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ABSTRACT 
Studies on probability distribution functions and their properties are needful as they are very important in 
modeling random phenomena. However, research has shown that some real life data can be modeled 
more adequately by distributions obtained as combination of two random variables with known 
probability distributions. This paper introduces the Gamma-Rayleigh distribution (GRD) as a new 
member of the Gamma-X family of generalized distributions. The Transformed-Transformer method is 
used to combine the Gamma and Rayleigh distributions. Various properties of the resulting two-
parameter Gamma-Rayleigh distribution, including moments, moment generating function, survival 
function and hazard function are derived. Results of simulation study reveals that the distribution is 
unimodal, skewed and normal-type for some values of the shape parameter. The distribution is also 
found to relate with the Gamma, Rayleigh and Generalized-Gamma distributions. The method of 
maximum likelihood has been used to estimate the shape and scale parameters of the distribution. To 
illustrate its adequacy in modelling real life data the distribution is fitted to two survival data sets. The 
results show that the distribution produced fits that are competitive and compared better, in some cases, 
to the Gamma, Rayleigh, Weibull and Lognormal distributions.  
Keywords: Gamma-X family, Gamma-Rayleigh distribution, Maximum Likelihood estimators, Survival 
data. 

 
INTRODUCTION 
Studies on probability distribution functions and 
their properties are needful as they are very 
important in modeling random phenomena. 
However, research has shown that some real 
life data that cannot be modeled adequately by 
existing standard distributions are sometimes 
found to follow distributions of some 
combinations of two or more random variables 
with known probability distributions.  
 
Developments on generating new distributions to 
model naturally occurring phenomena have led to 
a number of new distributions being defined and 
studied. Some of the earlier works include those 
of Marsaglia (1965), Press (1969), Basu and 
Lochner (1972), and Lee et al. (1979). The trend 
has been on the increase in recent years due to 
increasing need for adequate distributions to 
model some data arising in practice (Gupta and 
Kundu, 1999; Eugene et al., 2004; Famoye et al., 
2005; Akinsete et al., 2008; Alzaatreh et al., 
2013b, Adeleke et al., 2013; Akarawak et al., 
2013 and Akarawak et al., 2015). Furthermore, 
several studies (Mudholkar and Srivastava, 1993; 

Gupta and Kundu, 2001; Pal et al., 2006) have 
shown that distributions of combined random 
variables are more flexible, perform better and 
have wider applicability. 
  
Motivated by the recent developments in 
generating new distributions and the need for 
continuous extension and generalizations to 
more complex situations, this research paper 
introduces and studies the Gamma-Rayleigh 
Distribution (GRD). The Gamma and Rayleigh 
distributions are well-known survival 
distributions; however, there might be some 
survival data situations in which the two 
distributions may not fit so well. Combining 
them might therefore yield better results. Since 
estimation of parameters of a newly generated 
distribution is fundamental to application, the 
method of maximum likelihood is used in this 
work to estimate parameters of GRD. The 
distribution is then applied to two survival data 
sets. MATLAB R2011b has been used for 
implementations. 
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Methodology 
This article is organized as follows: derivation 
and presentation of aspects of the Gamma-
Rayleigh Distribution; parameter estimation of 
the Gamma-Rayleigh Distribution and study of 
the simulation and applications of the 
distribution. 
 
THE GAMMA-RAYLEIGH DISTRIBUTION 
(GRD) 
Method: The Transformed-Transformer 
Technique of generating New Family of 
Continuous Distributions 
The Transformed-Transformer method was 
recently introduced by Alzaatreh et al. (2013a) 
for generating families of continuous 

distributions. Let )(vF  be the cumulative 

distribution function (cdf) of any random 

variable V  and )y(p  the probability density 

function (pdf) of a random variable Y  defined 

on  ,0 .  The cdf of a generalized family of 

distributions is given as  





))(1log(

0
)()(

vF

dyypvG ,  (2.1) 

The family of distributions defined by (2.1) is 
called the ‘Transformed-Transformer’ family (or 
the Y-V family), where the random variable Y is 
being transformed by another random variable 
V (the transformer) into a new random variable 

with the support  ,0 . According to Alzaatreh 

et al. (2013a), the corresponding pdf of the 
generalized distribution in (2.1) is given by 
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Where h(v) is the hazard function and H(v) is 
the cumulative hazard function of V with the 
cdfF(v), which makes g(v) as arising from a 
weighted hazard function.  One of the Y-V 
families defined by Alzaatreh et al. (2013a) is 
the Gamma-V family, obtained by letting Y 
follow the Gamma distribution with parameters 
  and  and having the pdf,  
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According to Alzaatreh (2013a), the pdf of the 
Gamma-V generalized family of distribution is 

given as:
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where f(v) and F(v) are the pdf and cdf of any 
random variable V. 
 
2.2 Derivation of the Gamma-Rayleigh 
Distribution (GRD) 
2.2.1 Derivation of the pdf and cdf of GRD 
The pdf and cdf of the Gamma-Rayleigh 
distribution is derived in this section as a class 
of Gamma-V family of generalized distributions. 
Theorem 2.1: 
Let the pdf of a gamma distribution be 
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Then the pdf of the Gamma-Rayleigh 
distribution is given by: 
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Where, )(  is the gamma function.  

 
Proof: 
The pdf of the Gamma-V family of distribution is 
given by: 
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Let V follow the Rayleigh distribution with pdf
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Replacing 
22


by  , (2.9) becomes: 
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Any random variable V that has the probability 
density function given in (2.7) is said to have 
the Gamma-Rayleigh distribution with shape 

parameter   and scale parameter   and 

written as V ~ GRD( , ). 
 
Theorem 2.2 
The function given in (2.7) is a valid probability 
density function. 
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Theorem 2.3:  
The cumulative distribution function (cdf) of the 
Gamma-Rayleigh distribution is given by: 
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Changing variable as in (2.11), the result 
follows. 
 
2.2.2 Relationship with Other 
Distributions 
The Gamma-Rayleigh distribution has two 

parameters  and  .  
 
Corollary 2.1: When   = 1 the pdf of Gamma-
Rayleigh distribution reduces to the pdf of the 

Rayleigh distribution with parameter 



2

12  . 

Preposition 2.1: The Gamma-Rayleigh 
distribution is a special case of the generalized 
gamma distribution when p = 2, d = 2  and a= 

2

1


 . 
 
Proof of Preposition 2.1: 
The generalized gamma distribution (Stacy, 
1962) has a pdf of the form: 
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When p = 2, d = 2  and a= 2

1


 , (2.15) 
reduces to the Gamma-Rayleigh pdf given in 
(2.7). 
Corollary 2.2: If the random variable X follows 
the Gamma-Rayleigh distribution with 

parameters  and  , then the Random 
variable Y = X2 follows the gamma distribution 

with parameters   and  . 
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Proof of Corollary 2.2: 

Let X ~ GRD ( , ) and 2XY   such that 

2

1
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where (2.16) is the pdf of the gamma 

distribution with parameters   and  . 

 
Plots of the Pdf and Cdf of the Gamma-Rayleigh Distribution 

 
Figure 1: Pdf Plot of GRD for different values of the shape parameter 

 
Figure 2: Pdf Plot of GRD for different values of the scale parameter 

 

 
Figure 3: Cdf Plots for GRD 
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From Figures 1 and 2, it is observed that as the 
shape parameter varies from 0.5 to 5, the 
Gamma-Rayleigh distribution increasingly 
resembles the normal distribution; the spread 
reduces with increasing scale parameter. 
Furthermore, the distribution shows positive 
skewness for different values of the scale 
parameter. The cdf plots shown in Figure 3 
increase from 0 to 1 as X increases. 
 
SOME PROPERTIES OF THE GAMMA-
RAYLEIGH DISTRIBUTION 
Moments 
Theorem 2.4  
The rth non-central moment of a Gamma-
Rayleigh random variable X is given by: 
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A change of variable from x to u reduces (2.18) 
to: 
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From (2.17) the first four moments are given 
below: 
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The standard deviation of X is given by: 
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Coefficient of variation of X 
Coefficient of variation of X is given by:  
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The coefficient of variation given in (2.25) is 
expressed in terms of   only. 
 
Skewness and Kurtosis  
The skewness of a distribution is a measure of 
its departure from symmetry, while the kurtosis 
is a measure of its peakedness. The skewness 
and kurtosis of a distribution are respectively 
given by: 
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For the Gamma-Rayleigh distribution,  
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Corllary 2.1: Moment Generating Function 
The moment generating function (mgf) of the 
Gamma-Rayleigh random variable V is given 
by: 
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Proof: 
The moment generating function of a 
continuous random variable V is defined by: 
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For GRD random variable V, 
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therefore, the moment generating function of V 
is given by: 

!
)(

2
)(

0 2
r

t

r

tM
r

r
rV 






















. 

 
Corollary 2.2: Cumulants 
According to Staurt and Ord (1994), the 

rthcumulant rc is given in terms of the rth non-

central moment r  as  









 







 01 !
log

! r

r

r

r

r

r
r

t

r

t
c   (2.37) 

Expanding the logarithm in (2.37) gives
r

c  in 

terms of 
r

  and using (2.20) the first two 

cumulants of GRD are given as: 
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2.3.2 Survival and Hazard Functions 
The survival function for the Gamma-Rayleigh 
distribution is given by: 
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The hazard function of the Gamma-Rayleigh 
distribution is given by: 
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upper incomplete gamma function such that 
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Plots of the Survival and Hazard Functions of GRD 

 
Figure 4: Plots of GRD Survival Function 

 
The plot of the survival function is a decreasing function of X. 

 
Figure 5: Plot of the Gamma-Rayleigh Hazard Functions 

 
The plots show that GRD hazard function is an increasing function of time. 

 
Estimation of the Parameters Of GRD 
In this section, the method of maximum 
likelihood and method of moments estimation of 
the shape and scale parameters of the Gamma-
Rayleigh distribution (GRD) are presented. 
 

The Method of Maximum Likelihood (ML) 
Estimation  
For estimating an unknown parameter θ, the 
likelihood principle can be used to obtain the 

maximum likelihood estimator (MLE) ̂ (Bai 
and Fu, 1987). The definition of maximum 
likelihood estimator is presented below. 
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Definition 3.1: Likelihood Function (Mood et 
al., 1974)  
The likelihood function of n random variables 
X1, X2, …, Xn is defined to be the joint density of 
the n random variables, say 

);,,,( 21,,, 21
nXXX xxxf

n
 , which is considered 

to be a function of  . In particular, if 

nXXX ,,, 21   is random sample from the 

density );( xf , then the likelihood function is 

given by );();();()( 111  xfxfxfL 

. 
 
Definition 3.2: Maximum Likelihood 
Estimator (MLE) 
Let 
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The logarithm of the likelihood function has the 
same maximum point as the likelihood function 
and is easier to compute.  
 
Derivation of the ML Estimators for the 

Parameters of the Gamma-Rayleigh 
Distribution  

Let there be a random sample of independent 
random variables from GRD each having the 
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Taking the log of the likelihood function gives: 
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(3.4) and (3.5) will be solved simultaneously to 

obtain the estimates of  and . This cannot 
be done analytically, therefore a numerical 
technique will be adopted. Consequently, 
properties of the maximum likelihood estimators 
could not be derived in this paper.  
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Simulation Study and Application 
In this section, simulated data from the 
Gamma-Rayleigh distribution are analyzed. The 
simulation was done to study the behaviour and 
some properties of the new distribution.  
Simulations were done using probability integral 
transform. The probability integral transform 
equates the cdf of the GRD random variable V 
to uniform random variates, say u such that u 
~U(0,1). This procedure allows the random 
values of V (the quantiles) to be obtained.   
Also, the distribution is applied to two real life 
survival data on time to recover from typhoid 

fever and time to drop out from an insurance 
policy. The aim is to illustrate how the 
distribution can be applied to real life data.  
All simulations, analysis and plots are done 
using programme codes written in MATLAB 
Application R2011b.  
 
RESULT OF SIMULATION STUDY ON GRD 
The simulation for GRD was done for different 

values of  and . The results are presented 
in Table 1. 

 
Table 1: Result of Simulation Study on Gamma-Rayleigh Distribution 

Model Parameters Mean StdDev Variance SE of 
Mean 

Skewness Kurtosis CV 

GRD(1,0.5)  = 1; =0.5 1.2462 0.6537 0.4274 0.0092 0.5999 3.1374 0.5246 

GRD(1,2)  = 1;  = 2 0.6276 0.3311 0.1096 0.0047 0.6125 3.1334 0.5276 

GRD(1,5)  = 1;  = 5 0.3950 0.2068 0.0428 0.0029 0.6385 3.3093 0.5235 

GRD(0.5,1)  = 0.5; =1 0.5661 0.4312 0.1859 0.0061 1.0557 4.1373 0.7617 

GRD(2,1)  = 2;  = 1 1.3308 0.4755 0.2261 0.0067 0.4103 3.0981 0.3573 

GRD(5,1)  = 5;  = 1 2.1785 0.4864 0.2366 0.0069 0.2527 3.0152 0.2233 

 
The simulation results in Table 4.1 shows that 
the skewness reduces as  increases. The 
distribution shows kurtosis that is not so high, 
with smaller values of  resulting in higher 
kurtosis. Also, the variance decreases with 
increasing values of the scale parameter θ. The 
distribution shows a coefficient of variation (CV) 
of less than one for all values of the parameter 
and therefore, can be classified as a member of 
the hypo-exponential (CV < 1) class of 
distributions. 
 
APPLICATIONS TO REAL LIFE DATA 
In this section, the new distribution is applied to 
two data sets to illustrate their adequacies in 
fitting real life data. The criterion used to check 
model adequacy and performance is the Akaike 
Information Criterion (AIC). AIC is given by: AIC 
= 2k – 2logL; where L is the maximized value of 
the likelihood and k is the number of 
parameters in the model. A rule of thumb is that 
a better model should have a smaller AIC 
(Kwok et al., 2008).  
 
 

Data Description and Exploration 
The two survival data used in this study are 
secondary data on time to recover from typhoid 
fever of patients and time to drop out from an 
insurance policy. The typhoid recovery time 
data were collected from patients’ case notes in 
General Hospital, Gbagada, Lagos while the 
policy drop out time data were collected from an 
Insurance company. Table 2 gives the 
summary of statistics and histograms for the 
two sets of survival data. 
 
DISCUSSION 
The estimates of the parameters and 
performance criterion of AIC (figures in bold) for 
fitting GRD to the two survival data sets are 
given in Table 4.3 along with other distributions. 
From the results, GRD is the most adequate in 
fitting the Policy drop-out time data; followed by 
WRD, Gamma and then Weibull distribution. 
The typhoid recovery time data is most fitted by 
Gamma, closely followed by GRD, Weibull and 
then Rayleigh.  
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The results show that the newly introduced 
distribution is adequate in fitting the two survival 
data and in some cases produce better fits. It 
actually performs better than the Rayleigh 
distribution in both cases. Therefore, combining 

the Rayleigh distribution with the Gamma 
distribution is worthwhile.   
 
 

 
Table 2: Summary of Statistics for Survival Data 

Statistics N Mean Variance Std Dev. Skewness Kurtosis Coef. of Var. 

Recovery 
Time 

150 4.52 5.52 2.12597 1.097 1.809 0.47035 

Policy 
Drop Out 

87 5.25 1.121 1.059 0.916 2.328 0.20171 

 

 
Figure 6: Histograms of Survival Data 

 
Both the descriptive results and histograms indicate that the data is peaked and skewed to the right. 
 
RESULTS  
Table 3: Results of Fits of Distributions to Survival Data 

Data Weibull Rayleigh Gamma Lognormal GRD 

Time to Recover 
from Typhoid 

*Sh=2.2545 
*Sc=5.1129 
637.7309 

- 
Sc=3.5299 
639.3577 

Sh=4.6846 
Sc=0.9649 
628.0819 

µ=1.3980 
σ=0.4872 
663.4589 

Sh=1.3335 
Sc=0.0536 
632.3686 

Time to drop out 
of Policy 

Sh=4.8280 
Sc=5.6885 
272.6087 

- 
Sc=3.7882 
354.2708 

Sh=25.7668 
Sc=0.2039 
273.008 

1.6392 
0.1996 
267.50 

Sh=6.5359 
Sc=0.2277 
256.6209 

N/B: Sh = Shape; Sc = Scale; Figures in bold are AIC 
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Fitted Density Plots for All Distributions 

 
 

Figure 7: Fitted Density Plots for Typhoid Recovery Time Data 
 

 

 
 
 

Figure 8: Fitted Density Plots for Policy Drop Out Time Data 
 
CONCLUSION 
This research work focused on generation of a 
new distribution involving gamma and Rayleigh 
distributions. The resulting two-parameter 
Gamma-Rayleigh Distribution (GRD) was 
obtained through the Transformed-Transformer 
method. Properties of the resulting distribution 

like the probability density function, cumulative 
distribution function, rth non-central moments, 
expectation, variances and cumulants were 
derived. Expressions for its survival and hazard 
functions were also presented. Plots of the pdf 
for different values of parameters and 
simulation studies revealed that the newly 
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derived distribution is unimodal, peaked and 
skewed. Furthermore, plots of the hazard 
function reveal that the distributions can be 
used to model data with increasing hazard 
rates.  
 
In order to make the distribution applicable and 
relevant, estimators of the parameters were 
derived using the method of maximum 
likelihood. The distribution was used to model 
two sets of survival data and results show that it 
is competitively adequate in fitting the survival 
data compared to the Weibull, Rayleigh, 
Lognormal and Gamma distributions.   
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