SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL STUDIES OF MACROCYCLIC SCHIFF BASE DERIVED FROM MALONIC ACID AND O-PHENYLENEDIAMINE AND ITS CD (II), CO (II), CU (II), NI (II), AND ZN (II) COMLPLEXES

¹Sulaiman Sani Yusuf, ²Muhammad Saleh Salga and ³Mustapha Sani

^{1,2,3} Department of Pure and Industrial Chemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua University, Katsina, P. M. B 2218, Katsina State, Nigeria

Authors Email Addresses: 1*ssymahuta01@yahoo.com, 2salgamohd@yahoo.com, 3hakuridajuriya@yahoo.com

ABSTRACT

The condensation of Malonic acid with o-phenylenediamine have yielded Base the Schiff 7.16dihydrodibenzo[1,4,8,11]tetraazacyclotetradecine-6,8,15,17tetraol (89.39%). Its metal (II) complexes were prepared from the chloride salts of Cd2+, Co2+, Cu2+, Ni2+ and Zn2+. Solubility, melting/decomposition temperature, FT-IR, molar conductance and magnetic moments were used to determine the ligands and its complexes. The FT-IR result indicates a band at 1633cm-1 which corresponds to azomethine and confirms the formation of the ligand. There was a bathochromic shift in the peak to 1607cm ¹, 1596cm⁻¹, 1611cm⁻¹, 1573cm⁻¹ and 1566cm⁻¹ in the spectra of Cd2+, Co2+, Cu2+, Ni2+ and Zn2+ complexes respectively which is attributed to the binding of the nitrogen of azomethine to the metal ions. The compounds were tested for their antibacterial activity against Staphylococcus aureus and Escherichia coli using agar cup-plate method. The ligand and its complexes were found to be active against both Staphylococcus aureus and Escherichia coli. The Ni (II) complex displayed an enhanced activity with the highest zone of inhibition (45mm).

Keywords: Synthesis, Characterization, Ligand, Complexes, Antibacterial

INTRODUCTION

Schiff bases are condensation products of primary amine with an aldehyde or a ketone. The carboxyl group of the aldehyde produces aldimines while that of ketone produces ketoimines (Aliyu and Adamu, 2009).

Lately, studies on biological and catalytic activities of Schiff Base derived compounds is becoming an area of research interest (Elhendawy *et al.*, 2001). Recently, transition metal complexes with ligands containing both hard and soft donor groups have been used extensively in coordination and organometallic chemistry (Prabhakaran *et al.*, 2013).

The simultaneous similarity of macrocylic compounds with enzymes and its ability to mimic enzymes as well makes it a point of research interest internationally. The active search for new types of macrocycles and their applications has systematically increased since their discovery (Lindoy, 1989).

Several synthetic and natural macrocyclic compounds have been investigated, their chemistry has attracted the interest of both inorganic and bioinorganic chemists in recent years because of

their importance in the area of coordination chemistry. They are interesting ligand system due their ability to anchor metal ions, neutral molecules and organic cation (Singh et al., 2010). The tetraaza macrocyclic ligand and their metal complexes have specifically attracted interest among the coordination and bioinorganic chemist (Tas et al., 2010). Macrocyclic Schiff base ligands have received special attention because of their mixed soft-hard donor character, versalite coordination behaviour (Comba et al., 2003, Puhilbhai et al., 2009 & Sengupta et al., 2003) and their pharmacological properties, i.e. antifungal, antibacterial, anticancerous, antitumor (Tyagi et al., 2011). Transition metals of macrocyclic complexes have received much attention due to their active part that is mimicking the activities of metalloenzymes (Canadas et al., 2000) as biomimic model compounds resembling natural proteins like hemerythrin and enzymes (Chaudhary, 2002). The family of these complexes with aza-macrocyclic ligands has remained a focus of scientific attention for many decades (Singh et al., 2010). Considering this growing research interest in the macrocyclic

complexes, this work/article concentrate on the synthesis, characterization and antibacterial studies of 7,16dihydrodibenzo[1,4,8,11]tetraazacyclotetradecine-6,8,15,17tetraol Ligand and its complexes of Cd²⁺, Co²⁺, Cu²⁺, Ni²⁺ and Zn²⁺

MATERIALS AND METHODS

All the chemicals used were of analytical grade, procured from Qualikems and used without further purifications. Melting point/decomposition temperature ware determined using IA9000 series digital melting point apparatus while conductivity measurements were conducted using HI-2300 conductivity meter. IR measurements were recorded using shimadzu FTIR spectrophotometer at the range of 4000-400cm⁻¹. The magnetic moments of the complexes were determined on MSB MKI at 25°C

Preparation of the Ligand

A hot ethanolic solution (20ml) of malonic acid (2.08g, 0.02mol) and an ethanolic solution (20ml) of o-phenylenediamine (2.16g, 0.02mol) were mixed with constant stirring. The mixture was refluxed at 80-85°C for 6 hours in the presence of few drops of concentrated HCI (pH~3-4). The resulting solution was kept overnight at room temperature. The precipitate formed was

Synthesis, Characterization and Antibacterial Studies of Macrocyclic Schiff Base derived from Malonic acid and o-phenylenediamine and its Cd (II), Co (II), Cu (II), Ni (II), and Zn (II) complexes Science World Journal Vol 13(No 4) 2018 www.scienceworldjournal.org ISSN 1597-6343 Published by Faculty of Science, Kaduna State University

separated out, filtered, washed and recrystallized with methanol/ethanol (60:40) and dried over P_4O_{10} in vacuum.

Preparation of Metal Complexes

An ethanolic solution (20ml) of the corresponding metal salts (0.001mol) and a hot ethanolic solution (20ml) of the ligand (0.59g, 0.001mol) were mixed together with constant stirring. The reaction mixture was refluxed for 4 hours at 80-85°C. The corresponding product formed was cooled, filtered, washed and recrystallized with methanol/ethanol (60:40) and dried over P_4O_{10} in vacuum.

Scheme of the Reaction

Scheme 1: Synthesis of the ligand and its metal complexes Where M=Ni (II), M'= Cd (II), Co (II), Cu (II), and Zn (II) and X = chloride ions

RESULTS AND DISCUSSION

The condensation of malonic acid and o-phenylenediamine yields 7,16-dihydrodibenzo[1,4,8,11]tetraazacyclotetradecine-6,8,15,17-tetraol ligand. The Ligand solution (in methanol) was used to prepare the metal (II) complexes under reflux condition with metal chlorides (scheme 1) and were obtained in high yields (89.39%) as shown in figure 1.

The ligand is dark brown in colour while the complexes gives variety of colours viz; brown, black, dark brown, brown and barn red colours for the different metal ions used. This colour changes were attributed to either metal-ligand or d-d electronic transitions or both. The ligand melts at a temperature of 80°C, while its metal complexes decomposed at the temperatures of 147°C, 233°C, 148°C, 169°C and 136°C for Cd (II), Co (II), Cu (II), Ni (II) and Zn

(II) complexes respectively. This indicates that the complexes have high thermal stabilities

Figure 1: Elemental analysis and physical data of the synthesized ligand and its complexes

The solubility test in table 1 showed that the ligand and its metal complexes exhibit different properties in some common solvents. Most of the compounds were found to be soluble in methanol and ethanol with very few ones being slightly soluble. Both the ligand and its metal complexes were found to be soluble in dimethyl sulphoxide (DMSO). This may be due to the high dielectric constant of the solvent (Sani and Baba, 2016).

 Table 1: Solubility test of the ligand and its metal (II) complexes in some common solvents

S/N	Compound	Acetone	Aceto- nitrile	Chloroform	Diethyl ether	Distilled water	Ethanol	Ethyl Acetate	DMSO	Methanol	n-hexane	xylene
1	(C ₁₈ H ₁₆ N ₄ O ₄)	SS	SS	SS	IS	SS	S	SS	S	S	S	IS
2	[Cd(L)Cl ₂]	SS	IS	IS	IS	SS	SS	SS	S	S	IS	IS
3	[Co(L)Cl ₂]	IS	SS	SS	IS	SS	SS	IS	S	S	IS	IS
4	[Cu(L)Cl ₂]	IS	IS	IS	IS	SS	SS	IS	S	SS	IS	IS
5	[Ni(L)]Cl ₂	IS	IS	IS	IS	S	S	SS	S	S	S	IS
6	[Zn(L)Cl ₂]	SS	SS	SS	IS	S	S	SS	S	S	SS	IS

Where L= C₄₂H₃₂N₄

At room temperature, the Co (II), Cu (II) and Ni (II) complexes showed magnetic moments of 3.87, 1.73 and 2.83 respectively, this correspond to the 3, 1 and 2 unpaired electrons respectively. While the Cd (II) and Zn (II) complexes are diamagnetic as shown in table 3. The molar conductance values of the Ni (II) complex in DMSO was $350\Omega^{-1}$ cm²mole⁻¹ indicating 1:2 electrolytic natures. However, the molar conductance values for the rest of the complexes falls within the range $28-167\Omega^{-1}$ cm²mole⁻¹ as shown in table 2. An octahedral geometry has been proposed for the Cd (II), Co (II), Cu (II) and Zn (II) complexes whereas square planar geometry was expected for the Ni (II) complex.

Synthesis, Characterization and Antibacterial Studies of Macrocyclic Schiff Base derived from Malonic acid and o-phenylenediamine and its Cd (II), Co (II), Cu (II), Ni (II), and Zn (II) complexes Table 2: Magnetic moments and molar conductance of the synthesized complexes

S/N	COMPOUND	MOLECULAR FORMULA	µ _{eff} (B.M)	MOLAR CONDUCTANCE (Ω ⁻¹ cm ² mole ⁻¹)
1	[Cd(L)Cl ₂]	C18H16CdN4O4Cl2	Diamagnetic	138
2	[Co(L)Cl ₂]	C18H16C0N4O4Cl2	3.87	115
3	[Cu(L)Cl ₂]	C18H16CuN4O4Cl2	1.73	28
4	[Ni(L)]Cl ₂	C18H16NiN4O4Cl2	2.83	350
5	[Zn(L)Cl ₂]	C ₁₈ H ₁₆ ZnN ₄ O ₄ Cl ₂	Diamagnetic	167

Where L= C₄₂H₃₂N₄

Job's method of continuous variation was used for the estimation of the ligand to metal ratio. The plot of absorbance against mole fraction in each case was taken at maximum absorbance which corresponds to the ligand-metal mole fraction of 1:1 as shown in table 3.

					-
Tah	ما	· ? ·	Inh'e	Mothod	Data
Iav		υ.	0003	INIGUIUU	Dala

Mole fractions, X		1.00	0.94	0.81	0.69	0.56	0.44	0.31	0.19	0.06	0.00
S/ COMPOUND Absorbance at 450nm							ım				
N											
1	[Cd(L)Cl ₂]	0.24	1.03	1.80	2.61	3.36	3.14	2.25	1.43	0.64	0.00
2	[Co(L)Cl ₂]	0.27	1.05	2.02	2.66	3.51	3.27	2.29	1.56	0.64	0.00
3	[Cu(L)Cl ₂]	0.28	1.08	1.93	2.72	3.52	3.26	2.30	1.47	0.69	0.00
4	[Ni(L)]Cl ₂	0.26	1.05	1.87	2.71	3.50	3.30	2.32	1.46	0.68	0.01
5	[Zn(L)Cl ₂]	0.27	1.05	1.87	2.75	3.35	3.07	2.33	1.44	0.65	0.00

Where L= C42H32N4

The important IR bands and their assignment in the ligand and its complexes are shown in table 4. The IR spectrum of the ligand does not exhibit any band corresponding to a free primary diamine or a free keto group which suggest the complete condensation of the amino groups with the keto groups. The ligand showed absorption peak at 1633cm⁻¹ that is assignable to azomethine and confirms the formation of the ligand. Upon complexation, the peak shifted towards the lower frequencies of 1607cm⁻¹, 1596cm⁻¹, 1611cm⁻¹, 1573cm⁻¹ and 1566cm⁻¹ for Cd (II), Co (II), Cu (II), Ni (II), Zn (II) complexes respectively. This manifested that the nitrogen atoms of the azomethine groups are coordinated to the central metal ions. The absorption peaks at 415cm⁻¹, 430cm⁻¹, 448cm⁻¹, 440cm⁻¹ and 415cm⁻¹ can be ascribed to u (M-N) for Cd (II), Co (II), Cu (II), Ni (II), Zn (II) complexes respectively.

 Table 4: Infrared Absorption Frequencies (cm⁻¹) of the Ligand and its Metal Complexes

S/N	COMPOUND	MOLECULAR FORMULA	AS	SIGNMEN	TS
			∪ (C=N)	∪ (M-N)	u (O-H)
1	L	(C ₁₈ H ₁₆ N ₄ O ₄)	1633	-	3454
2	[Cd(L)Cl ₂]	C ₁₈ H ₁₆ CdN ₄ O ₄ Cl ₂	1607	415	3342
3	[Co(L)Cl ₂]	C ₁₈ H ₁₆ CoN ₄ O ₄ Cl ₂	1596	430	3220
4	[Cu(L)Cl ₂]	C ₁₈ H ₁₆ CuN4O4Cl ₂	1611	448	3350
5	[Ni(L)]Cl ₂	C ₁₈ H ₁₆ NiN4O4Cl ₂	1573	440	3290
6	[Zn(L)Cl ₂]	C ₁₈ H ₁₆ ZnN4O4Cl ₂	1566	415	3208

Where L= $C_{42}H_{32}N_4$

The synthesized compounds were also tested for their antibacterial activity against *Staphylococcus aureus* and *Escherichia coli* using agar cup-plate method at three different concentrations. The results are listed in table 5 as determined by measuring the zone of inhibition (mm). The result showed that the Ni (II) complex has highest zone of inhibition (45mm) at the concentration of 50,000µg/ml, while Cd (II) complex showed the lowest zone of inhibitions (32mm) at the same concentration against *Staphylococcus aureus*. The ligand was also found to be active against both *Staphylococcus aureus* and *Escherichia coli* though most of its complexes displayed enhanced activity. This was ascribed to the presence of metal ions in the lattice which makes it more powerful and effective bactericidal agents (Morad et al., 2007).

Tab	le 5:	Antibac	terial	screening	of	the	ligand	and	d it	ts complex	kes
0.1	-			0							

	Compounds	Concentrations and Zone of Inhibition								
		50,000µg/ml		5,000	µg/ml	500µg/ml				
		S. Aureus E. Coli		S. Aureus	E. Coli	S. Aureus	E. Coli			
1	L	30 mm	34mm	16mm	22mm	11mm	-			
2	[Cd(L)Cl ₂]	32mm	-	22mm	-	17mm	-			
3	[Co(L)Cl ₂]	33mm	31mm	20mm	20mm	12mm	10mm			
4	[Cu(L)Cl ₂]	34mm	34mm	17mm	25mm	10mm	10mm			
5	[Ni(L)]Cl ₂	45mm	26mm	-	16mm	-	-			
6	[Zn(L)Cl ₂]	36mm	35mm	20mm	24mm	17mm	15mm			

Where L= C₄₂H₃₂N₄

Conclusion

7,16-dihydrodibenzo[1,4,8,11]tetraazacyclotetradecine-6,8,15,17tetraol has been synthesized by the condensation of malonic acid and o-phenylenediamine. Its metal (II) complexes were prepared from Cd (II), Co (II), Cu (II), Ni (II) and Zn (II) chlorides respectively. The ligand and its complexes were characterized on the basis of solubility, melting/decomposition temperature, FT-IR, molar conductance and magnetic susceptibility measurements. The ligand acts in a tetradentate manner coordinating through the four nitrogens of the azomethine groups. An octahedral geometry has been proposed for the Cd (II), Co (II), Cu (II) and Zn (II) complexes, whereas square planar geometry has been proposed for the Ni (II) complex. Moreover, the antibacterial data revealed that the ligand was also found to be active against both Staphylococcus aureus and Escherichia coli with an enhanced activity in its complexes. Thus the compounds can be potential antibacterial agents upon further investigations.

Acknowledgement

The authors wish to acknowledge the contributions of Tertiary Education Trust Fund (TETFund) and Umaru Musa Yar'adua University, Katsina for funding and provision of facilities used.

REFERENCES

- Aliyu H. N. and Adamu H. (2009): synthesis and characterization of n-(-i-morpholinobenzyl) semicarbazide Manganese (II) And Iron (II) Complexes. Bayero Journal of pure and applied Sciences. Volume 2 (2), 143-148
- Canadas, M., Lopez-Torres, E., Arias, A. M., Mandioca, M. A., and Sevilla, M. T. (2000): spectroscopic and electrochemical properties of nickel(II), iron(II) and cobalt(II) complexes with benzilbisthiosemicarbazone. *Polyhedron*,

Synthesis, Characterization and Antibacterial Studies of Macrocyclic Schiff Base derived from Malonic acid and o-phenylenediamine and its Cd (II), Co (II), Cu (II), Ni (II), and Zn (II) complexes Science World Journal Vol 13(No 4) 2018 www.scienceworldjournal.org ISSN 1597-6343 Published by Faculty of Science, Kaduna State University

19(18-19), 2059-2068

- Chaudhary, A., Dave, S., Swaroop, R., and Singh, R. V. (2002): synthesis and biological studies of 16-26 membered tetraazamacrocyclic complex of tin(II). *Journal of Indian Chemical* Soceity, 79, 371
- Comba, P., Kerscher, M., Lampeka, Y. D., Lotzbeyer, L. L., Prizkow, H., and Tsymbal, L. V. (2003): structural properties of cyclopentanone-bridged bis-macrocyclic ligand dicopper(II) complexes in the solid and in solution. *Inorganic Chemistry*, 42, 3387
- El-Hendawy A. M., Alkubasi, A. H., El-Ghany, A., El-Kourashym, K., and Sharab, M. N. (2001): *Polyhedron.* 20, 975
- Lindoy L. F. (1989): The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press, Cambridge
- Morad, F. M., Ei-ajaily, M. M., Gweirif, S. (2007): Preparation, physical characterization and antibacterial activity of Ni(II) Schiff Base complex. *Journal of Science and its Application*, 1, 72-75
- Puhilbhai, G., Vasudhevan, S., Kutti-Rani, S., and Rajago, G. (2009): Spectrochimica Acta A, 72, 687.
- Prabhakaran, B., Santhi, N., and Emayavaramban, M. (2013): Synthesis and spectral studies of Ru (II) carbonyl Schiff base complexes. *International letters of Chemistry, Physics* and Astronomy. 3, 53-66

- Sani U. and Baba M. A. (2016): synthesis, characterization, antimicrobial and antioxidant studies of 2-[(2hydroxyphenyl) methylidene] hydrazine-1-carboxamide and its metal (II) complexes. Bayero Journal of pure and applied sciences. Volume 9 (1), 206-212
- Sengupta, P., Dinda, R., Ghosh, S., and Sheldrick, W. S. (2003): synthesis and characterization of some biologically active ruthenium(II) complexes of thiosemicarbazones of pyridine 2-aldehyde and thiophene 2-aldehyde involving some ring substituted 4-phenylthiosemicarbazides and 4cyclohexylthiosemicarbazide. *Polyhedron*, 22, 477-453
- Singh D. P., Grover V., Kumar K., and Jain K. (2010): Metal ion prompted macrocyclic complexes derived from indole-2,3-dione (isatin) and O-phenylenediamine with their spectroscopic and antibacterial studies. *Acta Chimica Slovenica*. 57, 775-780
- Tas, E., Kilic, A., Durgun, M., Kupecik, L., Yilmaz, I., and Asslam, S. (2010): tetraaza macrocyclic complexes: synthesis, elucidation, antibacterial and antifungal studies. *Spectrochimica Acta A*, 75, 811
- Tyagi, M., Chandra, S., and Choudhary, S. K. (2001): Tetraaza macrocyclic complexes: Synthesis, spectral and antifungal studies. *Journal of chemical and pharmaceutical* research. 3 (1): 56-63.