EPIDERMAL MORPHOLOGY OF WEST AFRICAN OKRA Abelmoschus caillei (A. Chev.) Stevels FROM SOUTH WESTERN NIGERIA.

*Osawaru, M. E.; Dania-Ogbe, F. M.; Chime, A. O. & Ogwu, M. C.

Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Edo State, Nigeria. *edwinosawaru@yahoo.com

ABSTRACT

A study of the micro-morphology of 53 accessions of West African Okra was undertaken using light microscopy techniques. Results showed that epidermal cells are polygonal, isodiametric and irregularly shaped with different anticlinal cell wall patterns. Stomata type is 100% paracytic and 100% amphistomatic in distribution among the accessions studied. Stomatal indices ranged from 12.23 to 24.34 with 43.40% accessions ranging between 18.00 to 21.00. Stomatal were more frequently on the abaxial surface. Similarly, stomata on the abaxial surface are relatively larger than those of the adaxial surface and stomatal pore sizes also showed similar trend. Trichomes were widely distributed, eglandular, solitary and unicellular types are recorded. These occur in three forms namely, unicellular filiform, unicellular conical and stellate hairs. Variations observed in the structure and distributions of the trichomes were discussed. These micro-morphological features are regarded diagnostic in this species-caillei rather for circumscription among accessions studied.

Keywords: Epidermal cell, Stomata, Trichomes, West Africa Okra, Light microscopy.

INTRODUCTION

West African Okra [*Abelmoschus caillei* (A. Chev.) Stevels] synonyms *Hibiscus manihot L. var. caillei* A. Chev., *H. manihot* L, *Abelmoschus manihot* (L.) Medik, *H. esculentus* L., *A. esculentus* (L.) Moench. belongs to the family malvaceae. It is a vegetable commonly distributed in humid West and Central Africa, where it highly grown in traditional agriculture. In the production system, it constitutes towards a major economic activity for women, as a cash crop in the local economy and important in the population that include it in their diet. When prepared into sauce, West African Okra facilitates the consumption of starchy foods which are the main diet of Africans (Schippers, 2000).

WAO has been reported to have medicinal and industrial potentials (Osawaru, 2008). The extracted mucilage has been reported as plasma replacement or blood volume expander and the leaves used as a basis for poultice, as an emollient, sudorific, antiscorbulic and to treat dysuria. Alcohol extract from leaves can eliminate oxygen free radicals, alleviate renal tabular-interstitial diseases, improve renal function and reduce proteinuria (Siesmonsma & Hamon, 2002). It has been reported to prevent cancer and heart disease (Idu, 2009), mucilage in midwifery and in trado-medicinal practices to ward off evil spirit (Obire, 2002).

The industrial applications are numerous, the mucilage is been added as size to gaze certain paper used in confectionary. The fibres from stem are suitable for spinning in rope and for manufacturing paper and cardboards (Chevalier, 1940). Charrier (1984) and Obire, (2002) reported the local use of the fibres for making fishing lines for game traps and sponges.

The current interest in okra has arisen because of a perceived ambiguity in the status of the cultivated and wild species of the

Abelmoschus section particularly the group known as West African Okra. The group is quite diverse and shows a wide range of morpho-agronomic characters displayed in same and different ecogeographical, adaptive, and environmental conditions (Osawaru, 2008). The group also shares a wide range of similar traits with the cultivated common Okra (*A. esculentus*). Consequently, there appears to be confusion about their classification, which often leads to mis-identification and uncertainty among taxonomists and hinders breeders selection effort. However, this taxon was first described by Chavalier (1940) as a taxon resembling *A. esculentus* and later elevated to a district species by Stevels (1988) on the basis of gross morphology.

This present study seek to clarify the complexity expressed by the diverse range of morpho-agronomic characters of the species among the accessions collected from South Western Nigeria through the epidermal characteristics and establish uniformity among accessions on the basis of epidermal morphology.

MATERIALS AND METHODS

Fresh plant materials were collected from 53 accessions of West African Okra on field trial (Osawaru, 2008) by 9.00am from the experimental ground, University of Benin, Benin City ($6.20^{\circ}N$, $5.47^{\circ}E$).

Epidermal peels were obtained from fresh leaves, petioles, stems and fruits of the plant as outlined by Nyawaume & Gill (1991). The leaves and petioles were abscised at the seventh node while the stem peels were obtained from a slight cut on the tenth internodes. Peels from fruit were taken from the third fruit. Foliar peels were obtained at the right side of the adaxial surface and left side of the abaxial surface of the leaves. Temporary slides were prepared.

Stomata types and epidermal cells were studied with the light microscope. Stomatal counts were taken from 10 plants of the same accession at x400. To evaluate stomatal index, this was calculated using the method outlined by Mbaye *et al.*, (2001).

$$IS = \frac{a_i}{a_i + b_i} \times 100$$

IS = stomata index

 a_i = number of stomatal at that surface b_i = number of epidermal cell at that surface

Stomatal index for amphistomatous accessions is obtained from the mean of values from both surfaces, while for hypostomatous accessions, it is obtained from values on either of the surface where stomata are present. Terminology of mature stomata adopted is after Dilcher (1974).

Trichomes were studied with the light microscope using terminology and the method outlined by Rao & Rao (1992). Types, position or occurrence, dimensions and abundance were made from 10 views from 10 plants of the same accession at X400. Line drawings for stomata, epidermal cells and trichomes were made at a magnification of X400 from at least 10 views.

RESULTS

The accessions studied using light microscopy together with their foliar epidermal structures and stomatal features are shown in

Tables 1 and 2. Epidermal cells structures and stomatal complexes are presented in figures 1-3 at a magnification of X400.

Foliar epidermal trichomes, types and distribution is presented in Table 3 and Figs 4-6.

	Cells	shape	Nature of cel	I wall pattern	me	Stomatal easureme	ent	Stomatal measurement			
					Adaxia	surface		Abaxial surface			
Accessions/taxa	Adaxial surface	Abaxial surface	Adaxial surface	Abaxial surface	Length (µm)	Breadth (µm)	Pore size (µm)	Length (µm)	Breadth (µm)	Pore size (µm)	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	Response Isodiametric Polygonal Isodiametric Polygonal Isodiametric Isodiametric Isodiametric Isodiametric Isodiametric Isodiametric Isodiametric Isodiametric Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Irregular Polygonal Polygonal Irregular Polygonal Iso diametric Iso diametric	₽ Isodiametric Irregular Irregular Irregular Isodiametric Irregular Irregular Isodiametric Irregular Irregular Isodiametric Irregular Isodiametric Isodiametric Isodiametric Isodiametric Isodiametric Isodiametric Irregular Isodiametric Polygonal Poly	Image: Straight Straight Straight Slightly straight Slightly straight Slightly straight Slightly straight Slightly straight Straight Straight Straight Straight Straight Straight Straight Straight Slightly straight Straight Straight Straight Straight Slightly straight Slightly straight S	Image: Constraint of the straight of the straig	3 26.7 20.3 24.0 27.8 25.1 29.7 26.3 27.2 21.2 25.1 30.3 26.6 27.7 26.4 27.7 26.4 27.8 25.9 26.7 27.8 25.9 26.7 27.8 29.3 27.8 29.8 28.3 25.7 27.8 29.8 28.3 25.7 27.8 29.8 28.3 25.7 27.8 29.7 28.3 28.3 25.7 27.8 29.7 28.3 25.7 27.8 29.7 28.3 27.4 <td>E 17.3 18.4 12.4 13.4 16.5 17.2 19.8 20.1 16.4 13.7 15.0 15.2 17.2 16.3 16.7 15.2 17.2 16.3 16.7 17.3 16.3 18.7 17.3 16.7 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 16.7 17.7 18.3 16.4</td> <td>A 13.6 9.3 10.9 9.6 9.4 10.9 11.2 7.2 11.2 9.7 9.2 11.0 10.4 10.2 11.4 9.8 11.1 9.9 10.1 9.7 10.5 10.3 11.2 10.1 12.3 11.2 11.5 10.1 12.3 11.2 11.5 10.1 12.6 11.1</td> <td>31.2 33.4 25.0 29.7 30.1 28.3 30.2 28.1 30.2 28.1 30.1 31.2 30.3 33.1 33.2 30.4 31.8 30.2 30.5 30.1 30.2 30.5 30.1 30.2 30.5 30.1 30.2 30.5 30.1 30.2 30.5 30.1 30.2 30.5 33.2 31.7 30.2 30.7 30.7 30.2</td> <td>22.2 21.3 12.5 13.5 16.3 16.8 18.2 23.0 21.4 17.5 15.7 18.2 16.7 18.2 16.7 18.2 16.7 18.2 16.7 18.3 19.7 19.3 20.4 20.5 18.7 19.3 20.4 20.5 18.7 18.2 19.7 18.8 18.5 18.5 18.5 18.3 19.7 18.2 19.7 18.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5</td> <td>A 13.9 10.7 11.9 9.9 10.2 12.1 10.2 12.4 10.7 11.2 12.1 10.2 12.4 10.7 11.2 13.1 11.2 13.1 11.3 11.4 10.7 11.3 12.5 12.8 11.3 12.5 12.8 11.3 12.5 12.8 11.3 12.5 12.8 11.3 12.7 13.3 12.5 11.3 12.7 13.3 12.3 13.7 13.7 13.7 13.7 13.7 13.7</td>	E 17.3 18.4 12.4 13.4 16.5 17.2 19.8 20.1 16.4 13.7 15.0 15.2 17.2 16.3 16.7 15.2 17.2 16.3 16.7 17.3 16.3 18.7 17.3 16.7 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 16.7 17.7 18.3 16.4	A 13.6 9.3 10.9 9.6 9.4 10.9 11.2 7.2 11.2 9.7 9.2 11.0 10.4 10.2 11.4 9.8 11.1 9.9 10.1 9.7 10.5 10.3 11.2 10.1 12.3 11.2 11.5 10.1 12.3 11.2 11.5 10.1 12.6 11.1	31.2 33.4 25.0 29.7 30.1 28.3 30.2 28.1 30.2 28.1 30.1 31.2 30.3 33.1 33.2 30.4 31.8 30.2 30.5 30.1 30.2 30.5 30.1 30.2 30.5 30.1 30.2 30.5 30.1 30.2 30.5 30.1 30.2 30.5 33.2 31.7 30.2 30.7 30.7 30.2	22.2 21.3 12.5 13.5 16.3 16.8 18.2 23.0 21.4 17.5 15.7 18.2 16.7 18.2 16.7 18.2 16.7 18.2 16.7 18.3 19.7 19.3 20.4 20.5 18.7 19.3 20.4 20.5 18.7 18.2 19.7 18.8 18.5 18.5 18.5 18.3 19.7 18.2 19.7 18.8 18.5 18.5 18.5 18.5 18.5 18.5 18.5	A 13.9 10.7 11.9 9.9 10.2 12.1 10.2 12.4 10.7 11.2 12.1 10.2 12.4 10.7 11.2 13.1 11.2 13.1 11.3 11.4 10.7 11.3 12.5 12.8 11.3 12.5 12.8 11.3 12.5 12.8 11.3 12.5 12.8 11.3 12.7 13.3 12.5 11.3 12.7 13.3 12.3 13.7 13.7 13.7 13.7 13.7 13.7	
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Isodiametric Isodiametric Isodiametric Isodiametric	Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Polygonal Irregular Isodiametric Isodiametric Isodiametric Isodiametric	Straight Str	Straight Straight Straight Slightly straight Slightly straight Slightly straight Slightly straight Slightly straight Slightly straight Str	27.4 29.3 27.3 29.2 26.9 25.3 27.2 24.7 29.5 23.2 24.7 26.1 27.4 23.5 24.7 26.1 27.4 23.5 24.7 22.6 26.7 27.0 29.7 27.5 25.7	16.4 18.7 15.4 18.2 17.4 16.3 19.3 17.1 15.2 14.4 18.3 15.7 16.5 15.6 17.2 15.0 16.5 13.4 18.3	11.1 10.2 9.3 10.2 11.2 10.7 12.3 11.2 13.3 10.5 10.7 11.3 10.5 10.7 11.3 12.0 12.1 11.0 11.3 10.9 11.3 10.4	30.2 31.3 29.2 31.4 29.7 29.4 30.7 28.3 32.2 27.4 28.1 31.5 30.3 28.2 25.2 27.0 30.4 30.1 31.3 30.2	18.1 19.2 18.7 18.3 16.4 17.7 18.2 19.2 18.7 18.2 19.2 18.7 18.2 19.2 18.7 18.2 19.2 18.8 21.1 17.5 20.4 16.7 17.6 15.8 18.6 18.7 19.1	12.3 12.1 11.5 10.3 11.2 11.2 13.0 12.5 13.7 11.9 12.7 13.7 12.8 11.5 13.2 13.1 14.2 12.2 14.6 9.5 11.1	

TABLE 1. SUMMARY OF EPIDERMAL STUDIES OF 53 ACCESSIONS OF WEST AFRICAN OKRA.

Vertical storeAmplistomatic ParacyticParacytic Paracytic85 Paracytic91 Paracytic15 Paracytic1Fresh RmphistomaticAmplistomatic ParacyticParacytic Paracytic85 Paracytic91 Paracytic15 Paracytic2Fresh RmphistomaticAmplistomatic ParacyticParacytic Paracytic85 Paracytic91 Paracytic15 Paracytic3Fresh RmphistomaticAmplistomatic ParacyticParacytic Paracytic81 Paracytic10 Paracytic4Fresh RmphistomaticParacytic Paracytic87 Paracytic130 Paracytic130 Paracytic5Fresh RmphistomaticParacytic Paracytic87 Paracytic130 Paracytic24	
1FreshAmphistomaticParacytic859115252FreshAmphistomaticParacytic9711711213FreshAmphistomaticParacytic8310917284FreshAmphistomaticParacytic6312112365FreshAmphistomaticParacytic8911107236FreshAmphistomaticParacytic871301024	Stomatal index
2FreshAmphistomaticParacytic9711711213FreshAmphistomaticParacytic8310917284FreshAmphistomaticParacytic6312112365FreshAmphistomaticParacytic8911107236FreshAmphistomaticParacytic871301024	18.28
4 Fresh Amphistomatic Paracytic 83 109 17 28 5 Fresh Amphistomatic Paracytic 63 121 12 36 6 Fresh Amphistomatic Paracytic 89 111 07 23 6 Fresh Amphistomatic Paracytic 87 130 10 24	12.71
5 Fresh Amphistomatic Paracytic 89 111 07 23 6 Fresh Amphistomatic Paracytic 87 130 10 24	18.72
6 Fresh Amphistomatic Paracytic 87 130 10 24	19.47
	12.95
7 Fresh Amphistomatic Paracytic 111 165 23 45	19.30
8 Fresh Amphistomatic Paracytic 71 93 9 40	20.67
9 Fresh Amphistomatic Paracytic 101 129 26 35	20.19
10 Fresh Amphistomatic Paracytic 111 173 30 36	19.26
11 Fresh Amphistomatic Paracytic 90 155 18 26	15.29
12 Fresh Amphistomatic Paracytic 114 128 21 32	17.78 15.10
13 Flesh Amphistomatic Paracytic 56 150 06 26	10.19
15 Fresh Amphistomatic Paracytic 80 130 00 20	12.25
16 Fresh Amphistomatic Paracytic 81 111 18 37	21.59
17 Fresh Amphistomatic Paracytic 121 179 12 42	14.01
18 Fresh Amphistomatic Paracytic 71 130 13 43	20.17
19 Fresh Amphistomatic Paracytic 70 145 20 41	22.13
20 Fresh Amphistomatic Paracytic 74 180 12 24	12.86
21 Fresh Amphistomatic Paracytic 73 150 09 58	19.43
22 Fresh Amphistomatic Paracytic 101 138 11 53	19.75
23 FIEST Amphistomatic Paracytic 80 111 1/ 22	14.89
25 Fresh Amphistomatic Paracytic 74 139 13 47	20.11
26 Fresh Amphistomatic Paracytic 14 114 29 34	21.84
27 Fresh Amphistomatic Paracytic 123 137 18 25	14.10
28 Fresh Amphistomatic Paracytic 100 185 9 58	16.07
29 Fresh Amphistomatic Paracytic 105 119 12 31	15.47
30 Fresh Amphistomatic Paracytic 110 120 14 22	13.39
31 Fresh Amphistomatic Paracytic 86 101 14 28	17.86
32 Fresh Amphistomatic Paracytic 102 142 23 41	20.40
33 FIEST Amphistomatic Paracytic 69 98 10 33	19.09
35 Fresh Amphistomatic Paracytic 71 92 13 30	20.04
36 Fresh Amphistomatic Paracytic 100 187 21 42	17.85
37 Fresh Amphistomatic Paracytic 90 131 21 45	22.23
38 Fresh Amphistomatic Paracytic 101 147 17 38	17.48
39 Fresh Amphistomatic Paracytic 103 137 15 37	17.00
40 Fresh Amphistomatic Paracytic 91 133 18 40	19.82
41 Fresh Amphistomatic Paracytic 93 103 21 37	22.43
42 Fresh Amphistomatic Paracytic 75 119 14 30	17.93
43 FIEST AMPHISIOMALIC Paracylic 89 117 17 35 44 Fresh Amphistomatic Paracylic 73 112 15 43	19.54
45 Fresh Amphistomatic Paracytic 73 112 13 43	18.39
46 Fresh Amphistomatic Paracytic 80 141 09 50	18.14
47 Fresh Amphistomatic Paracytic 100 173 11 31	12.56
48 Fresh Amphistomatic Paracytic 95 130 17 42	19.80
49 Fresh Amphistomatic Paracytic 73 101 18 41	24.34
50 Fresh Amphistomatic Paracytic 80 175 13 35	15.34
51 Fresh Amphistomatic Paracytic 93 119 15 39	18.02
52 Fresh Amphistomatic Paracytic 97 163 21 43	19.34 19.64

The epidermal cells showed variation in shape. Three types of cell shapes, polygonal, isodiametric and irregular were recorded from adaxial and abaxial surfaces of the foliar materials. Polygonal cell

shape type accurate is represented in (Fig. 1a), isodiametric (Fig. 1b) and irregular (Fig. 1c).

X400 FIG. 1c. IRREGULAR

NOTE: (i) = Stomatal pore, (ii) = Guard cell and (iii) = Subsidiary cell

Epidermal cell shape and stomatal complex as seen in abaxial and adaxial surfaces in some accessions of West African Okra from some States in southwestern Nigeria.

Variations in epidermal cell shape of both adaxial and abaxial surfaces observed were classified into five groups (Fig. 2). The largest group (41.5%) had polygonal epidermal cells on both

adaxial and abaxial leaf surfaces (Table 1 and Fig 1a) closely followed by the second group (28.30%) with isodiametric on both surfaces (Table 1 and Fig. 1b). The third group (13.2%) had polygonal cells on the adaxial and irregular cells on abaxial surface. The last two groups had irregularly shaped (9.4%) cells on both surfaces (Table 1 and Fig. 1c) and polygonal cells on adaxial and isodiametric cells on abaxial surfaces with 7.5%.

- isodiametric cell shape at both surfaces
- □ polygonal at adaxial and isodiametric at abaxial surfaces
- □ irregular cel shape at both surfaces
- polygonal cell shape at both surfaces

FIG. 2. CELL SHAPE ON ADAXIAL AND ABAXIAL EPIDERMAL SURFACES OF 53 ACCESSIONS OF THE WEST AFRICAN OKRA.

The epidermal cell walls of the accessions studied are variable. Three wall types are observed. They may be straight, slightly straight or sinous on either surface or on both surfaces.

Stomata occur on both surfaces of the leaves but more frequently on the abaxial surface. All accessions are amphistomatous. The range of stomata on the adaxial surface varies from 6-30 while on the abaxial surface the number varied from 21-58. All accessions had paracytic type stomatal complex. Stomata indices ranged from 12.23-24.34. These indices are put in ranges. The frequency of the accessions in stomatal ranges is presented in Fig. 3. The highest frequency is observed in the range of 18.01-21.00.

The stomatal dimensions varied in both surfaces of the leaves of the accessions investigated. Stomata recorded on the abaxial surfaces were relatively larger than those on the adaxial surfaces. Similarly, the pore sizes also showed the same trend. Length/breath ratio ranged from $21.2 - 30.1/13.4 - 20.0\mu m$ on the

adaxial surface and $25.0 - 33.4/13.5 - 23.0\mu$ m on the abaxial surface. The pore sizes ranged from $9.3 - 13.6\mu$ m on the adaxial surface and $10.2 - 14.6\mu$ m on the abaxial surface. Variations in distribution and trichome type observed are presented in Table 3.

TABLE 3. VARIATION IN THE TRICHOME DISTRIBUTION, DIMENSION AND TYPES AMONG 53 ACCESSIONS OF WEST AFRICAN OKRA.

		Distribution						Massurament				
	Accession	Leaf					Fruit		weasurement			
Trichomes type		Ab	Ad	М	Stem	Petiole	Groove	Ridge	Length (µm)	Breadth (µm)	State	Form
Unicellular filiform hair	All	+	+	-	-	+	-	-	20-40	5-10	Solitary	Eglandular
Unicellular conical hair Fig. 5a	All All except fruit	+	+	+	+	+	+	-	41-63	7-11	Solitary	Eglandular
Unicellular conical hair Fig. 5b	on accessions 3,5 45	+	+	+	+	+	-	+	70-80.0	11-17	Solitary	Eglandular
Unicellular macroform conical hair Figs. 5c and 5d	All	-	+	+	+	+	-	+	1200-1700	25-37	Solitary	Eglandular
Stellate hairs	All	+	+	-	+	+	-	-	800-1100	25-32	Stellate	Eglandular

= Absent, Ab = Abaxial, Ad = Adaxial, M = Mid-ril

Three trichome types were observed on the accessions studied. Some of these trichome types are solitary and eglandular, while others are stellate and eglandular. These trichomes are:

1. Unicellular filiform hairs. Foot slightly bulbous and distinct from the body, not embedded in the epidermis, wall thin and smooth with dense cytoplasmic content. Vary from 20 - 40 µm in length and 5 - 10 µm broad at base or foot, bristle and sharp. Present on both leaf surfaces and on stem. Fig. 4.

FIG. 4. UNICELLULAR FILIFORM HAIR OF WEST AFRICAN **OKRA FROM SOME STATES IN SOUTHWESTERN NIGERIA.**

- 2. Unicellular conical hair: Three forms were observed, based on length/breadth and the orientation of foot or base.
- İ. Unicellular, minute, foot not embedded in epidermal cells, slightly thick and smooth wall with thin cytoplasmic content, pointed at distal end, varied from 41 µm - 63 µm in length and 7-11 µm broad at base. Present on both leaf surfaces, stem, petiole and the groove on fruit (Fig. 5a).

FIG 5a. UNICELLULAR CONICAL HAIR OF WEST AFRICAN OKRA

Unicellular, vary from 70µm - 80 µm in length, and 11-17 µm broad at foot or base. Foot may be slightly embedded in the epidermial cell or on the epidermis, thick walled, vacuolated cytoplasmic cavity and pointed at distal. Present on the ribs of leaves of both surfaces, ridges of fruits, petiole and stem. Fig. 5b.

FIG. 5b: UNICELLULAR CONICAL HAIR OF WEST AFRICAN OKRA.

Science World Journal Vol 6 (No 3) 2011 www.scienceworldjournal.org ISSN 1597-6343

Unicellular macroform conical hair, length and breath variable, usually from 1200 μ m - 17000 μ m in length and 25-37 μ m broad at base. Foot on top of epidermial cell (Fig. 17c) or slightly depressed in the epidermial cell (Fig. 17d). Wall thick and smooth, pointed at distal end and vacuolated. Present on grooves of petiole midrib, stem and on the adaxial surface of leaf. Sometimes on fruit ridges (Figs. 5c and 5d).

FIG. 5d. UNICELLULAR MACROFORM CONICAL HAIR OF WEST AFRICAN OKRA.

3. Stellate hairs: Multiradiate hairs of about 4-7 unicellular conical forms, wall thick and highly vacuolated or lack cytoplasmic content. Each ray of stellate hairs ranges from 800 µm - 1100 in length and 25-32 µm broad, pointed at distal end and slightly sunken in the epidermis. Present on leaf surfaces, petiole and stem. It could be clustered or aggregated (Figs. 6a and 6b).

FIG. 6a: CLUSTER OF UNICELLULAR STELLATE HAIRS OF WEST AFRICAN OKRA.

FIG. 6b: AGGREGATED UNICELLULAR STELLATE HAIRS OF WEST AFRICAN OKRA.

DISCUSSION

The epidermal features, viz epidermal cells, stomatal complexes, distribution reported in angiospermic species are also observed among the 53 accessions of West African okra studied. However, the study showed high similarity among accessions. Stomatal complex was paracytic and distribution amphistomatic. Studies carried out by Soladoye (1982), Gill *et al.*, (1982), Karatela & Gill (1984a, 1984b), Dania-Ogbe & Osawaru (1988), Nyawuame & Gill (1991) and Osawaru *et al.*, (2004) have showed immense values of epidermal characteristics in taxonomic decisions. In this study, the pattern of variation in the epidermal characteristics (stomatal complex and distribution) among the fifty-three accession of *A. caillei* is limited as features are similar hence the taxonomic

Science World Journal Vol 6 (No 3) 2011 www.scienceworldjournal.org ISSN 1597-6343

usefulness is therefore limited for remodelling these accessions of the species. However Gill et al., (1982) stated that no stomatal type is typical for any genus. Dania-Ogbe & Osawaru (1988) viewed that stomata can be of diagnostic characters. Osawaru et al., (2004) defined character as an attribute possessed by a given organisms which could be drawn from morphological, anatomical, physiological, behavioural and cytological sources that make such organism distinct and unique among other similar organisms. Metcalf & Chalk (1950) Dania-Ogbe & Osawaru (1988) documented various stomatal complexes and distribution among genera and species in Malvaceae. This present study showed and reported similar pattern of stomatal complex and distribution (paracytic and amphistomatic) in the genus-Abelmoschus, species caillei among fifty three accessions. This stomatal complex and distribution is suggested as a diagnostic feature of A. caillei as they are highly expressed and consistent among the accessions. The taxonomic value may be more valued if the pattern of development is studied.

Epidermal cell shape showed significant difference. Polygonal, isodiametric and irregular walls types were reported in the study. Cutter (1978), Stace (1989), Soladoye (1982), Karatela & Gill (1984a) agreed and stated that plant cells are delimited by cell walls and these walls are responsible for the characteristic shape of cells. Esua (1965), Nyawuame & Gill (1991) opined that the nature of walls among epidermal cells may be related to stress that occurs during its formation. No study has reported the taxonomic values of epidermal wall in any angiospermic species. However, this study aligned with that of Esua (1965) and Nyawuame & Gill (1991).

Stomatal size varied considerably. From this study, no relationship could be established between stomatal size and accessions from different ecological zone (Accessions were collected from different ecological zone). Stomatal size varied with growth habit (Gill *et al.*, 1992). However, stomatal size could not be typically associated with growth habit as all the accessions were shrubby in growth.

Many studies showed that stomatal frequency differs in different parts of a leaf, different leaves of a plant and different plants of a species (Osawaru, 1985). In this study, leaves selected for studies are taken from comparable position on the plant (7th node). Cutter (1978), Mbaye, et al., (2001) reported that the stomatal index value is found to be reasonably constant for any particular species. In this study, stomatal indices have been considered and put in ranges (Table 3). These values spread over the fifty three accessions as there appears to be clear out difference in the ranges. This appears to be unhelpful in the delimination and classification of the accessions of the species. However, greatest numbers of the accession investigated about (51%) have stomatal index value in the 14.51-19.60 range. This range is probably the balance for effective gaseous exchange without excessive water loss through transpiration hence the persistency of the crop plant in the dry season with fewer or no rains and without irrigation within the study area (southwestern Nigeria).

The importance of stomata characters in taxonomy varies in different groups of plant (Stebbins & Khush, 1961; Paliwal, 1966; Shah, 1967). This is more valued when the pattern of development is studied (Shah & Gopal, 1969; Gill *et al.*, 1982).

Various studies have been attempted in angiospermic trichomes on the basis of structures and ontogeny (Weiss, 1867; De Bary 1884; Solereder, 1908; Cowan, 1950; Metcalfe & Chalk, 1950; Ramaya, 1962, 1981; Osawaru, 1985, Rao & Rao, 1992, Osawaru *et al.*, 2004). These studies attempted to classify trichomes to reflect phytogenetic classification of angiosperms. Stace (1989), Rao & Rao (1992) noted that trichomes offer more valuable taxonomic information than all epidermal elements because of their diversity in structures as well as distribution. In this study, structures and distribution of trichomes are reported (Table 3, Figs. 4-6).

Three structural categories were reported in this study (Fig. 4, 5 and 6). These categories are mainly unicell of various typesfiliform, conical and stellate hairs present on the vegetative and fruit parts of the accessions studied. All the trichomes are similar in cell composition but differ in size, (Table 3), nature of foot and degree of cell vacuolation. The trichomes reported here possess simple foot which could be similar to the epidermal cell or slightly projected above the epidermis. The wall of the filiform unicellular hairs is thin and smooth with densely thickened cytoplasmic content, whereas, other hairs have thick walls, smooth and highly vacuolated. These trichomes are similar to the earlier trichomes reported in Malvaceae by Metcalfe & Chalk (1950), Ramaya (1972), Leelavathi & Ramayya (1983), Osawaru (1985), Rao & Rao (1992).

In addition to these hair types reported in this study, various nongladular trichome types, uniseriate filiform, uniseriate macroform, multiseriate (multicellular) have been reported in genera like *Hibiscus, Gossypium, Malva* e.t.c in the family Malvaceae (Metcalfe & Chalk, 1950; Ramayya, 1981 and Judd *et al.*, 1999). From this study, the taxon stands apart from some genera in this family. But the ubiquitous presence of unicellular form exclusively in this taxon is interesting and may be taxonomically significant.

However, the prevalence of these features is suggested of limited taxonomic importance among the accessions of this taxon and could not be used for limiting the accessions but of diagnostic value for the accessions of this taxon.

Distribution of trichomes on leaf surfaces and fruit in the accession studied is interesting. The abaxial surfaces among the accessions in the taxon possess unicellular filiform hairs whereas the adaxial surfaces are conspicuously with conical macroform hairs uniquely on the ribs. On the fruit, the grooves are densely covered with unicellular conical hairs. This is responsible for the downsy nature of fruits. The ridges are strictly and sometime sparsely covered with macroform conical hairs which sometimes make the fruit spiny. This nature of fruit hinders harvesting process when using bare finger and also choice of consumption by farmers. Selection by farmer may lead to the extinction of accessions with the hair type on fruit.

Ramayya (1981), Rao & Rao (1992) and Wood (1949) noted that in order to understand the value of trichome taxonomically two system were suggested-glabrous and pubescence stated. All accessions of the taxon studied are pubescent with hairs on both vegetative parts and fruit. This is adopted in this study. It is clearly demonstrated that trichome distribution in the accessions studied is widely occurrence hence taxonomically significant to place them as pubescence taxon. Further studies are necessary to throw more light on the realignment and circumscription of the accessions studied in this species-*caillei*.

REFERENCES

Charrier, A. (1984). *Genetic Resources. Abelmoschus* (okra). International Board for Plant Genetic Resources, (IBPGR) Rome, Italy. 61p.

Chevalier, A. (1940). L'origin la culture et les usage de cinq Hibiscus de la section *Abelmochus. Review Botanical Applied Agriculture Tropical* 20:319-328.

Cowan, J. M. (1950). *The Rhododendron leaf: A study of the Epidermal Appendages*. Oxford and Boyd. London.

Science World Journal Vol 6 (No 3) 2011 www.scienceworldjournal.org ISSN 1597-6343

Dania-Ogbe, F. M. & Osawaru, M. E. (1988). Structure and distribution of stomata among some Nigerian dicotyledonous weeds. *Feddes Repertorium* 99:463-466.

De-Bary, A. (1884). *Comparative Anatomy of the Vegetative Organs of the Phanerograms and Ferns*. Oxford University Press, London. 173p.

Dilcher, D. L. (1974). Approaches to the identification of angiosperm leaf remains. *Botanical Review* 4:1-157.

Esua, K. (1965). *Plant Anatomy*. John Wiley and Sons Inc. USA. 767p.

Gill, L. S., Olabanji, G. O. & Husaini , S. W. H. (1982). Studies on the structural variation and distribution of stomata in some Nigerian legumes. *Willdenowia* 12:87-94.

Gill, L. S., Nyawuame, H. G. K. & Omoigui, J. D. (1993). A survey of economic plants sold in the market of Benin City (Edo State) Nigeria. *Nigerian Technical Education*. 10:69-77.

Idu, M., Osawaru , M. E. & Orhue, E. (2005). Ethno-medicinal plant products in some local markets of Benin City, Nigeria. *Ethnobotany* 17:118-122.

Judd, W. S., Campbell, C. S., Kellogg, E. A. & Stevens, P. F. (1999). Plant systemics: A Phytogenetic Approach. Sinauer Associates Inc., Sunderland Massachusetts, USA, 465pp.

Karatela, Y. Y. & Gills, L. S. (1984a). Epidermal structure and stomatal ontogeny in some gymnosperms from Nigeria. *Feddes Repertorium* 95:351-354.

Karatela, Y. Y. & Gill, L. S. (1984b). Stomatogenesis in the leaves of *Muraya koenigii* (L.) SPRENG. (Rutaceae). *Feddes Repertorium* 95:347-349.

Mbaye, M. S., Sarr, R. S., Kane, A., Sambou, J. M. & Amadou Tidiane, B. A (2001). Element of precision on the adventitious systematique of species *Corchorus* L. (Tiliaceae) in Senegal. *African Journal of Science and Technology*. 2(1):51-66.

Metcalfe, C. R. & Chalk, L. (1950). *Anatomy of Dicotyledons* Vols I and II, Claredon Press, Oxford. 1500p.

Nyawuame, H. G. K. & Gill, L. S. (1991). Cuticular studies of some West African species of the Solanaceae of medicinal values. *Feddes Repertorium*, *102*: 87-104.

Osawaru, M. E. (1985). A Study of the Variation, Structure and Distribution of Trichomes and Stomata in some Nigerian Dicotyledonus Weeds. B.Sc. Thesis. University of Benin, Benin City, Nigeria 59p.

Osawaru, M. E. (2008). Ethno-botanical and taxonomic studies of West African Okra [*Abelmoschus caillei* (A. Chev. Stevels] from some states of South Western Nigeria. Ph.D Thesis. University of Benin, Benin City. 283p. Osawaru, M. E., Idu, M. & Olorunfemi, D. I. (2004). Epidermal morphology and ontogeny of stomatal in *Boerhavia* species (Nyctaginaceae). *Benin Science Digest* 2:35-38.

Paliwal, G. S. (1966). Structure and ontogeny of stomata in some Acanthaceae. *Phytomorphology* 16:527-532.

Ramayya, N. (1962). Studies on the trichomes in the compositae. I. General Structure. *Bulletin of Botanical Survey* 4:177-188.

Ramayya, N. (1981). Trichomes of Angiospherms: Structure and Classification. In Shah, J. J. (Ed). *Current Trends in Life Sciences*. *Today and Tomorrow*, New Delhi Indian. 15-55pp.

Rao, S. R. S. & Rao, J. V. S. (1992). Structure, distribution and taxonomic importance of trichomes in *Tephrosia* (Fabaceae) SIDA 15(2):271-283.

Schippers, R. R. (2000). *African Indigenous Vegetables: An Overview of the Cultivated Species*. Natural Resources Institute/ACP-EU Technical Centre for Agricultural and Rural Cooperation, Chathan, United Kingdom. 214p.

Shah, G. L. (1967). Stomatal development in *Convolvulus arvensis* L. *Proceedings of Indian Academy of Science* 66:237-242.

Shah, G. L. & Gospal, B. V. (1969). Development of stomata in some papilionaceae. *Canadian Journal of Botany* 47:387-393.

Siemonsma, J. S &, Hamon, S. (2002). *Abelmoschus caillei* (A. chev) Stevels. In: Oyen, L. P. A. and Lemmens R. H. M. (eds) Plant Resources of Tropical Africa. Precusor PROTA Programs Wageningen, The Netherlands. 27-30pp.

Siemonsma, J. S. (1982). West African okra: morphological and cytogenetical indications for the existence of natural amphidiploid of *Abelmoschus esculentus* (L) Meonch and *A. manihot* (L) Medikus, *Euphytica* 31:241-252.

Siemonsma, J. S. (1991). *Abelmoschus:* A Taxonomical and cytogenetical overview. In: IBPGR. Crop Network Series 5; Report on an International Workshop on Okra Genetic Resources. IBPGR, Rome. 52-68pp

Soladoye, M. O. (1982). Leaf epidermal studies in the African genus *Baphia* Lodd and related genera (Papilionoideae-sophoreae). *Bulletin of National Plantentuin* 52(3/4):415-437.

Solereder, H. (1908). *Systematic Anatomy of the Dicotyledons*. Vols I and II. Clarendon Press Oxford. 907p.

Stace, C. A. (1989). *Plant taxonomy and Biosystematics*. Edward Arnold, London. 305p.

Stebbins, G. L. & Khush, G. S. (1961). Variations in the organization of the stomatal complex in leaf epidermis of monocotyledons and its bearing on the phylogeny. *American Journal of Botany* 48:1-59.

Weiss, A. (1867). Die Pftanzen Laare Karstein *Botanical Unters*. 1:369-677.