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Abstract. We use the so-called t-Hill tail index estimator proposed by Fabián (2001), rather
than Hill’s one, to derive a robust estimator for the distortion risk premium of losses. Under
the second-order condition of regular variation, we establish its asymptotic normality. By
simulation study, we show that this new estimator is more robust than of Necir and Meraghni
(2009) both for small and large samples.

Résumé. Nous utilisons l’estimateur de l’indice de queue dit t-Hill proposé par Fabián
(2001), au lieu de l’estimateur de Hill, pour obtenir un estimateur robuste pour la prime
de risque de distorsion des pertes. Sous la condition de second ordre de variation régulière,
nous établissons sa normalité asymptotique. Par l’étude de simulation, nous montrons que
ce nouvel estimateur est plus robuste que de celui proposé par Necir and Meraghni (2009)
pour les petites et les grandes tailles d’échantillon.
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1. Introduction

In many important applications in Finance, Actuarial Science, Hydrology, Insurance, one
of most crucial topics is the determination of the amounts of losses of a heavy-tailed risks.
Most of this risk measures, used are special cases of Wang’s distortion premium (Wang,
1996), defined as follows

Π[ψ;F ] =

∫ ∞
0

ψ(1− F (x))dx, (1)
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where ψ : [0, 1] → [0, 1] is a non-decreasing function called distortion function, such that
ψ(0) = 0 and ψ(1) = 1. The distortion functions ψ are concave, which makes the corre-
sponding distortion premiums Π[ψ;F ] coherent (Artzner et al., 1999) as proved by Wirch
and Hardy (1999). In particular, the proportional-hazards premium (PHP) (see, Rolski et
al., 1999, page 82) is defined as follows

Π[ρ;F ] =

∫ ∞
0

(1− F (x))
1/ρ

dx, (2)

with the concave distortion function ψ(t) = t1/ρ for every ρ ≥ 1, the parameter ρ is called the
risk aversion index. In recent literature, by using the mean excess of loss function Beirlant et
al. (2001) proposed a semi-parametric estimator for the premium of the largest reinsurance,
Necir and Boukhetala (2004) proposed a non-parametric estimator for the net-premium of
a high-excess loss layer of heavy-tailed claim amounts and the semi-parametric version was
proposed by Necir et al. (2007).

Suppose that we have an independent and identically distributed (iid) sample X1, ..., Xn of
size n of an insured risk X with finite mean and a cumulative distribution function (cdf)
F, note that X is called heavy-tailed, if 1 − F is regularly varying with index −1/γ < 0
(notation: F ∈ RV(−1/γ)), that is

lim
t→∞

1− F (tx)

1− F (t)
= x−1/γ , for x > 0. (3)

Suppose now that F satisfying condition (3) and let denote by X1:n ≤ ... ≤ Xn:n the
corresponding order statistics. Also, let 1 < k = kn be the number of extreme observations
used in the computation of the tail index. We assume that k satisfies the conditions

1 < k < n, k →∞ and k/n→ 0 as n→∞. (4)

Since we are concerned with with heavy-tailed losses with infinite second moment, then by
following Brahimi et al. (2011), we assume that γ ∈ (1/2, 1) and ργ ∈ (0, 1) , thus we will
work with

1/2 < γ < 1/ρ. (5)

Necir and Meraghni (2009) proposed an alternative estimator of (2) and establish its asymp-
totic normality based on the Weissman’s estimator of the high quantile qt = F← (1− t)
defined by

q̂t = (k/n)
γ̂H

Xn−k:nt
−γ̂H , t ↓ 0,

where F← denotes the generalized inverse of F and

γ̂H = γ̂H (k) :=
1

k

k∑
i=1

logXn−i+1:n − logXn−k:n, (6)

is the well-known Hill estimator (Hill, 1975) of the tail index γ. For a fixed aversion parameter
ρ, their estimator is given by

Π̂ρ,n

(
γ̂H , k

)
:= (k/n)

1/ρ Xn−k:n

1− γ̂Hρ
+

n∑
i=k+1

(
(i/n)

1/ρ − ((i− 1) /n)
1/ρ
)
Xn−i+1:n. (7)
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The Hill estimator is a pseudo-maximum likelihood estimator based on the exponential ap-
proximation of normalized log-spacings Yj = j (logXj:n − logXj+1:n) for j = 1, ..., k. In
practice, the Hill estimator depends on the choice of the sample fraction k and is inherently
not very robust to large values Yj , which makes the estimator proposed by Necir and Mer-
aghni (2009) sensitive. This constitutes a serious problem in terms of bias and root mean

squared error (RMSE). To improve the quality of Π̂ρ,n

(
γ̂H , k

)
, instead of Hill’s one, we

propose to estimate the tail index γ by the so-called t-Hill estimator, proposed by Fabián
(2001), given by its harmonic mean

γ̂ = γ̂ (k) :=

1

k

k∑
j=1

Xn−k:n

Xn−j+1:n

−1 − 1 (8)

known as score moment estimation (t-score or t-estimation method). The latter is more
robust than the classical Hill estimator γ̂H defined in Equation (6) (see Stehĺık et al., 2012
and the asymptotic normality is given in Theorem 2 of Beran et al., 2014). For other ro-
bust estimators for γ we referred to Peng and Welsh (2001), Júarez and Schucany (2004),
Vandewalle et al. (2007) and Kim and Lee (2008). The rest of the paper is organized as
follows, in Section 2 we present a construction of a robust estimator of Π[ρ;F ] in the case of
heavy-tailed losses. In Section 3 we establish its asymptotic normality. In Section 4 we carry
out a simulation study to illustrate empirical performance and robustness of the estimator.
Concluding notes are given in Section 5. Proofs are gathered in Section 6.

Throughout the paper, we use the standard notation
P→ for the convergence in probability

and N (µ, σ) to denote a normal rv with mean µ and variance σ.

2. Defining the estimator

By using the generalized inverse F← and for a fixed risk aversion index ρ, we may rewrite
(2) into

Πρ[X] := −
∫ 1

0

s1/ρdF← (1− s) . (9)

The empirical estimator of the risk premium Πρ[X] is obtained by substituting F← on
the right-hand side of Equation (9) by its empirical counterpart F←n (s) := inf{x ∈ R :
Fn(x) ≥ s}, 0 < s ≤ 1, associated to the empirical cdf defined on the real line, defined

by Fn (x) := n
−1

# {Xi ≤ x, 1 ≤ i ≤ n} where #A denote the cardinality of a set A. After
straightforward computations, we obtain the formula

Πn[X] := ρ−1
∫ 1

0

s1/ρ−1F←n (1− s) ds

which may be rewritten, in terms of X1:n, ..., Xn:n, as an L-statistic

Πn[X] =

n∑
i=1

ci,nXn−i+1:n, (10)

where
ci,n ≡ (i/n)

1/ρ − ((i− 1) /n)
1/ρ

. (11)
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The form (10) is a linear combinations of the order statistics (see, Shorack and Wellner,
1986, page 260). The limit behavior was discussed by many authors: Chernoff et al. (1967),
Stigler (1974), Mason (1981), Jones and Zitikis (2003) (see its Theorem 3.2 in the case that
X is not heavy-tailed) and in Brahimi et al. (2011) (in heavy-tailed case).

2.1. Heavy-tailed losses case

Let X be a nonnegative rv with cdf F ∈ RV(−1/γ). The condition (3) is equivalent to

lim
t→0

F← (1− tx)

F← (1− t)
= x−γ , for every x > 0 (12)

and we say that the function s → F← (1− s) satisfying condition (12) is regularly varying
at zero with the index (−γ) < 0. The parameter γ is called the tail index or extreme value
index (EVI). A various tail index estimators have been suggested in the literature, based for
instance of the conventional maximum likelihood method, moment estimation, ... (see, e.g.
Hill, 1975, Pickands, 1975, Dekkers et al., 1989. Csörgő et al., 1985 and Drees, 1995). For
the robustness and bias reduction (see, i.e. Peng and Qi, 2004 and Stehĺık et al., 2012). The
regular-variation condition itself is not sufficient for establishing asymptotic distributions.
To this end, we suppose that cdf F satisfy the well-known by the second-order condition of
regular variation with second-order parameter τ ≤ 0, that is: there exists a function t→ a(t)
with constant sign at infinity and converges to 0 as t→∞ such that

lim
t→∞

(a (t))
−1
(
F (tx)

F (t)
− x−1/γ

)
= x−1/γ

xτ/γ − 1

γτ
, fore very x > 0. (13)

When τ = 0, the ratio
xτ/γ − 1

γτ
should be interpreted as log x.

Let U be the left-continuous inverse of 1/(1− F ). Note that U(t) is defined for t > 1, so in
terms of U the condition (13) is equivalent to the following one

lim
t→∞

(A (t))
−1
(
U (tx)

U (t)
− x−γ

)
= x−γ

xτ − 1

τ
, for every x > 0, (14)

(see de Haan and Stadtmüller, 1996 or Theorem 3.2.9 in de Haan and Ferreira, 2006).

Using now the Weissman estimator (Weissman, 1978) of high quantiles F← is given by

F←(W )
n (1− s) := (k/n)γ̂Xn−k:ns

−γ̂ , s ↓ 0, (15)

then formula (9) can be split into

Πρ[X] = −
∫ k/n

0

s1/ρdF←(1− s)−
∫ 1

k/n

s1/ρdF←(1− s). (16)

By using an integration by part to the second integral yields

Πρ[X] = (k/n)
1/ρ

F←(1− k/n)−
∫ k/n

0

s1/ρdF←(1− s) + ρ−1
∫ 1

k/n

s1/ρ−1F←(1− s)ds

:= Π(1)
ρ + Π(2)

ρ + Π(3)
ρ .
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A simple estimator of Π
(1)
ρ is

Π(1)
ρ,n := (k/n)

1/ρ
Xn−k,n. (17)

To estimate Π
(2)
ρ , we note that γ̂ is a consistent estimator for γ (Stehĺık et al., 2012) and

since ρ < 1/γ, by substituting F
←(W )
n (1 − s) given in Equation (15) instead of F←(1 − s)

and integrating yield the following estimator

Π(2)
ρ,n := (k/n)

1/ρ γ̂ρ

1− γ̂ρ
Xn−k:n. (18)

Finally, by plugging F←n instead of F← on second integral of Equation (16) we obtain the
estimator

Π(3)
ρ,n :=

n∑
i=k+1

ci,nXn−i+1:n, (19)

of Π
(3)
ρ , where F←n (s) := inf {x ∈ R : Fn (x) ≥ s} , 0 < s ≤ 1, denote the sample

quantile function associated to the empirical cdf defined on the real line by
Fn (x) := n

−1∑n
i=1 I (Xi ≤ x) , with I (·) being the indicator function and the coeffi-

cients ci,n are given in Equation (11). The final form of our estimator

Π̃ρ,n := (k/n)
1/ρ Xn−k,n

1− γ̂ρ
+

n∑
i=k+1

(
(i/n)

1/ρ − ((i− 1) /n)
1/ρ
)
Xn−i+1:n. (20)

In next section we establish the asymptotic normality of our estimator and compared with
the estimator proposed by Necir and Meraghni given in Equation (7).

3. Asymptotic distribution

We will begin to expose our results as asymptotic representation theorems in the lines
of Beran et al. (2014). For that purpose, we need to describe the probability theory on
which they hold. Indeed, Csörgő et al. (1986) have constructed a probability space (Ω,A,P)
carrying a sequence of independant standard uniform random variables U1, U2, ... and a
sequence of Brownian bridges {Bn (s) ; 0 ≤ s ≤ 1} such that for every 0 ≤ ζ < 1/2,

sup
1/n≤s≤1−1/n

nζ |βn (1− s)− Bn (1− s)|
s1/2−ζ

= OP
(
n−ζ

)
, (21)

where, for each n ≥ 1, βn the quantile process associated with U1, ..., Un. To define this
quantile function, we consider the order statistics U1,n ≤ ... ≤ Un,n pertaining to U1, ..., Un
and we introduce the uniform quantile function

Vn (s) = Ui,n for (i− 1) /n < s ≤ i/n, i = 1, ..., n, and Vn (0) = U1,n.

from which derives the uniform quantile process

βn (s) =
√
n (s− Vn (s)) , for n ≥ 1 and s ∈ [0, 1].
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We places ourselves on that probability space and use the Renyi’s representations

{Xi, i ≥ 1} d
= {F← (Ui,n) , i ≥ 1}

and

{{Xi,n, 1 ≤ i ≤ n}, n ≥ 1} d
= {{F← (Ui,n) , 1 ≤ i ≤ n}, n ≥ 1},

where F← denotes the quantile function pertaining to the cdf F and =d stands for equality
in distribution. In the following, we may and do replace the equalities in distribution by
simple equalities, so that the weak and strong laws established for on random sequences
depending only on X1, X2, etc... In that probability space will hold in any probability space
by the virtue of equality in law for stochastic processes.

Our main result is the following

Theorem 1. Let F be a df satisfying (14) with γ > 1/2 and suppose that F← (·) is continu-
ously differentiable on [0, 1). Let k = kn satisfying (4) such that

√
kA (n/k)→ 0 as n→∞.

For any 1 ≤ ρ < 1/γ, we have

√
n
(

Π̃ρ,n −Πρ

)
(k/n)1/ρ−1/2F←(1− k/n)

d→ N
(
0, σ2 (γ, ρ)

)
, as n→∞,

where

σ2 (γ, ρ) = γ2 +
γ2ρ

(
ρ− 2ργ2 + 2γ

)
(γρ− 1)

2 +
2γ2

(ρ+ γρ− 1) (ρ+ 2γρ− 2)

+
2γ

2γ − 1
−

2γρ
(
ργ2 − ργ + 1

)
(γρ− 1) (ρ+ γρ− 1)

.

4. Simulation study

4.1. Performance and comparative study of Π̃ρ,n and Π̂n

In this simulation study we examine the performance of our estimator Π̃ρ,n (γ̂, k) given in

(20) and compare it with that of Π̂ρ,n

(
γ̂H , k

)
given in (7). Thus we follow the steps below.

Step 1: We generate 1000 pseudorandom samples of size n = 100, 200, 500 and 1000 from
Pareto cdf with γ = 0.6.

Step 2: We estimate the tail index parameter by Hill and t-Hill estimators γ̂H(k∗1) and
γ̂(k∗2), respectively given in (6) and (8). We adopt the Reiss and Thomas algorithm (see
Reiss and Thomas, 2007, page 137), for choosing the optimal numbers of upper extremes k1
and k2. By this methodology, we define the optimal sample fraction of upper order statistics
k∗j by

k∗j := arg min
k

1

k

k∑
i=1

iθ |γ̂j (i)−median {γ̂j (1) , ..., γ̂j (k)}| , j = 1, 2
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where γ̂1 = γ̂H and γ̂2 = γ̂. On the light of our simulation study, we obtained reasonable
results by choosing θ = 0.3. For an illustration of the behavior of Π̃ρ,n (γ̂, k) as a function
of n, see Figure 1.

Step 3: We fix the distortion parameter with respect to Condition (5) by ρ = 1.12, then

we compute the bias and RMSE of the four estimators γ̂H(k∗1), γ̂(k∗2), Π̃ρ,n (γ̂, k∗1) and

Π̂ρ,n

(
γ̂H , k∗2

)
. The results are summarized in Table 1. We see that when dealing with large

samples our estimator performs better.

k∗1 γ̂(k∗1) Π̃ρ,n (γ̂, k∗1) k∗2 γ̂H(k∗2) Π̂ρ,n

(
γ̂H , k∗2

)
n bias RMSE bias RMSE bias RMSE bias RMSE

100 10 −0.0733 0.2511 0.3618 0.5199 17 −0.1641 0.2865 0.4096 0.7332
200 23 −0.0571 0.1821 0.3562 0.5147 34 −0.0993 0.2350 0.3918 0.7185
500 62 −0.0299 0.1142 0.3404 0.4820 86 −0.0301 0.0739 0.3639 0.6936
1000 129 −0.0147 0.0798 0.1966 0.2687 169 −0.0181 0.0545 0.2827 0.5279

Table 1. γ̂(k∗1), γ̂H(k∗2) Π̃ρ,n (γ̂, k∗1) and Π̂ρ,n (γ̂, k∗2) estimators based on 1000 samples of
Pareto-distributed claim amounts with tail index 0.6 and distortion parameter ρ = 1.12.
The exact value of the premium is 2.0487.

4.2. Comparative robustness study

In this subsection we study the sensitivity to outliers of Π̃ρ,n (γ̂, k∗1) and compare it with

that of Π̂ρ,n

(
γ̂H , k∗2

)
. We consider an ε-contaminated model known by mixture of Pareto

distributions
Fγ1,γ2,ε (x) = 1− (1− ε)x−1/γ1 + εx−1/γ2 , (22)

where γ1, γ2 > 0 and 0 < ε < 0.5 is the fraction of contamination. Note that for ε = 0, γ̂H and
γ̂ are asymptotically unbiased. Therefore, for ε > 0, the effect of contamination becomes
immediately apparent. If γ1 < γ2 and ε > 0, (22) corresponds to a Pareto distribution
contaminated by a longer tailed distribution. For the implementation of mixtures models to
the outliers study one refers, for instance, to (Barnett and Lewis, 1995, page 43). In this
context, we proceed our study as follows.

First, we consider γ1 = 0.6, γ2 = 2 to have the contaminated model and let ρ = 1.12. Then
we consider four contamination scenarios according to ε = 5%, 10%, 15%, 25%.

For each value ε, we generate 1000 samples of size n = 100, 200 and 1000 from the model
(22). Finally, we compare the Π̃ρ,n (γ̂, k∗1) and Π̂ρ,n

(
γ̂H , k∗2

)
estimators with this true value,

by computing for each estimator, the appropriate bias and RMSE and summarize the results
in Table 2.
As expected, the estimator Π̂ρ,n

(
γ̂H , k∗2

)
as well as Π̃ρ,n (γ̂, k∗1) turn out to be more sensitive

to this type of contaminations. For example, in 0% contamination for n = 200, the couple
(bias, RMSE) for Π̂ρ,n

(
γ̂H , k∗2

)
take the values (0.3918, 0.7185), while for 15% contamination
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Fig. 1. Plot of the premium estimator Π̃ρ,n (γ̂, k1) as a function of the sample size n based
on 200 Pareto-distributed claims with tail index 0.6. The distortion parameter is 1.12. The
horizontal doted line represents the true value of the premium 2.0487.

the bias and the RMSE are given by the couple (−1.4355, 2.3107). We may conclude that the

bias and RMSE of Π̂ρ,n

(
γ̂H , k∗2

)
estimator are more sensitive (or note robust) to outliers.

However, for 0% contamination the (bias, RMSE) of Π̃ρ,n (γ̂, k∗1) is (0.3562, 0.5147) , while

for 15% contamination is (0.4508, 0.6870) . Both bias and RMSE of Π̃ρ,n (γ̂, k∗1) estimation
are note sensitive to outliers. Then we may conclude that is the better estimator.

5. Concluding notes

We showed that the new estimator of premium based on t-Hill estimator is more robust
and performs better than the one based on Hill estimator proposed by Necir and Meraghni
(2009). Our estimator Π̃ρ,n (γ̂, k) is based on Weissman’s estimation of high quantiles, so
we would lead to improve our result to use one of several bias-reduced estimators have been
proposed (see for example Matthys and Beirlant, 2003).

Acknowledgement. We thank the editor and the referee for their constructive and useful
comments that led to a much improved paper.

6. Proofs

To establish the asymptotic normality of Π̃ρ,n we need the asymptotic approximation of γ̂

with the same sequence of Brownian bridges as Π̃ρ,n, for this reason we give the following
results.
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Π̃ρ,n (γ̂, k∗1) Π̂ρ,n

(
γ̂H , k∗2

)
n % contamination bias RMSE bias RMSE

100 5 0.4043 0.6664 −0.4286 1.4727
10 0.4389 0.6862 −0.7291 1.9123
15 0.4598 0.7464 −1.2786 2.1247
25 1.0578 1.1305 −1.2103 2.1828

200 5 0.3831 0.5532 −0.4713 1.5118
10 0.3964 0.5675 −1.2496 2.1907
15 0.4508 0.6870 −1.4355 2.3107
25 0.9470 1.0197 −1.7366 2.3274

1000 5 0.2124 0.3211 −0.3794 2.1222
10 0.2329 0.3349 −1.0662 2.3978
15 0.2931 0.3749 −1.2501 2.0355
25 0.8124 0.9291 −1.5238 2.3596

Table 2. Π̃ρ,n (γ̂, k∗1) and Π̂ρ,n

(
γ̂H , k∗2

)
are based on 1000 samples of mixture of Pareto

distributions with tail index 0.6, ε = 5%, 10%, 15%, 25% and distortion parameter ρ = 1.12.
The exact value of the premium is 2.0487.

Proposition 1. Assume that the second order condition (14) holds with γ > 1/2 and let
k = kn be an integer sequence satisfying (4) and

√
kA (n/k) → 0. Then, there exists a

sequence of Brownian bridges {Bn (s) , 0 ≤ s ≤ 1} such that

√
k (γ̂ − γ) = γ (γ + 1)

2
∫ 1

0

sγ−1Bn (s) ds+ op (1) ,

leading to
√
k (γ̂ − γ)

d→ N

(
0,
γ2 (1 + γ)

2

(1 + 2γ)

)
, as n→∞,

Proof. Our proofs are conducted in the probability space described in Section 3. Then we
are entitled to write

Sk :=
1

k

k∑
j=1

Xn−k:n

Xn−j+1:n

then γ̂ = S−1k − 1. Here we suppose that
√
kA (n/k) → λ = 0. By using similar arguments

and techniques used in Brahimi et al. (2013) and by considering the approximation given in
(21) (see, Csörgő et al., 1986) it follows that

√
k

(
Sk −

1

γ + 1

)
= −γ

∫ 1

0

sγ−1Bn (s) dt+ op (1) .

Using now the map g (x) = 1/x− 1, since g (1/ (γ + 1)) = γ and applying the delta method
yields

√
k (γ̂ − γ) = (γ + 1)

2
γ

∫ 1

0

sγ−1Bn (s) ds+ op (1) .
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It is clear that
√
k (γ̂ − γ) is a Gaussian rv with mean 0 and variance γ2(1+γ)2

(1+2γ) . This completes

the proof of Proposition 1. �

6.1. Proof of Theorem 1

By using Proposition 1 and from Necir et al. (2007) we show that under the assumptions
of Theorem 1, we use the same sequence of Brownian bridges {Bn (s) , 0 ≤ s ≤ 1} such that,
for all large n (

Π
(1)
ρ,n −Π

(1)
ρ

)
(k/n)1/ρF← (1− k/n)

= −γ (n/k)
1/2 Bn (1− k/n) + op (1) .

Let Y1, Y2.... be iid rv’s with cdf 1 − 1/y, y > 1, and let Y1,n ≤ Y2,n ≤ ... ≤ Yn,n be the
associated order statistics. Note that

{Xn−i+1:n, 1 ≤ i ≤ n}
d
= {U (Yn−i+1:n) , 1 ≤ i ≤ n}

Then, for ρ ≥ 1 and without loss of generality, we may rewrite the statistic Π
(2)
ρ,n as follows

Π(2)
ρ,n = (k/n)1/ρ

γ̂ρ

1− γ̂ρ
U (Yn−k:n) ,

where γ̂ is the t-Hill estimator of γ. So we have

√
k
(

Π
(2)
ρ,n −Π

(2)
ρ

)
(k/n)1/ρU (n/k)

:=

4∑
j=1

∆jn,

where

∆1n :=
√
k

γ̂ρ

1− γ̂ρ

(
U (Yn−k:n)

U (n/k)
−
(
Yn−k:n
n/k

)γ)
,

∆2n :=
√
k

γ̂ρ

1− γ̂ρ

((
Yn−k:n
n/k

)γ
− 1

)
,

∆3n :=
√
k

(
γ̂ρ

1− γ̂ρ
− γρ

1− γρ

)
and

∆4n :=
√
k(k/n)−1/ρ

 (k/n)1/ρρ
(1/γ−ρ) U (n/k)−Π

(2)
ρ

U (n/k)

 .

As showed in Necir et al. (2007), we have : ∆1n → 0 and ∆4n → 0 as n→∞.

Next, we show that ∆2n+∆3n is asymptotically normal. Assume, without loss of generality,
that the rv’s Y1, Y2, ..., Yn are defined on a probability space (Ω,A,P) which carries the se-

quence (Un)n≥1 in such a way that Yn = (1− Un)
−1

for n = 1, 2, ... and Yi,n = (1− Ui,n)
−1
,
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i = 1, ..., n,. Then, this allows us to write Yn−i+1,n = (1− Vn (1− s))−1 , for
i− 1

n
< s ≤ i

n
,

i = 1, ..., n. From Necir et al. (2007) we have For ∆2n

∆2n = − (n/k)
1/2 ργ2

1− γρ
(1 + op (1))Bn (1− k/n) .

For ∆3n and by using the map h (θ) = ρ/
(
1
θ − ρ

)
and applying the delta method yields:

∆3n =
ρ

(γρ− 1)
2

√
k (γ − γ̂) .

From Proposition 1 we get

∆3n =
γρ (γ + 1)

2

(γρ− 1)
2

∫ 1

0

sγ−1Bn (s) ds+ op (1) .

Finally we have

√
k
(

Π
(2)
ρ,n −Π

(2)
ρ

)
(k/n)1/ρF← (1− k/n)

=
γρ (γ + 1)

2

(γρ− 1)
2

∫ 1

0

sγ−1Bn (s) ds−(n/k)
1/2 ργ2

1− γρ
Bn (1− k/n)+op (1) .

From Necir et al. (2007) we have

√
k
(

Π
(3)
ρ,n −Π

(3)
ρ

)
(k/n)1/ρF← (1− k/n)

=
ρ−1

∫ 1

k/n
s1/ρ−1Bn (1− s)F←′ (1− s) ds

F← (1− k/n) (k/n)
1/ρ−1/2 + op (1) .

Then √
n
(

Π̃ρ,n −Πρ

)
(k/n)1/ρ−1/2F←(1− k/n)

= Λ (γ, ρ) + op (1)

where

Λ (γ, ρ) := Wn1 +Wn2 +Wn3 + op (1)

and

Wn1 := − (n/k)
1/2

γBn (1− k/n) ,

Wn2 :=
γρ (γ + 1)

2

(ργ − 1)
2

∫ 1

0

sγ−1Bn (s) ds− (n/k)
1/2 γ2ρ

1− γρ
Bn (1− k/n) ,

Wn3 :=
ρ−1

∫ 1

k/n
s1/ρ−1Bn (1− s)F←′ (1− s) ds

F← (1− k/n) (k/n)
1/ρ−1/2 .

It is clear that Λ (γ, ρ) is a Gaussian rv with mean 0 and variance

E (Λ (γ, ρ))
2

= E
(
W 2
n1

)
+ E

(
W 2
n2

)
+ E

(
W 2
n3

)
+ 2E (Wn1Wn2)

+2E (Wn1Wn3) + 2E (Wn2Wn3) .
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An elementary calculation gives, we get

E
(
W 2
n1

)
= γ2 + o (1) ,

E
(
W 2
n2

)
=

γ2ρ2

(1− γρ)
2 +

2γ

2γ − 1
+ o (1) ,

E
(
W 2
n3

)
=

2γ2

(ρ+ γρ− 1) (ρ+ 2γρ− 2)
+ o (1) ,

E (Wn1Wn2) =
γ3ρ

1− γρ
+ o (1) ,

E (Wn1Wn3) =
γρ

ρ+ γρ− 1
+ o (1)

and

E (Wn2Wn3) = − γ3ρ2

(γρ− 1) (ρ+ γρ− 1)
+ o (1) .

The proof of Theorem 1 is completed by combining all the preceding results. �
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