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ABSTRACT 
Commercial fluid catalytic cracking catalysts are manufactured using zeolites dispersed on an amorphous 
matrix, which is mostly alumina. Alumina is widely used as catalyst support in many heterogeneous 
catalytic processes owing to its high surface area, superior chemical activity and low cost. In compounded 
zeolite catalyst it serves as the active matrix which aids the conversion of the bulkiest molecules in the feed 
owing to its larger pore size than zeolite. Large specific surface area gamma-alumina (γ-Al2O3) was 
synthesized by hydrothermal method using Kankara kaolin as starting material. Thermal treatment of 
ammonium alum prepared from the filtrate of the dealuminated metakaolin was employed to obtain the 
alumina.  Crystalline aluminum sulfate with 39 wt% Al2O3 was obtained at calcination temperature of 800°C 
with 3 h soaking. Gamma-alumina was produced at 850°C with 3 h soaking time, having specific surface 
area of 166 m2/g. The weight percent of Al2O3 content in the synthesized and commercial gamma-alumina 
were 85% and 89% respectively as obtained from the XRF analysis. Good comparison was also observed 
in the diffractogram of the synthesized and commercial gamma-alumina from the XRD analysis. The 
Scanning Electron Microscopy (SEM) image showed the platy hexagonal shape of the gamma-alumina. 
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INTRODUCTION 
The current fluid catalytic cracking (FCC) 
catalysts consist of a complicated combination of 
different materials, which have different functions 
(Corma, 1992). The pore size of the zeolite limits 
the activity to the molecules that access the 
active sites. Commercial FCC catalysts are 
manufactured using 1-2 μm zeolite dispersed on 
an amorphous matrix forming 60 μm particles 
(Scherzer, 1993). Zeolites are microporous 
aluminosilicate minerals used for numerous 
commercial and domestic applications. The 
content of zeolite in zeolite catalyst is not greater 
than 3-15% (Salahudeen et al., 2014). Zeolite Y 
is used commercially as catalyst in petroleum 
refinery because of its high concentration of 
active acid sites, its high thermal stability, high 
size selectivity and its crystal size is in the 
approximate range of 0.2 – 0.5µm and pore 
diameter of 7.4Ǻ (Htay, 2008).  The matrix 
comprises 60-80 % commercial FCC catalyst and 
usually contains synthetic and natural 
components (Wang, 2006; Htay, 2008). Clay is 

the natural component and amorphous silica or 
silica-alumina is the synthetic portion (Htay, 
2008). Matrix composition can influence catalyst 
performance but to a lesser extent than the 
zeolite component (Scherzer, 1994). An active 
matrix contains acid sites associated with 
aluminum atom, e.g. alumina (Hosseini, 2011). 
The active matrix is characterized by high 
surface area and they usually enhance bottom 
conversion and gasoline octane number 
(Scherzer, 1993).  Among the different alumina 
available, gamma-alumina is the most important 
one that is used in catalyst formulation (Scherzer, 
1993; Wang, 2006; Hosseini, 2011), due to its 
high surface area, thermal stability, outstanding 
mechanical properties and nature of interaction 
with zeolite active phases (Salahudeen, 2012).  
Alumina heated at temperature below 1100°C is 
considered as amorphous materials in spite of 
the fact that they have important adsorptive and 
catalytic properties (Santos, 2000; Hosseini, 
2011). Above 1100°C it changes into crystalline 
alpha-alumina phase (Santos, 2000). The most 
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common method of producing alumina is by the 
hydrothermal technique and the reaction takes 
place in water medium. Solvothermal process 
involves the use of organic solvent (Santos, 
2000). The absence of commercial deposits of 
bauxite, being the primary source of alumina, in 
Nigeria, as well as the rapid depletion of bauxite 
deposits globally call for urgent development of 
alternative sources of alumina production 
(Aderemi, 2009). The production of alumina from 
Kankara kaolin in Katsina State, Nigeria has 
been reported in literature (Aderemi, 2009) but 
the target applications were not as catalyst 
support. On the other hand most of the works on 
the development of alumina support have been 
from conventional raw materials; bauxite and 
corundum (Kloprogge, 2002; Meor-Yusoff, 2007). 
This study was aimed at the preparation of high 
surface gamma-alumina from Kankara kaolin, 
with large pore size and to compare it with the 
commercially available gamma-alumina. 
 
MATERIALS and METHODS 
White grade raw kaolin was sourced from 
Kankara town in Katsina State, Nigeria, by 
selective mining and wet beneficiation process 
carried out in accordance with reported 
procedures (Ahmed, 1987; Edomwonyi-Otu, 
2009). The beneficiated kaolin was calcined to 
750°C for 2 h, to obtain the reactive phase of 
kaolin known as metakaolin. For batch, 50 g of 
metakaolin was mixed in 185ml distilled water 
and properly stirred. 169 ml 96 wt.% sulfuric acid 
was added to the mixture in a fume cupboard. 
After about 30 min 286 ml water was added to 
quench the reaction. The product was filtered 
using high vacuum pump (ES-100, Edward, 
England) filtration set-up using sinta glass as 
filtering medium. Thirty-three (33) g of 
ammonium sulfate (Analar grade BDH, Poole, 
U.K) was completely dissolved in the filtrate and 
cooled in a refrigerator (Thermocool, C1202, 
England, U.K.) at 0oC for 6 h. The ammonium 

alum crystals formed were filtered using the 
filtration set-up, then dried at 250°C for 4 h in an 
electric oven (TM OV-420, 0-260°C, Gallenkamp, 
England, U.K.). The dried alum was calcined at 
various temperatures ranging from 700°C to 900 
oC, and the soaking time was varied from 1 to 4 h 
in an exposed element furnace (TIKIR 11/12, 
Heraeus, Holland).   The elemental composition 
(in oxide form) of the products obtained were 
determined using the Energy Dispersive X-Ray 
Florescence (ED-XRF) machine (Mini Pal 4, 
PANalytical, Holland), and the X-ray diffraction 
(XRD) patterns were obtained using 
diffractometer (Empyreal, PANalytical, Holland) 
employing Cu Kα radiation (λ=0.154 nm). The 
textural properties (surface area, pore size and 
pore volume), of the products were determined 
from Brunauer-Emmett-Teller (BET) technique by 
N2 adsorption at -196°C using Tristar 3000 
Micrometrics equipment. The morphology was 
determined using Emission Scanning Electron 
Microscope (Zciss) at 20000 magnification. 
 
RESULTS and DISCUSSION 
Figure 1, shows the trend of specific surface area 
of ammonium alum calcined at 800°C for 
different soaking time. Decrease in surface area 
was observed between soaking time of 1 h and 2 
h, while increase in pore size was equally 
observed in Figure 2, the observations were 
attributed to the coalescing of the nuclide of the 
product which resulted in loss of surface area 
and increase in pore size. From 2 h of soaking 
time to 3 h, an increase in surface area and 
decrease in pore size were observed which could 
be as a result of rearrangement of the atoms of 
the material and hence the formation particles 
with smaller pores, which resulted in higher 
surface area. From 3 h to 4 h of soaking time, 
about 10% decrease in specific surface area was 
observed. The pore volumes of the calcination 
products obtained were in the range of 0.22 
cm3/g to 0.41cm3/g (Figure 2). 
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Figure 1: Specific Surface Area with Variation in Soaking Time at 800°C 
 

 
 

Figure 2: Pore Size and Pore Volume with Variation in Soaking Time at 800°C 
 
Specific surface area was observed to generally 
increase from 20 m2/g to 155 m2/g as 
temperature increased from 700°C to 900 °C as 
shown in Figure 3. A rapid increase in specific 
surface area was observed between 800 °C and 
850°C (i.e. from 70 m2/g to 166 m2/g) which 

accounted for 137% increase in specific surface 
area. This value gave an indication of the 
development of a new material with high surface 
area which was confirmed by the XRD patterns 
to be gamma-alumina. 
 

 
 

Figure 3: Specific Surface Area with Variation in Calcinations Temperature for 3 h 
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Heat treatment at 850°C and 900°C produced 
gamma-alumina with large specific surface area 
values of 166 m2/g and 155 m2/g respectively. It 
has been reported that porous materials having a 
surface area value above 100 m2/g is considered 
having a high surface area and is a potential 
material for catalyst support (Wefers, 1987). 
Calcination temperature of 850°C for 3 h gave 
the highest specific surface area (Figure 3). The 
products obtained had relatively large pore sizes 

ranging from 20 nm to 30 nm as shown in Figure 
4. Resistance to mass flow in and out of the 
pores will be negligible when in use, owing to 
relatively smaller pore size of zeolite being about 
0.74 nm (Figure 4). The pore size of the gamma-
alumina was found to be about 27 times that of 
zeolite Y, which agrees with Čejka (2010). Figure 
4 shows that large pore volume was observed at 
calcination temperature of 850°C and 900°C. 

 

 
 

Figure 4: Pore size and Pore Volume with Variation in Temperature for 3 h 
 

 
 

Figure 5: X-ray Diffraction Pattern of Aluminum Sulfate 
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Millosevichite, a crystal phase of aluminium 
sulfate was obtained when the ammonium alum 
was calcined at 800°C for 3 h as shown in Figure 
5. The indicated peaks of milosevichite are in 
accordance with comprehensive work done on 
mineral identification (Chen, 1977). Gamma-
alumina was obtained at 850°C after 3 h soaking 

as shown in Figure 6. The XRD pattern for this 
sample showed broad peaks at d-spacing of 
1.43Ǻ, 1.99Ǻ and 2.43Ǻ which largely matched 
with the commercial and standard XRD pattern of 
gamma-alumina and conformed with earlier 
reports (Santos, 2000; Aderemi, 2011).  
 

 
 

Figure 6: X-ray Diffraction Pattern of Gamma-Alumina 
 
The chemical composition of the gamma-alumina 
obtained from the XRF analysis (Table 1) 
showed that the Al2O3 content was 85.02% with 

4.76% SO3 and 5.16% loss on ignition. This 
suggested that there were SO3 and water still left 
in the structure.  

 
Table 1: Chemical composition of products obtained (XRF analysis) 

Oxides Al2O3 SiO2 SO3 LOI Other Oxide 
800°C/3h 39.00 ND* 59.51 ND** 1.51 
850°C/3h 85.02 ND* 4.76 5.16 5.05 

ND* Not detected  ND** Not determined 
 
The morphology of the gamma-alumina is 
presented in Figure 7. Each lump represents a 
macrostructure consisting of agglomerated 
particles with irregular particle shapes. Therefore, 
it could be deduced from the images that the 
gamma-alumina possessed a lumpy anhedral 
morphology (Salahudeen, 2014), this further 

shows the amorphous nature of the gamma-
alumina produced as already shown by the XRD 
result. The structural morphology was a flake-like 
euhedral morphology, which is in agreement with 
reported works (Aderemi and Hameed, 2011; 
Salahudeen et al., 2014). 
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Figure 7: SEM Image of Gamma-Alumina Synthesized from Kankara Kaolin 
 
CONCLUSION 
It may be concluded from the investigations that 
gamma-alumina with large specific surface area 
(166m2/g) was developed from Nigerian Kaolin, 
which may find application as catalyst support 
material. Thermal decomposition of ammonium 
alum at 800°C and below did not yield alumina 
rather crystalline alumiun sulfate was ontained.  

 
This studies shows that Kankara Kaolin is a 
promising material for the production of gamma-
alumina. 
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