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ABSTRACT  
The inability of the Shewhart‟s, the EWMA, and the CUSUM, 
Hotelling‟s T2 and many other control charts to indicate the time of 
shift poses great problems in production, Medicine, etc. To 
overcome the problems the need to identify the period of change 
(shift) in the process becomes inevitable. The study used Lapage-
type Change-point (LCP) to detect the simultaneous shift in both 
mean and variance. In the study we compare the performance of 
generalized likelihood ratio change-point (GLRCP) a parametric-
base with our proposed method (LCP) at different varying start-
ups using real life data. We run the data on Normal, Laplace and 
Lognormal distributions and also Average Run Length        to 

assess the performance of the methods. Evaluating in-control 
ARLs (IC-ARLs) for each of the methods at change-point 250 and 
     500 indicates the same performance irrespective of the 

start-up value; LCP and GLR methods have rather a similar 
performance IC-ARLs at change-point 50 and change-point 100 
under the normality assumptions, but under non-normal 
distributions, LCP has substantially higher IC-ARLs compared to 
GLRCP at 20. The LCP outperformed the GLRCP when applied 
to children bronchial pneumonia status. We therefore recommend 
that new method be used in short-run situations and also when 
underlying distributions are usually unknown.  
 
Keywords: Lapage-type Change-point, nonparametric statistic, 
Laplace and Lognormal             distributions, Rank-Test Statistics 
 
1.0 Introduction 
Statistical Process Control (SPC) is about continuous monitoring 
or surveillance of a process to ensure that neither the mean nor 
the variability of the process distribution has changed Hawkins 
and Zamba, (2005); McCracken and Chakraborti, (2013). Some 
examples of process control may include: monitoring some quality 
characteristics of manufactured item to ensure compliance to 
certain standards; detection of an increased birth rate of infants 
with congenital malformations; surveillance of health data to 
detect an outbreak of a disease or increased rate of incidence of 
disease such as COVID-19, Salisu, Edokpa, Elakhe and Shaib 
(2018); the observance of a natural phenomenon such as water 
salinity levels, or adverse drug reaction etc. in public health 
practice, Flowers (2009). Note that process control is very useful 
in showing variation that exists in health outcomes or 
performance between groups or institution, and claimed that it is 
often a starting-point for needs assessment, targeting service and 
epidemiological understanding. In general, the target goal of 
process control is to detect the change in the process occurring at 

an unknown epoch of time as soon as possible after it has 
occurred, and at the same time controlling the rate of false alarm 
Dong, Hedayat and Sinha, (2008). 
 
Change- Point Approach 
Control chart, play an important role in SPC applications and 
distinguish between common causes of variations and special 
causes, they do not indicate when these special causes actually 
occurred Snoussi and Limam, (2007). The process of estimating 
the period of change as a result of shift detection is commonly 
referred to as change-point. In other words, the change-point 
approach to SPC, intuitively, is a technique targeted at knowing 
the period of process shift. Along with indication of a loss of 
control, they provide estimates of when the shift occurred and (if 
needed) of the pre and post-shift process parameters. By the 
change-point approach, primarily, the signal of process shift and 
time of shift can be obtained simultaneously Li, Qiu, Chatterjee, 
and Wang, (2013). Meanwhile, one major challenge in SPC is 
whether there has been a shift of the distribution from the target in 
a process quality; another is locating the point of change. Thus, it 
is necessary to proffer solution in terms of required and corrective 
methods to address the unavoidable question of the process 
shifts and of particular interest lies in the position of shift in an out 
of control process in order to cushion the consequences brought 
about by the change. In practice, detecting if the process is in 
control as well as the position of shift in an out of control 
processes are critical statistical tasks. When a control chart 
produces an out-of-control signal, a search must be initiated to 
find the assignable causes of the out-of-control state. Knowing the 
exact time of a change in a process restrict the range of searches 
for the assignable causes which in turn accelerate the assigned 
causes identification and appropriate corrective action 
implementation. In cases when a variable sampling scheme is 
adopted, even if a shift is not detected at a given time point, it 
would still be helpful to know the likelihood of a potential shift Li et 
al. (2013).  
 
Objectives of the Study 
The study of the statistical performance of charts is very important 
became it provides insight into how charts work in practice and it 
provides the only way to effectively compare competing methods 
in a fair and objective manner. In order to implement the idea of 
simultaneously monitoring process quality in practice, 
performances of the proposed and the competing methods are 
evaluated and compared. This is practically meant to demonstrate 
the inappropriateness of Generalized Likelihood Ratio (GLR) 
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parametric-based method of Hawkin and Zamba (2005b), as well 
as the inadequacy of Deng (2009) nonparametric based Mann-
Whitney method (purposefully designed for a process shift in 
mean). The overall aim of this study is to apply Change-Point to 
multivariate in Statistical Process control. 
 
Specific Objectives 
The specific objectives are to: 

(a) Develop multivariate control chart for detecting a 
change/shifts in mean and variance. 

(b) Determine the required number of observations 
before the actual process monitoring 
commences; 

(c)  Compare the performance of multivariate 
Lapage Change-point (MLCP) with those of the 
nonparametric Wilcoxon-Mann-Whitney (WMW) 
and parametric Generalized Likelihood Ratio 
(GLR) methods. 

(d)  Practically demonstrate the application of the 
proposed method using real-life and simulated 
data.  

 
2.0 Materials and Method 
 
Lepage-Type Rank Test 
The nonparametric two-sample Lepage test was developed by 
Lepage 1971. The test is designed to carrying out equality of the 
location and scale parameters test simultaneously against the 
alternative that at least for one of the parameters, the equality 
does not hold. Basically, it is a combination of the Wilcoxon-
Mann-Whitney and the Ansari-Bradley statistics Hutchinson, 
(2002); Rublik, (2005). That is, it converts both the Wilcoxon-
Mann-Whitney and the Ansari-Bradley statistics to square-
standardized deviations from their respective expectations and 
adds the results. Perhaps the most widely used two-sample rank 
test of equality of location parameters is the Wilcoxon-Mann-
Whitney test. The Ansari-Bradley test is also used in two-sample 
rank test for equality of the scale parameters, though the ranking 
procedure is not that straightforward. However, the possibility of a 
two-sample test statistic which combines the Wilcoxon-Mann-
Whitney and the mood statistics (with ranking procedure is more 
direct and straightforward) has been suggested in the literature 
Rublik, (2009). The nonparametric two-sample Lepage test‟s 
variant would be called Lepage-type test (for testing equality of 
the location and scale parameters against the alternative that at 
least for one of the parameters the equality does not hold) in the 
course of this study. Lepage-type test‟s proposition is 
straightforward in concept and simple to carry out.  
Suppose that {             } and {             } are 

independent random samples from random variables    and    

respectively. Assume their distributions are given as follows: 

         
                

    (1) 

Where       denote the location parameters,   
      

    

are scale parameters and      is a continuous distribution 

function. Let {          }            denote the rank of 

the pooled sample {                       } random 

variables. Under the assumption of no change, this model (1) can 
be summarized in terms of a joint hypothesis as: 

                     
     (2) 

  Vs 

a)                        (representing shift in process 

location only) 
b)                        (representing shift in process 

variability only) 
c)                       (representing shift in both process 

location and variability) 

Let   
  denote the square of the standard Wilcoxon-Mann-

Whitney two-sample test statistic;   
  the square of the 

standardized mood two-sample test statistic; and L the 
combination of the Wilcoxon-Mann-Whitney and the Mood 
statistics, then Lapage-type test denoted by L is of the form: 
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Hence, the Lepage-type statistic   of equation (3) could be 

expressed as: 
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)      (4) 

Since the distribution function   in equation (1) is continuous, the 

statistic   is distribution-free whenever the null hypothesis in 

equation (2) holds Rublik, (2009), and testing the null hypothesis 
(2) at α        , level of significance,    is rejected 

whenever       (critical value is chosen so that the type I 

error rate is  ). 

 
The Proposed LCP Method 
We suggest a nonparametric Lepage-type Change Point (LCP) 
approach to Statistical Process Control (SPC) based on Lapage-
type test (which combines the Wilcoxon-Mann -Whitney and the 
Mood statistics for shift in process location and variability, 
respectively). 
 
LCP Method Formulation  
Suppose that the independent process observations 
{          } came from a continuous cumulative distribution 

function             where    and    are the location and 

variability parameters respectively. Also, consider the existence of 
time   (change-point) when there is a shift in mean and or in 

standard deviation of the process. The process reading, parallel 
Hawkins and Zamba (2005b), can be modeled by:  

   {
                     

                     
     (5) 

Under the assumption of no shift, this model (2) can be 
summarized in terms of the hypothesis in equation (2) in which 
location shift occurs if       and variability shift occurs if 
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     . If there is no enough evidence to reject the null 

hypothesis in equation (2), we will claim that the process is in 
state of „„statistical control‟‟ (in-control, IC) and stable with 
“random causes” which cannot be removed easily from the 
process without fundamental changes in the process itself. On the 
other hand, if it shows enough evidence to reject the null 
hypothesis in equation (2), we will conclude that the control chart 
issues a signal and the process is out of “statistical control” (out-
of-control, OOC) and undergoes an unusual variation due to 
“special causes”.  In principle, either or both of these shifts could 
occur. In addition to the   (change-point) being an unknown 

parameter,     (location parameter) and    (variability parameter) 
are also unknown. let the change-point     and    be the rank 

of    observations. And, for the fact that the sample size keeps 

increasing in Phase II analysis as new observation comes in, we 
express the Lepage-type test statistic as: 

           |    |    (6) 

where  
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LCP Implementation Procedure  
When the sample size is not fixed but increase, the procedure for 
adapting the formulation in equation (3) for use in the Statistical 
Process Control (SPC), setting is described similar to Hawkins 
and Zamba, (2005b) and Ross et al., (2011) as follows: 
(a) Find       , after observation n has been added to the total 

record of the process, by  
i. Obtain the standardized 

   
             

√              
 and    

               

√           (    )

   

 

  
ii. Calculate the sum of squares of the standardized 
statistics,      

iii. Determine the maximum of      over all the possible k, 

           |    |  

(b) If            where    is some suitable control limit, then 

conclude that there is no evidence of a shift in either mean or 
variance, and leave the process running uninterrupted. 
(c) If however,          , then conclude that there is 

evidence of a shift in the mean, the variance or both.  
One of the main objectives of a control chart is to detect unusual 
variation as soon as possible, and at the same time keeping the 
probability of erroneous signal below a reasonable level, using the 
initial framework of Hawkins, Qiu, and Kang, (2003), while the 
process is in-control, the sequence of control limits      is 

chosen so that the conditional probability of a false alarm at each 
observation   given that there was no false alarm prior to    is 

fixed at desirably selected constant level  . According to Dong, 

Hedayat, and Sinha, (2008), the type I error is usually 

characterized by the in-control average run length        to a 

false alarm. That is,      
 

 
  Likening Hawkins and Zamba 

(2005b), this can be written in symbols as 

 [                       ]     (7) 

Theoretically, similar to the literature (such as Hawkins and 
Zamba, (2005a, 2005b); Zhou, Zou, Zhang, and Wang, (2009), 
submission, it does not seen possible to solve for these    

values. So, a simulation through the use of R “cpm” package 
Ross, (2013) is used to estimate them. 
 
After-Signal Diagnosis  
A primary consideration when choosing a control chart to detect 
and estimate special causes should be the ability to signal quickly 
after a special cause occurs. It is, therefore, necessary to be able 
to point out which parameter or parameters have shifted after a 
signal occurs. 
Change-point detection implies that there has been a process 
shift. The signaling of a process shift in location (mean) and/or in 
variability, however, normally poses the challenges of identifying 
which of the process parameters have shifted. Addressing this 
challenge would be approached by splitting the process history at 
the estimate change-point and carrying out a two-sample 
comparison test between the two resulting segments (pre-shift 
and post-shift), using nonparametric tests. This procedure is 
called after-signal diagnosis. Our proposed after-signal diagnosis 
would not be a problem in the face of advanced technological 
statistical software already developed for this task, in today‟s 
environment Zhang, Zou, and Wang, (2011). It is known that after 
a signal is raised, statistical software can easily be used when 
needed to help in diagnosing which parameters have changed. 
Suppose that a process shift is detected at time t, corresponding 
to the value of   which maximized       . The accrued 

observations can then be partitioned into the subsets 
{       } and {         }   (8) 

A two-sample Wilcoxon-Mann-Whitney and Mood tests can then 
be carried out on these two subsets and the p-value evaluated 
compared. The shift is most likely to constitute a location shift or 
variability shift as in Wilcoxon-Mann-Whitney or Mood test 
respectively gives the lower p-value Ross, Tasoulis, and Adams, 
(2011). 
 
Performance Evaluation Method  
The study of the statistical performance of charts provides insight 
into how charts work in practice and is the only way to effectively 
compare competing methods in a fair and objective manner. The 
choice of any control charts is primarily based on how effective 
they are. Thus, the main goal would be to know how to measure 
the effectiveness of a chart. 
Under the mathematical framework used to determine the 
statistical performance of the charts, performance measures are 
chosen to give the chart a good balance between failing to signal 
a real shift in process level (a type II error) and signaling a shift 
when none has occurred (a type I error). In phase II, the 
probability of a signal on any one sample is sometimes used if the 
successive statistics plotted are independent, as may be the case 
with a basic Shewhart-type chart. The distribution of the false 
alarms is usually expressed in terms of the Average Run Length 
(ARL). In this study, evaluating the likely performance of a 
process monitoring method is therefore achieved by the ARL. 
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The Average Run Length (ARL)  
Suppose   (which is referred to as the run length for the method) 

is the period at which a process monitoring method first signals. 
The run length is the number of samples required for a signal to 
occur. The probability distribution of   is, therefore, known as the 

run length distribution, and the average value of this distribution is 
called the Average Run Length (ARL) for the process monitoring 
method. That is,       . Generally, the power of control chart 

methods is characterized by their run lengths. Some parameter of 
the run length distribution is used. A measure that is often used in 
quality control is based on the average run length properties 
Ramzy and Peiris, (2013). 
Quantifying what a given monitoring method might be expected to 
do is necessary when considering alternative methods for 
indicating out-of-control signals based on process monitoring 
data. Therefore, evaluation of the ARL plays a crucial role in the 
design of control charts and performance comparison. The 
challenges of designing control chart procedures thus involves 
finding control procedure parameters such that the ARL is 
sufficiently large when the controlled parameter is IC and 
sufficiently small when the controlled parameter is OOC. 
Essentially, understanding the ARL characteristics of the control 
charts can lead to timely detection of changes in the process 
quality levels, and promptly subsequent appropriate corrective 
measures taken to return the process into a state of control, if the 
change is unfavorable. 
The ARL is the most frequently used parameter, although the run 
length distribution is often skewed to the right. Thus, the 
performance of the chart is measured in term of it ARL (the 
number of samples or subgroups that need to be collected before 
the first out-of-control signal is given by a chart) following a step 
change in process distribution Ghute and Shirke, (2012) and 
Hawkins and Zamba, (2005b). It is probably used more often in 
the literature because it is conceptually easy to understand. 
Both the in-control and out-control cases will be considered. The 
in-control robustness information is important in the 
implementation of the chart, particularly for small to moderate 
sample sizes. This ARL is also known as the in-control ARL when 
there is no shift in the process. When there is process shift from 
its target, the corresponding ARL is called out-of-control ARL. It is 
desirable that a process monitoring method produces a large ARL 
when the process is stable at standard values for process 
parameters and small ARL under OOC condition. 
Finding the in-control ARL or out-of-control ARL actually 
determines the starting point at which practitioners begin to count 
the number of plotted observations Maravelakis, Panaretos, and 
Psarakis, (2005). The pre-specified ARL until an alarm, when 
there is no change in process distribution is usually denoted as 
ARLo. In the course of this study, ARLo 370 and 500 
corresponding to a false alarm rate          and         

respectively would be applied to ease comparison and 
interpretability. 
In the tables 1and 2 the LCP and GLR summary of the IC-ARL for 
both ARLO 370 and 500 is presented. Except for a small bit of 
error, setting start-up observations above 20, the observed IC-
ARLs are more or less the same accordingly to the specified ARL 
(    ). The effect of setting start-up values (20, 25, 30, 40 and 

50) at different change-point values is insignificant at the different 
pre-specified      of 370 and 500. See tables below: 

Table 1: LCP In-Control ARLs by Varying Start-ups 

 
 
Table1: showing the LCP‟s In-Control ARLs for start-up values: 
20, 25, 30, 40 and 50 at specified          and      
     respectively. 

 
Table 2: GLR In-Control ARLs by Varying Start-ups 

 
 
Table 2: showing the GLR‟s In-Control ARLs for start-up values: 
20, 25, 30, 40 and 50 at specified          and      
   , respectively. 

In Table 3, the resulting IC-ARLs for the five distributions 
considered in this study are presented. The two methods had a 
rather similar performance with respect to the estimated IC-ARLs, 
under the normal distribution. Their IC-ARL was 497 (496) and 
489 (488) for LCP (GLR) at change-points 50 and 500 
respectively. Essentially, this finding will enable comparison of 
OOC-ARLs of the two methods since both methods have 
comparable IC-ARLs (under the normal setting). However, the 
LCP IC-ARL (497) was slightly higher compared to GLRCP IC-
ARL (493) at the initial change point 20 while  at change-point 

96 



Science World Journal Vol. 15(No 3) 2020 
www.scienceworldjournal.org 
ISSN 1597-6343 
Published by Faculty of Science, Kaduna State University 
https://doi.org/10.47514/swj/15.03.2020.013 

 

Comparison of Change-Points in Multivariate Statistical Process Control Using 

the Performance of Lapage-Type (Nonparametric) 

250, the LCP (GLR) IC-ARL was 500 (490).  
On the other hand, the LCP had substantially higher IC-ARL 
compared to the GLRCP when considering the other distributions, 
as shown in Table 3: The LCP IC-ARLs proportion (with respect 
to the specified ARL of 500) remains about 100% to 97% and 
constant for the distributions considered. However, for all the non-
normal distributions considered, the GLRCP IC-ARLs are 
relatively lower and could not in any way attain the specified ARL 
as expected. The result shows that Laplace and Logistic 
distributions which are heavy-tailed symmetric distributions 
respectively are about one-third and two-third of the specified 
ARL. Also, in the case of Gamma and Lognormal distributions 
which are skewed distributions, the GLR IC-ARLs are about one-
fourth and one-twenty-fifth of the specified ARL respectively. Also, 
both methods (LCP & GLR) maintain their IC-ARL distributions at 
the different change-points considered. For example, LCP (GLR) 
IC-ARLs are 499 (154) and 496 (150) at change-points 20 and 
100 respectively, under Laplace distribution. The same pattern of 
IC-ARLs is exhibited for the other change-points (50, 250 and 
500) considered, and for the other distributions (logistic, gamma 
and lognormal) examined.  
Meanwhile, unlike the GLR, there appeared to be a slight 
reduction in LCP IC-ARLs when the change-point gets larger (i.e. 
>250) for all the distributions considered. In particular, at change-
point 250 (500), the LCP IC-ARLs are 500 (489) and 497 (484) for 
normal and logistic distributions respectively. This could be 
attributed to the fact that the method is designed to starts process 
monitoring as fast as possible, especially for short run processes. 
 
Application of the Methods to Real-Life Data 
The performance comparison and assessment of charts is very 
important, not only because it provides insight into how charts 
work in practice but also, it‟s the only way to effectively compare 
competing methods in a fair and objective manner. As noted by 
Gan (1995), the comparisons will, in no small measure, allow 
practitioners to have an understanding of the different competing 
methods. Besides the fact that the control charts are useful tools 
for the practitioners, illustrations are highly essential. Hence, both 
the proposed method and the considered existing methods 
presented in this study are applied to real-life data obtained from 
Specialist Hospital Irua, Edo state, Nigeria 
 
Application of the Methods to Children Suffering from 
Bronchial Pneumonia 
There is no doubt that the challenges pose by bronchial 
pneumonia affect the entire population, but children are most 
vulnerable because of their unique physiologic, anatomic, 
morphologic and socio-economic characteristics (W.H.O, 2015). 
In the same vain, the Millennium Development Goals (MDGs) 
advanced increased on international attention focusing on child 
bronchial pneumonia in the developing world, with major aim to 
reduce under-five child mortality Annim, Awusabo-Asare and 
Amo-Adjei, (2013). This assertion is characterized by the Nigeria 
situation particularly in the Savannah and Rain forest region of the 
country. The report by the World Health Organisation, 2016 
resolved that National Development for Health Services (NDHS) 
in Hyper, Hypo and Meso-endemic area in Africa are charged with 
the responsibility of collecting data on the bronchial pneumonia of 
children. NDHS measure the weight of all children under age 5 
(60 months) in selected households in Nigeria. The scope of the 

data used in the computation was based on the reported cases of 
bronchial pneumonia as obtained from the records section of Irua 
Specialist Hospital. 
 
3.0 RESULTS  
 
Data Application and Methods 
The study considered the existing medical records on the report 
cases of children who suffered from the bronchial pneumonia 
disease in Irrua Specialist Hospital. Children with        

from the reference population median are considered thin 
(bronchial pneumonia) or acutely pneumonia.  
The performances of conventional change-point charts rely on the 
normality assumption of process distribution. However, the 
distribution of process is not only skewed, but also heavy-tailed as 
indicated using the most commonly Shapiro-Wilk Normality Test. 
The data set distribution does not follow a normal distribution. 
Collaborating this, Shapiro-Wilk Normality test statistic:   
                    confirms that there is sufficient 

evidence to conclude that the data set has not been drawn from a 
normal population.  
 
Application of GLR-based Chart 
Figure 1: below shows a GLR parametric-based change-point 
control chart on acute bronchial pneumonia of under 5 children; 
while its estimated change-point is shown in figure 1a. 
 

 
Figure 1: GLR parametric-based control chart on acute bronchial 
pneumonia under 5 children 
 

 
 
Figure 1a: GLR estimated change-point, along with the detection 
time (signal point) of acute bronchial pneumonia of less than 5 
children 
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The inappropriateness of GLR control chart application to non-
normal data is shown in figures 1 and 1a. Precisely, a shift in the 
process data is signaled at about 2 years old (22nd month) and 
estimated period of change is said to be at 16th month. This 
estimated point of shift (at the 16th observed month) is unrealistic 
as actual process monitoring begins at the 20th month. 
 
Application of proposed LCP-based Chart 
The figures 2 and 2a below respectively shows LCP 
nonparametric-based control chart applied to acute bronchial 
pneumonia of under 5 children 
 

 
 
Figure 2: LCP nonparametric-based chart on acute bronchial 
pneumonia of under-5 children 
 

 
Figure 2a: LCP estimated change-point, along with its detection 
time of acute of under-5 children bronchial pneumonia. 
 
Figures 2 and (2a) show the results of nonparametric-based LCP 
control chart to the data. The chart does not only detect the shift 
in location but also the shift in variability. Figure 2 displays the 
change-point statistic along with its control limit corresponding to 
in-control ARL of 500. The estimated change-point, along with the 
period at which the maximised test statistic (    ) exceeds the 

control limit, is shown in figure 2a. The chart signals a shift in 
children‟s bronchial pneumonia, as measured by acute 
pneumonia, at about two years old (24th month), while it suggests 
that the actual change had started at the 21st month (observation). 
This is an indication of the LCP promptness in raising alarm of a 
process shift if indeed it exists. 
 
After-Signal Diagnosis  
A shift signal by LCP is an indication of either shift in mean, in 
variance or in both. Hence, it is important for after-signal 
diagnosis to be carried out on the pre-shift and post-shift data 
segments.  

Table 3: Summary Statistics of Pre-shift and Post-shift Segments 
of bronchial pneumonia 

 
 
The summary statistics in Table 3 confirm that the signal may 
have resulted in both a mean shift (p=0.002949) and a variability 
shift (p=0.03978) of children‟s bronchial pneumonia as measured.  
 
4.0 Discussion  
The inappropriateness of GLR control chart application to non-
normal data is demonstrated with the use of Irrua Specialist 
Hospital data as applied to under-5 children bronchial pneumonia 
status, as measured by acute pneumonia diagnosis. The result is 
said to be unrealistic as the actual commencement of process 
monitoring was at 20th month. And indeed, this corroborated the 
stance of Hawkins and Zamba (2005b) claim that their proposed 
chart may not be suitable for non-normal data. This could be 
attributed to the fact that there exist joint location and variability 
shifts in the process data. In agreement with literature of Hawkins 
and Deng, (2009) and Zhang et al., (2010), however, results from 
the LCP nonparametric-based chart substantiated NPC and ICT 
(2014) findings which reported that majority (83%) of children less 
than 6 months old were not exclusively monitored, and that over 
90% of children age 6-23 months were monitored inappropriately 
(based on recommended infant and young child monitoring 
practices). Bearing this in mind, application of LCP gave a clear 
pointer to the policy maker the need to urgently address the 
failure of children less than 2 years old to receive adequate 
monitoring. And, if the necessary corrective measures were taken 
to address this challenge, the tendency of wasting would be 
reduced to a large extent. 
 
5.0 Conclusion and Recommendation 
In conclusion, there is a clear indication that LCP performs quite 
better compared with the competing chart considered. It should 
therefore be the preferred method of choice in the face of 
unknown distribution of process data. 
 
REFERENCES 
Annim, S. K., Awusabo-Asare, K. and Amo-Adjei, J. (2013). 

Household nucleation, dependency and child health 
outcomes in Ghana. DHS Working Papers No. 98, retrieved 
from http://www.dhsprogram.com/publications/publication-
wp98-working-papers.cfm. 

Dong, Y., Hedayat, A. S. and Sinha, B. K. (2008). Surveillance 
strategies for detecting changepoint in incidence rate based 
on Exponentially Weighted Moving Average Methods. 
Journal of the American Statistical Association, Vol. 103, 
No. 482, pp.843- 853. 

  Deng, Q. (2009). A nonparametric change-point model for phase 
II analysis. Unpublished PhD thesis. University of 
Minnesota, pp. 185 

Flowers, J. (2009). Statistical process control methods in public 
health intelligence. Technical Briefing 2, Association of 
Public Health Observatories [APHO], retrieved from 
http://www.apho.org.uk. 

98 

http://www.apho.org.uk/


Science World Journal Vol. 15(No 3) 2020 
www.scienceworldjournal.org 
ISSN 1597-6343 
Published by Faculty of Science, Kaduna State University 
https://doi.org/10.47514/swj/15.03.2020.013 

 

Comparison of Change-Points in Multivariate Statistical Process Control Using 

the Performance of Lapage-Type (Nonparametric) 

Gan, F. F. (1995). Joint monitoring of process mean and variance 
using exponentially weighted moving average control charts. 
Technometrics, Vol. 37, No. 4, pp.446 - 453. 

   Ghute, V. B. and Shirke, D. T. (2012). A nonparametric signed-
rank control chart for bivariate process location. Quality 
Technology & Quantitative Management, Vol. 9, No. 4, 
pp.317-328. 

Hawkins, D. M. and Zamba, K. D. (2005a). A change-point model 
for a shift in variance. Journal of Quality Technology, Vol. 
37, No. 1, pp.21-31. 

Hawkins, D. M. and Zamba, K. D. (2005b). Statistical process 
control for shifts in mean or variance using a change-point 
formulation. Technometrics, Vol. 47, No. 2, pp.164-173. 

Hawkins, D. M., Qiu, P. and Kang, C. W. (2003). The changepoint 
model for statistical process control. Journal of Quality 
Technology, Vol. 35, No. 4, pp.355-366. 

Hutchinson P. T. (2002). Technical Note: Should we routinely test 
for simultaneous location and scale changes? Ergonomics, 
Vol. 45, No. 3, pp.248-251. 

Lapage, Y. (1971). A combination of Wilcoxon‟s and Ansari-
Bradley‟s statistics. Biometrica, Vol. 58, No. 1, pp.213–217. 

Li, Z., Qiu, P., Chatterjee, S., and Wang, Z. (2013). Using p-
values to design statistical process control charts. Statistical 
Papers, Vol.54, No. 2, pp.523–539. 

Maravelakis, P.E., Panaretos, J. and Psarakis, S. (2005). An 
examination of the robustness to nonnormality of the EWMA 
control charts of the dispersion. Communications in 
Statistics –Simulation and Computation, Vol. 34, No. 4, 
pp.1069–1079. 

McCracken, A. K. and Chakraborti, S. (2013). Control chart for 
joint monitoring of mean and variance: an overview. Quality 
Technology and Quantitative Management, Vol. 10, No. 1, 
pp.17-36. 

Razmy, A.M. and Peiri, T.S.G. (2013). Performance Comparison 
of Shewart joint Monitoring Scheme for Mean and Variance. 
National Engineering Conference 2013, 19thEru Symposium. 
Faculty of Engineering. University of Maratuwa, Sri-Iinka. 
Pp. 99 – 104. 

Ross, G.J., Tasoulis, D.K. and Adams, N.M. (2011). 
Nonparametric monitoring of data streams for changes in 
location and scale. Technometrics, Vol. 53, No.4, pp.379-
389. 

Rublik, F. (2005). The multisample version of the Lepage test. 
Kybernetika, Vol. 41, No. 6, pp.713–733. 

Salisu, S.U., Edokpa, O.S., and Shaib, I.O (2018) Evaluation of 
Parametric and Nonparametric Based Change-Point Control 
Chart. Journal of the Nigerian Association of Mathematical 
Physics. Vol. 46 No1 

Snoussi, A. and Limam, M. (2007). The change point model: SPC 
method for short run autocorrelated data. Quality 
Technology and Quantitative Management, Vol. 4, No. 3, 
pp. 313-329. 

  Zamba, K. D. and Hawkins, D. M. (2006). A multivariate change-
point model for statistical process control. Technometrics, 
Vol. 48, No. 4, pp.539–549. 

Zhang, J., Zou, C. and Wang, Z. (2011). A new chart for detecting 
the process mean and variability. Communications in 
Statistics-Simulation and Computation, Vol. 40, No. 5, 
pp.728–743. doi: 10.1080/03610918.2011.552823. 

Zhou, C., Zou, C., Zhang, Y., and Wang, Z. (2009). 
Nonparametric control chart based on change-point model. 
Statistical papers, Vol. 50, No. 1, pp.13-28. 

99 


