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ABSTRACT  
Systems of disjoint Fredholm-Volterra integro-differential equations 
and the Bezier curves control-point-based algorithm are 
considered. Systems of two, three and four Fredholm-Volterra 
integro-differential equations are solved using a developed 
algorithm. The convergence analysis for the Bezier curves method 
proves that it is convergent. The examples considered agree with 
the convergence analysis. The method is more accurate and 
effective when compared to other existing methods.  
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INTRODUCTION  
Fredholm-Volterra integro-differential equations are used in 
modelling several problems in science and engineering. To this 
end, several methods have been proposed in literature to solve this 
class of equations. For instance, Arqub et al. (2009) used the 
method of reproducing kernel to solve Fredholm-Volterra integro-
differential equations. The advantage of this method is that it is 
possible to pick any point in the interval of integration and as well 
the approximate solution and its derivative will be applicable. Also, 
Berenguer et al. (2012) introduced a solution method based on the 
fixed point iterative algorithm while Maleknejad et al. (2012) 
presented a Bernstein operational-matrix-based method for the 
solution of Fredholm-Volterra integro-differential equations. In 
Maleknejad and Attary (2012), a Chebyshev collocation points 
together with the Shannon approximation was introduced to 
transform Fredholm-Volterra integro-differential equations system 
to an algebraic system. Ibrahim and Ayoo (2015) used a new 
iterative method to solve integro-differential equations which 
yielded accurate results. These methods usually transform the 
Fredholm-Volterra integro-differential equations into a system of 
equations that can be solved by direct or iterative methods. 
 
The use of Bezier curves method in numerical study of integral 
equations has also proven successful in some works. This 
technique was used by Ghomanjani et al. (2013a; 2013b) to solve 
Volterra type linear integro-differential equations systems and 
fourth order integro-differential equations respectively. Ayoo et al. 
(2016) solved linear and nonlinear Fredholm-Volterra integral 
equations using this same technique while Baydas & Karakas 
(2019) presented a way of finding points which presents a curve 
with a coordinate function as a Bezier curve. 

 
The novel idea in this work however, is to use the Bezier curves 
technique to solve systems of disjoint Fredholm-Volterra integro-
differential equations. 
 
MATERIALS AND METHODS 
 
Algorithm for the Bezier Control Points Method 
Let us consider the following disjoint Fredhom-Volterra integro-
differential equation 

   𝑦(𝑘)(𝑡)
= 𝑥(𝑡)

+ 𝜏1 ∫ 𝑘1(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠
𝑡𝑓

𝑡0

+ 𝜏2 ∫ 𝑘2(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠
𝑡𝑓

𝑡0

,       𝑡𝜖[𝑡0, 𝑡𝑓]                                              (1) 

with initial conditions 𝑦(0)(𝑡0) = 𝑎0, 𝑦(1)(𝑡0) =

𝑎1, … , 𝑦(𝑘−1)(𝑡0) = 𝑎𝑘−1. 

 

We desire to approximate the solution 
)(ty

 using the Bezier 
curves. We choose the sum of squares or the Euclidean norm of 
the Bezier control points of the residual to be the measure quantity. 
Minimizing this quantity gives the approximate solution. If the 
minimization of this quantity is zero, then the residual function is 
also zero, implying that the solution is the exact solution. 
 
We present the algorithm (Ghomanjani & Farahi 2012) of this 
method for the Fredholm-Volterra integro-differential equations. 
The algorithm for this Bezier control-point-based approach is as 
follows: 
 
Step 1: 

Choose a degree of n  and symbolically express the solution 𝑦(𝑡) 

in the degree 𝑛 (𝑛 ≥ 𝑚) Bezier form  

𝑦(𝑡) = ∑ 𝑎𝑟𝐵𝑟,𝑛 (
𝑡 − 𝑡0

ℎ
)

𝑛

𝑟=0

                                             (2) 

 
  
 where ℎ = 𝑡𝑓 − 𝑡0  and  

 𝐵𝑟,𝑛 (
𝑡 − 𝑡0

ℎ
) = (

𝑛

𝑟
)

1

ℎ𝑛 (𝑡𝑓 − 𝑡)
𝑛−𝑟

(𝑡 − 𝑡0)𝑟                 (3) 

 and the control points 𝑎0, 𝑎1, … , 𝑎𝑛 are to be determined. 
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Step 2: 

Substitute the approximate solution 
)(= tyy

 into equations (1) 
to obtain the residual function 

𝑅(𝑡) = 𝑦(𝑘)(𝑡) − (𝑥(𝑡)

+ 𝜏1 ∫ 𝑘1(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠
𝑡𝑓

𝑡0

+ 𝜏2 ∫ 𝑘2(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠
𝑡𝑓

𝑡0

) 

 This is a polynomial in 𝑡 with degree ≤ 𝑘. 

  
So the residual function 𝑅(𝑡) can be expressed in the Bezier form 

as  

 𝑅(𝑡) = ∑ 𝑏𝑟𝐵𝑟,𝑘(𝑡)

𝑛

𝑟=0

                                                           (4) 

where the control points 𝑏0, 𝑏1, … , 𝑏𝑘 are linear functions in the 

unknowns 𝑎𝑟. We derive these functions using the operations of 

multiplication, degree elevation and differentiation for Bezier form. 
 
Step 3: 
Construct the objective function  
  

𝐹 = ∑ 𝑏𝑟
2

𝑘

𝑟=0

= ∫ ||𝑅(𝑡)||2𝑑𝑡
𝑡𝑓

𝑡0

 

where ||. || is the Euclidean norm. Then 𝐹 is also a function of 

𝑎0, 𝑎1, … , 𝑎𝑘 . 

 
Step 4: 
Solve the constrained optimization problem  
 Minimize 𝐹   (5) 
𝑑𝑟𝑦(0)

𝑑𝑡𝑟 = 𝛼𝑟 ,
𝑑𝑟𝑦(1)

𝑑𝑡𝑟 = 𝛽𝑟 , 𝑟 = 0,1, … , 𝑚 − 1 

 
Step 5: 
Substitute the minimum solution back into (2) to arrive at the 
approximate solution to the integro-differential equation. 
 
Convergence of the Method 
Using the concept of uniform convergence and degree elevation 
for Bezier functions (Ayoo et al. 2016), we consider the following 
problem based on disjoint Fredholm-Volterra integro-differential 
equation. 

𝐿1(𝑡, 𝑦(𝑡)) = 𝑦𝑘(𝑡) − ∫ 𝑘1(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠
1

0
−

∫ 𝑘2(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠 = 𝑥(𝑡),
𝑡

0
   𝑡𝜖[0,1]                         (6) 

  

𝑦(0)(𝑡0) = 𝑎0, 𝑦(1)(𝑡0) = 𝑎1,…,𝑦
(𝑘−1)(𝑡0) = 𝑎𝑘−1. 

where 𝑎 is given real number and 𝑘1,2(𝑡, 𝑠) 𝜖 𝐿2[0,1] and 

𝑥(𝑡) 𝜖 𝐿2[0,1] are known functions for 𝑡 𝜖 [𝑡0, 𝑡𝑓], in particular 

[0,1]. Convergence of the approximate solution is done in degree 
rising of the Bezier polynomial approximation. 
 
Theorem 3.1 (Ghomanjani & Farahi 2012) 

If the integro-differential equation (6) has a unique 𝐶1 continuous 
solution �̅�, then the approximate solution 𝑦 obtained by the control-

point-based method converges to the exact solution �̅� as the 

degree of the approximate solution tends to infinity. 

Proof 
For arbitrary small positive number 𝜖 > 0, by the Weiestrass 
theorem, one can find a polynomial 𝑄1,𝑁1

(𝑡) of degree 𝑁 such 

that  

‖𝑄1,𝑁1
(𝑡) − �̅�(𝑡)‖

∞
≤

∈

16
 

where ‖ . ‖ stands for the 𝐿∞−  norm over [0,1]. In particular, we 

have 

‖𝑎 − 𝑄1,𝑁1
(0)‖ − ∞ ≤

𝜖

16
 

Generally, 𝑄1,𝑁1
(𝑡) does not satisfy the boundary conditions. With 

a small perturbation with a constant polynomial 𝑎, for 𝑃1,𝑁1
(𝑡), we 

can get the polynomial 𝑃1,𝑁1
(𝑡) = 𝑄1,𝑁1

(𝑡) + 𝑎 such that 

𝑃1,𝑁1
(𝑡) satisfy the boundary condition 𝑃1,𝑁1

(0) = 𝑎. Thus 

𝐹1,𝑁1
(0) + 𝑎 = 𝑎 ⟹ 𝑄1,𝑁1

(0) = 𝑎 − 𝑎. From equation (6), 

‖𝑎 − 𝑄1,𝑁1
(0)‖

∞
= ‖𝑎 − (𝑎 + 𝑎)‖∞ = ‖𝑎 − 𝑎 + 𝑎‖∞ 

‖𝑎 − 𝑄1,𝑁1
(0)‖ = ‖𝑎‖∞ ≤

𝜖

16
 

‖𝑃1,𝑁1
− 𝑦(𝑡)‖

∞
= ‖𝑄1,𝑁1

(𝑡) + 𝑎 − 𝑦(𝑡)‖
∞

 

≤ ‖𝑄1,𝑁1
(𝑡) − 𝑦(𝑡)‖

∞
+ ‖𝑎‖∞ 

≤
𝜖

16
+

𝜖

16
=

𝜖

8
<

𝜖

6
 . 

Let  

𝐿𝑃𝑁(𝑡) = 𝐿 (𝑡, 𝑃1,𝑁1
(𝑡)) 

= 𝑃1,𝑁1
(𝑡) − ∫ 𝑘1(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠

1

0

− ∫ 𝑘2(𝑡, 𝑠, 𝑦(𝑠))𝑑𝑠 = 𝑥(𝑡)
𝑡

0

 

For every 𝑡 ∈ [ 0,1]. For 𝑁 ≥ 𝑁1, the upper bound of the residual 
may be found  

‖𝐿𝑃𝑁(𝑡) − 𝑦(𝑡)‖∞ = ‖𝐿(𝑡, 𝑃1,𝑁1
(𝑡) − 𝑦(𝑡)‖

∞
 

≥ ‖𝑃1,𝑁1
(𝑡) − 𝑦(𝑡)‖ + ∫ ‖𝑘1 (𝑡, 𝑠, 𝑃1,𝑁1

(𝑠)) 𝑑𝑠‖
1

0 ∞

+ ∫ ‖𝑘2 (𝑡, 𝑠, 𝑃1,𝑁1
(𝑠)) 𝑑𝑠‖

𝑡

0 ∞

 

≤ 𝑐1 (
𝜖

6
+

𝜖

6
+

𝜖

6
) = 𝑐1

𝜖

2
 

≤ 𝑐1𝜖 

Where 𝑐1 = 1 + ‖𝑘1(𝑡, 𝑠)‖∞ + ‖𝑘2(𝑡, 𝑠)‖∞ is a constant. 

The residual 𝑅(𝑃𝑁) = 𝐿𝑃𝑁(𝑡) − 𝑦(𝑡) is considered as a 

polynomial; if not so, we can make use of the Taylor series to 
express it. Representing the residual 𝑅(𝑃𝑁) in Bezier form, we 

have 

𝑅(𝑃𝑁) = ∑ 𝑑𝑟,𝑚1
𝐵𝑟,𝑚1

(𝑡)

𝑚1

𝑟=0

                                         (7) 

 
          
There exists an integer 𝑀 ≥ 𝑁 such that 

|
1

𝑚 + 1
∑ 𝑑𝑟,𝑚1

2

𝑚1

𝑟=0

− ∫ (𝑅(𝑃𝑁))
2

𝑑𝑡
1

0

| < 𝜖 

1

𝑚+1
∑ 𝑑𝑟,𝑚1

2𝑚1
𝑟=0 < 𝜖+∫ (𝑅(𝑃𝑁))

2
𝑑𝑡

1

0
≤  𝜖 + (𝑐1𝜖)       (8) 

If 𝑦(𝑡) is an approximate solution of (6) gotten from the Bezier 

curves method of 𝑚2(𝑚2 ≥ 𝑚1 ≥ 𝑀).  
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Let 

𝑅(𝑡, 𝑦(𝑡)) = 𝐿(𝑡, 𝑦(𝑡) − 𝑦(𝑡)) 

= ∑ 𝑐𝑟,𝑚2,𝐵𝑟,𝑚2
(𝑡),

𝑚2
𝑟=0   𝑚2 ≥ 𝑚1 ≥ 𝑀 

The norm for difference-approximated solution 𝑦(𝑡) and exact 
solution �̅�(𝑡) is 

‖𝑦(𝑡) − �̅�(𝑡)‖ = ∫ ‖𝑦(𝑡) − �̅�(𝑡)‖𝑑𝑡
1

0
    (9) 

It can be shown that 

‖𝑦(𝑡) − �̅�(𝑡)‖ ≤ 𝑐 (|𝑦(0) − �̅�(0)|

+ ‖𝑅(𝑡, 𝑦(𝑡)) − 𝑅(𝑡, �̅�(𝑡))‖
2

2
) 

= 𝑐 ∫ ∑ 𝑐𝑟,𝑚2,𝐵𝑟,𝑚2
(𝑡)

𝑚2

𝑟=0

1

0

𝑑𝑡 

≤
𝑐

𝑚2 + 1
∑ 𝑐𝑟

2,

𝑚2

𝑟=0

𝑚2 

This inequality is arrived at using by uniform convergence (Ayoo et 
al. 2016), where 𝑐 is a constant positive number. Thus by (7) 

‖𝑦(𝑡) − �̅�(𝑡)‖ ≤
𝑐

𝑚2 + 1
∑ 𝑐𝑟

2,

𝑚2

𝑟=0

𝑚2 

≤
𝑐

𝑚2 + 1
∑ 𝑑𝑟

2,

𝑚2

𝑟=0

𝑚2 

≤
𝑐

𝑚1 + 1
∑ 𝑑𝑟

2,

𝑚2

𝑟=0

𝑚1 

≤ 𝑐(𝜖 + 𝑐1
2𝜖2) = 𝜖, 𝑚1 ≥ M 

This inequality is arrived at from (8). Thus 
‖𝑦(𝑡) − �̅�(𝑡)‖ ≤ 𝜖1 

The infinite norm and the norm in (9) are equivalent, therefore, 
there exist a 𝜌1 > 0 such that 

‖𝑦(𝑡) − �̅�(𝑡)‖∞ ≤ 𝜌1𝜖1 = 𝜖2. 
 
 
RESULTS AND DISCUSSION 
 
Results 
We now present some numerical results to attest to the 
effectiveness of the method. 
Example 1: Consider the following disjoint Fredholm-Volterra 
integro-differential equation (Wazwaz 2011) 

𝑦′(𝑡) = 11 + 17𝑡 − 2𝑡3 − 3𝑡4

+ ∫ 𝑠𝑢(𝑠)𝑑𝑠 + ∫ (𝑡 − 𝑠)𝑢(𝑠)𝑑𝑠
1

0

𝑡

0

 

with the initial condition 𝑦(0) = 0 and the exact solution 𝑦(𝑡) =
6𝑡 + 12𝑡2. 
 
The residual function is 

𝑅(𝑡) = 𝑦′(𝑡) − 11 − 17𝑡 + 2𝑡3 + 3𝑡4

− ∫ 𝑠𝑦(𝑠)𝑑𝑠 − ∫ (𝑡 − 𝑠)𝑦(𝑠)𝑑𝑠
1

0

𝑡

0

 

 
When 𝑛 = 8 the control points are 

𝑎0 =  −6.031539495 × 10307, 
𝑎1 = 0.749999999999992560, 
𝑎2 = 1.92857142857142838, 
𝑎3 = 3.53571428571426782, 
𝑎4 =  5.57142857142854542, 

𝑎5 = 8.03571428571428292, 
𝑎6 =  10.9285714285714236, 
𝑎7 = 14.2500000000000000, 

𝑎8 =  18.0. 
 
When we substitue the control points into (2), we obtain the 
approximate solution  

𝑢(𝑡) = −6.031539495 × 10−307 + 6.0𝑡
+ 12.00000001𝑡2 − 0.0000001𝑡3

+ 0.0000001𝑡4 + 4.825231596
× 10−306𝑡7 

 
Table I: Comparison of Absolute errors for example 1 (𝑛 = 8) 

 
 
 
Example 2: Consider the following systems of disjoint Fredholm-
Volterra integro-differential equations, with the exact solutions; 

𝑦1(𝑡) = 1 + 28𝑡, 𝑦2(𝑡) = 1 − 6𝑡 − 2𝑡2 respectively. 

𝑦′′
1

(𝑡) = 6 − 6𝑡 −
1

2
𝑡2 − 𝑡3

+ ∫ (𝑡 − 𝑠)𝑦1(𝑠)𝑑𝑠 + ∫ 𝑡𝑦1(𝑠)𝑑𝑠
1

−1

𝑡

0

  

𝑦′′
2

(𝑡) = −8 −
1

2
𝑡2 + 𝑡3 +

3

4
𝑡4 + ∫ 𝑠𝑦2(𝑠)𝑑𝑠

𝑡

0

+ ∫ (𝑡 − 𝑠)𝑦2(𝑠)𝑑𝑠
1

−1

 

For the first equation, we have the approximate solution; 

𝑢1(𝑡) = 1.0 + 26.82018247𝑡 + 2.9999925𝑡2

− 1.9995924𝑡3 − 0.000493𝑡4

+ 0.174610𝑡5 + 0.0071029𝑡6

− 0.0018028𝑡7 

 
And for the second equation, we have; 

𝑢2(𝑡) = 1.0 − 6.083276801𝑡 − 1.987256524𝑡2

+ 0.11291998𝑡3 + 0.00059364𝑡4

− 0.0527463𝑡5 + 0.0099865𝑡6

− 0.00022037𝑡7 
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1 (a) 

 

 
   1(b) 
Figure 1a-b: Exact and approximate solutions of Example 2
 [▫▫▫ Exact --- Bezier] 
 
Example 3: Consider the following systems of disjoint Fredholm-
Volterra integro-differential equations, with the exact solutions; 

𝑦1(𝑡) = 65𝑡 + 10𝑡3, 𝑦2(𝑡) =
1

30
+ 25𝑡, 𝑦3(𝑡) = 6𝑡 

respectively. 

𝑦′
1

(𝑡) = −6 − 2𝑡 + 19𝑡3 − 𝑡5

+ ∫ (𝑡 − 𝑠)𝑦1(𝑠)𝑑𝑠
𝑡

0

+ ∫ (𝑡 + 𝑠)𝑦1(𝑠)𝑑𝑠
1

0

  

𝑦′
2

(𝑡) = −1 − 3𝑡2 − 2𝑡3

+ ∫ (𝑡 − 𝑠)𝑦2(𝑠)𝑑𝑠
𝑡

0

+ ∫ (𝑡 + 𝑠)𝑦2(𝑠)𝑑𝑠
1

0

  

 
𝑦′

3
(𝑡) = 4 − 𝑡 − 4𝑡2 − 𝑡3

+ ∫ (𝑡 − 𝑠 + 1)𝑦3(𝑠)𝑑𝑠
𝑡

0

+ ∫ (𝑡 + 𝑠 − 1)𝑦3(𝑠)𝑑𝑠
1

0

 

 
For the first equation, we have; 

𝑢1(𝑡) = −3.14719289450058300 × 10−306

+ 64.37637463𝑡 + 4.6750291𝑡2

− 0.950619𝑡3 + 6.930721𝑡4

+ 0.107218𝑡5 − 0.170624𝑡6

+ 0.031898𝑡7 

 
For the first equation, we have; 

𝑢1(𝑡) = −3.14719289450058300 × 10−306

+ 64.37637463𝑡 + 4.6750291𝑡2

− 0.950619𝑡3 + 6.930721𝑡4

+ 0.107218𝑡5 − 0.170624𝑡6

+ 0.031898𝑡7 

For the second equation, we have; 
𝑢2(𝑡) = 0.033333333333332982 + 23.95761023𝑡

+ 2.020013400𝑡2 − 1.3327407𝑡3

+ 0.3189426𝑡4 + 0.045549𝑡5

− 0.0112941𝑡6 + 0.0019194𝑡7 
 
For the third equation, we have; 

𝑢3(𝑡) = −2.67046585108098486 × 10−307

+ 5.896893726𝑡 + 0.3022673𝑡2

− 0.16749935𝑡3 − 0.0284633𝑡4

− 0.0006367𝑡5 − 0.0021561𝑡6

− 0.00040588𝑡7 
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       2 (b) 

 
      2 (c) 
Figure 2a-c: Exact and approximate solutions of Example 3 [▫▫▫ 
Exact --- Bezier] 
 
Example 4: Consider the following systems of disjoint Fredholm-
Volterra integro-differential equations with the exact solution; 

𝑦1(𝑡) = 𝑡3 + sin(𝑡) , 𝑦2(𝑡) = 6𝑡 − 12𝑡2, 𝑦3(𝑡) = 2 + 6𝑡 +
12𝑡2, 𝑦4(𝑡) = 32𝑡 + 6 respectively. 

𝑦′′′
1

(𝑡) = 5 −
1

4
𝑡4 + ∫ 𝑦1(𝑠)𝑑𝑠 + ∫ 𝑡𝑦1(𝑠)𝑑𝑠

𝜋

−𝜋

𝑡

0

 

𝑦′′′
2

(𝑡) = 𝑡 − 2𝑡3 + 3𝑡4 + ∫ 𝑠𝑦2(𝑠)𝑑𝑠 + ∫ 𝑡𝑦2(𝑠)𝑑𝑠

1

0

𝑡

0

 

𝑦′′′
3

(𝑡) = −6 − 2𝑡 − 3𝑡2 − 4𝑡3

+ ∫ 𝑦3(𝑠)𝑑𝑠 + ∫ 𝑠𝑦3(𝑠)𝑑𝑠

1

0

𝑡

0

 

𝑦′′′
4

(𝑡) = −
1

2
𝑡2 + ∫ 𝑦4(𝑠)𝑑𝑠 + ∫ 𝑡𝑦4(𝑠)𝑑𝑠

𝜋

−𝜋

𝑡

0

 

For the first equation, we have the solution; 

𝑢1(𝑡) = −4.097408949557910 × 10−308

+ 0.9379032803𝑡 + 0.081726408𝑡2

+ 0.83333311𝑡3 − 0.01932527𝑡4

+ 0.00780639𝑡5 + 0.00024607𝑡6

− 0.00021904𝑡7 

 
For the second equation, we have; 

𝑢2(𝑡) = 1.33504431510432394 × 10−307 +
6.0000000014𝑡 − 12.00000000𝑡2 + 1. 10−7𝑡3 −
5.89206858 × 10−8𝑡4 + 1. 10−17𝑡5 + 1.4 × 10−7𝑡6 −
1. 10−8𝑡7  
For the third equation, we have; 

𝑢3(𝑡) = 2.0 + 6.00000008𝑡 + 11.999999988𝑡2

− 1. 10−7𝑡6 
For the fourth equation, we have; 

𝑢4(𝑡) = 6.0 + 31.55959744𝑡 + 0.8276319𝑡2

− 0.000000072𝑡3 − 0.643810𝑡4

+ 0.254335𝑡5 + 0.002953𝑡6

− 0.0006990𝑡7 

 

 
  3 (a) 
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        3 (b) 
 

 
         3 (c) 

 
     3 (d) 

Figure 3a-d: Exact and approximate solutions of Example 4 [▫▫▫ 
Exact --- Bezier] 

Discussion 
Table 1 shows the degree of accuracy of this method in terms of 
absolute errors for 𝑛 = 8 compared to the fixed point iterative 

(Berenguer, et al 2012) and Bernstein operation matrix 
(Maleknejad, et al 2012) methods, while Figures 1-3 show the plots 
of the exact solution (in red) against the Bezier approximate 
solution (in blue) for systems of 2-4 FVIDEs in examples 2-4 
respectively at 𝑛 = 7. These clearly show that the Bezier control-

point-based method is an accurate and effective technique for 
finding approximate solutions to Fredholm- Volterra integro-
differential equations. The computations were done using Maple 
16. 
 
Conclusion 
In this work, the Bezier control points method has been used 
successfully to find the approximate solution of systems of disjoint 
Fredholm-Volterra Fredholm-Volterra integro-differential equations 
(FVIDEs). The approximate solutions obtained are of high 
accuracy. Thus, the method is effective 
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