Vol 14(No 2) 2019
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Early Detection and Containment of Network Worm

122

http://www.scienceworldjournal.org/

Science World Journal Vol 14(No 2) 2019
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Early Detection and Containment of Network Worm

The ShellShock pseudo-worm attained 95% infection in 150 and
100 seconds with DSC and DNS-RL respectively. Furthermore,
nine further infections were observed with NEDAC during the
RDP pseudo-worm propagation and no further infections were
observed during the propagation of the ShellShock pseudo-worm.
Fig. 4 and Fig. 7 show the results of the worm experiments
conducted with a hit-list of 20 hosts. When no countermeasure
was in place, the RDP pseudo-worm infected 95% (1004) of the
hosts in 5 seconds as shown in Fig. 4. The ShellShock pseudo-
worm attained 95% infection in 40 seconds as shown in Fig. 7.
Furthermore, with the DSC and DNS-RL scheme, the RDP
pseudo-worm infection attained 95% in 11 and 9 seconds
respectively. The ShellShock pseudo-worm attained 95%
infection in 90 and 75 seconds with DSC and DNSRL
respectively. For NEDAC, 56 further infections were observed
during the RDP pseudo-worm propagation and no further
infections were observed during the propagation of the
ShellShock pseudo-worm.

C. Detection Performance

The false positive rates observed by the three detection schemes
are presented in Fig. 8 and Fig. 9 for the RDP and ShellShock
pseudo-worm experiments respectively. The schemes detected
all real pseudo-worm datagrams in all the experiments conducted
and therefore the true positive (TP) rates are 100%. However, the
DSC and DNS-RL schemes incurred higher rates of false
positives (FP) than NEDAC. NEDAC has very low FP rates using
100 and 200 as thresholds and zero FP rates using 300 and 400
as thresholds. Generally, the false positive rate diminishes with
rising threshold values. NEDAC raised one false positive with
threshold values of 100 and 200, which was caused by a
multicast UDP datagram sent by a host to port 520, that is, a RIP
advertisement. Additionally, the rate at which RIP sends updates
to neighbouring routers is not similar to fast scanning worm
behaviour because RIP routers exchange update every 30
seconds by default. Nevertheless, the RIP port can be added into
the exempt list in NEDAC to avoid false positives. Across the
whole experimental data set, NEDAC has a better performance in
terms of false positives compared to the DNS-RL scheme.

6. Conclusion and Future Work

This paper has presented a countermeasure solution against fast
scanning network worms. A software prototype of the worm
countermeasure solution was used to evaluate the scheme using
a set of experiments. The results of the experiments showed that
the countermeasure solution is sensitive in detecting and
containing an identified worm infection with almost no false
positives. The results of a comparative analysis showed that the
countermeasure solution has a better performance compared to
two previously reported detection schemes.

As for future work, it is desirable to evaluate the mechanism using
different background traffic. The aim of improving the detection
system to use dynamic threshold policy and the speed of
containment will also be investigated. Furthermore, the effect of
timing window size and volume of background traffic will be
investigated

REFERENCES
Ahmad M. A. and Woodhead S. (2015) Containment of Fast

Scanning Computer Network Worms. In Internet and
Distributed Computing Systems, volume 9258 of Lecture
Notes in Computer Science, pages 235–247. Springer
International Publishing, 2015.

Ahmad M. A., Woodhead S. and Diane Gan. The V-Network
Testbed for Malware Analysis. In International Conference
on Advanced Communication Control & Computing
(ICACCCT), May 2016.

Boldizsár B., Gábor P., Levente B. and Mark F. (2012) The
Cousins of Stuxnet: Duqu, Flame, And Gauss. Future
Internet, 4(4):971–1003, 2012.

Craig F. (2005) Computer worms: past, present, and future. East
Carolina University, 8, 2005.

CVEa (2014) Common Vulnerabilities and Exposures. [Online].
Accessed on 19th October 2014.
https://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2012-
0002.

CVEb (2014) Common Vulnerabilities and Exposures. [Online].
Accessed on 19th October 2014.
https://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2014-

123

http://www.scienceworldjournal.org/
https://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2012-0002
https://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2012-0002
https://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2014-6271

Science World Journal Vol 14(No 2) 2019
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Early Detection and Containment of Network Worm

6271.
David W., Evangelos K. and Paul C. V. (2005) DNS-Based

Detection of Scanning Worms In An Enterprise Network. In
NDSS, 2005.

Faisal M. C., Adeel A. and Zeshan I. (2009) Comparative
Evaluation of Header Vs. Payload Based Network Anomaly
Detectors. In Proceedings of the World congress on
Engineering. 1: 1–5.

Falliere N., Murchu L. O., and Eric C. (2011) W32. Stuxnet
Dossier. White paper, Symantec Corp., Security Response,
5, 2011.

Garcia-Teodoro P., Diaz-Verdejo J., Maciá-Fernández G. and
Vázquez E. (2009) Anomaly-Based Network Intrusion
Detection: Techniques, Systems and Challenges. computers
& security, 28(1):18–28, 2009.

Guofei G., Monirul S., Xinzhou Q., David D., Wenke L. and
George R. (2004) Worm Detection, Early Warning and
Response Based On Local Victim Information. In Computer
Security Applications Conference, pages 136–145. IEEE,
2004.

Jarno N. and Pirkka P. (2013) Malware Detection by Application
Monitoring, US Patent 8,590,045, November 19 2013.

Jung J., Paxson V, Berger A. W. and Balakrishnan H. (2004) Fast
Portscan Detection Using Sequential Hypothesis Testing. In
Security and Privacy, 2004. Proceedings. 2004 IEEE
Symposium on, pages 211– 225. IEEE, 2004.

Jyothsna V., Rama P. V. and Prasad K. M. (2011) A Review of
Anomaly Based Intrusion Detection Systems. International
Journal of Computer Applications, 28(7):26–35, 2011.

Kim S. and Nnamdi N. (2008) Noise-Resistant Payload Anomaly
Detection for Network Intrusion Detection Systems. In
Performance, Computing and Communications Conference,
2008. IPCCC 2008. IEEE International, pages 517–523.
IEEE, 2008.

Kim S., Nnamdi N., William E., Blake J. and Paloma F. (2012) On
Network Intrusion Detection for Deployment in The Wild. In
Network Operations and Management Symposium (NOMS),
2012 IEEE, pages 253–260. IEEE, 2012.

Li J. and Stafford S. (2014) Detecting Smart, Self-Propagating
Internet Worms. In Communications and Network Security
(CNS), 2014 IEEE Conference on, pages 193–201. IEEE,
2014.

Lippmann R, Haines J. W., Fried D. J., Korba J. and Kumar Das.
The 1999 Darpa Off-Line Intrusion Detection Evaluation.
Computer networks, 34(4):579–595, 2000.

NetIndex (2014) [Online]. Accessed 16th November 2014.
 Available: http://www.netindex.com/.

Nicholas W., Stuart S. and Vern P. (2004) Very Fast Containment
of Scanning Worms. In USENIX Security Symposium, 2:
16–85, 2004.

Marshini C., David H., Andrew B., Ugochi O., Bethany S. and
Rebecca G. (2011) Why Is My Internet Slow? Making
Network Speeds Visible. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 1889–1898. ACM, 2011.

Pele L., Mehdi S. and Xiao S. (2008) A Survey of Internet Worm
Detection and Containment. Communications Surveys &
Tutorials, IEEE, 10(1):20– 35, 2008.

Shahzad K. and Woodhead S. (2014) Towards Automated
Distributed Containment of Zero-Day Network Worms. In
Computing, Communication and Networking Technologies
(ICCCNT), 2014 International Conference on, pages 1–7.
IEEE, 2014.

Wang K and Salvatore J. S. (2004) Anomalous Payload-Based
Network Intrusion Detection. In Recent Advances in
Intrusion Detection, pages 203–222. Springer, 2004.

Staniford S., Paxson V. and Weaver N. (2002) How to Own the
Internet in Your Spare Time. In USENIX Security
Symposium, pages 149–167, 2002.

124

http://www.scienceworldjournal.org/
https://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2014-6271
http://www.netindex.com/

