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Abstract. We discuss two distinct approaches, for distorting risk measures of sums of dependent random variables,
which preserve the property of coherence. The first, based on distorted expectations, operates on the survival function
of the sum. The second, simultaneously applies the distortion on the survival function of the sum and the dependence
structure of risks, represented by copulas. Our goal is to propose risk measures that take into account the fluctuations
of losses and possible correlations between risk components.

Résumé. Nous discutons deux approches distinctes, de distortion des mesures de risque de la somme de variables
aléatoires dépendantes, qui conservent la propriété de cohérence. La première, basée sur les espérances distordues, agit
sur la fonction de survie de la somme. La seconde, applique des déformations simultanées sur la fonction de survie de
la somme et sur la structure de dépendance des risques, représentée par une copule. Notre objectif est de proposer des
mesures qui prennent en compte les fluctuations des pertes et des corrélations éventuelles entre les composantes d’un
risque multivarié.

Key words: Coherence; Dependence structure; Distortion function; Risk measure; Risk theory; insurance; Wang
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1. Introduction

Risk measures are used to quantify insurance losses and financial assessments. Several risk measures have been pro-
posed in actuarial science literature, namely: the Value-at-Risk (VaR), the expected shortfall or the conditional tail
expectation (CTE), and the distorted risk measures (DRM). Before introducing and interpreting the DRM, it is nec-
essary to fix a convention of profit and loss appropriate to the application to the market finance, the credit risk and
to the insurance. Let X be a random variable (rv), representing losses (or gains) of a company, with a continuous
distribution function (df) F. The DRM of rv X, due to Wang [17], is defined as follows:

πψ[X] :=

∫ ∞

0

ψ(1− F (x))dx, (1)

where ψ is a non-decreasing function, called distortion function, satisfying ψ(0) = 0 and ψ(1) = 1. In the actuarial
literature the following functions are frequently used:

ψρ(s) = sρ, for 0 < ρ ≤ 1,

ψκ(s) = ϕ(ϕ−1(s) + κ), for 0 ≤ κ <∞,

ψζ(s) = min(s/(1− ζ), 1) for 0 ≤ ζ < 1,

ψα(s) = sα(1− α ln s), for 0 < α ≤ 1,
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where ϕ−1(u) := inf{x : ϕ(x) ≥ u} is the quantile function of the standard normal distribution ϕ. Constants ρ, κ, ζ and
α are called distortion parameters. The functions ψρ, ψκ, ψζ and ψα respectively give rise to the so-called proportional
hazard transform (PHT) (Wang [17]), the normal transform (Wang [18]), the CTE and the look-back distortion
(Hürlimann [12]). When ρ = 1 and κ = ζ = 0, there is no distortion and the corresponding DRM is equal to the
expectation of X. For recent literature on risk measures one refers to Denuit et al. [6] and Furman and Zitikis ([9],
[10]).

The problem of the axiomatic foundation of risk measures has received much attention starting with the seminal paper
of Artzner et al. [1], where the definition of coherent risk measure was first provided. A coherent risk measure is a real
functional µ, defined on a space of rv’s, satisfying the following axioms:

H1. Boundedness from above by the maximum loss: µ(X) ≤ max(X).

H2. Boundedness from below by the mean loss: µ(X) ≥ E(X).

H3. Scalar additivity and multiplicativity : µ(aX + b) = aµ(X) + b, for a, b ≥ 0.

H4. Subadditivity: µ(X + Y ) ≤ µ(X) + µ(Y ).

The only axiom that a DRM may lack in order to be a coherent risk measure in the sense of Artzner et al. [1] is H4.
However, the subadditivity theorem of Choquet integrals (Denneberg [5]) guarantees that µ(X + Y ) ≤ µ(X) + µ(Y )
if and only if the distortion function ψ is concave. Hence, the DRM πψ[X] defined in (1) with a concave distortion ψ
is coherent. It is well known that the CTE and the PHT are examples of concave distortion risk measures, whereas
the VaR is not. In traditional risk theory, individual risks have been usually assumed to be independent. Traceability

for this assumption is very convenient, but not realistic. Recently in the actuarial science, the study of the impact of
dependence among risks has become a major and flourishing topic. Several notions of dependence were introduced to
model the fact that larger values of one component of a multivariate risk tend to be associated with larger values of the
others. In this paper, we deal with a vector of risk losses X = (X(1), ..., X(d)), d ≥ 2 and we discuss the computation
of the DRM of the sum Z of its components. When X(1), ..., X(d) are independent and identically distributed, their
sum is considered as a rv whose df G is the convolution of the marginal distributions of X. In this case, the DRM
value of Z, for a given distortion function ψ may be obtained via formula (1), that is

πψ[Z] :=

∫ ∞

0

ψ(1−G(z))dz. (2)

Now, assume that X(1), ..., X(d) are dependent with joint df H and continuous margins Fi, i = 1, ..., d. In this case, the
problem becomes different and its resolution requires more than the usual background. Several authors discussed the
DRM, when applied to sums of rv’s, against some classical dependency measures such as Person’s r, Spearman’s ρ and
Kendall’s τ, see for instance, Darkiewicz et al. [4] and Burgert and Rüschendorf [2]. Our contribution is to introduce
the copula notion to provide more flexibility to the DRM of sums of rv’s in terms of loss and dependence structure. For
comprehensive details on copulas one may consult the textbook of Nelsen [14]. According to Sklar’s Theorem (Sklar
[15]), there exists a unique copula C : [0, 1]d → [0, 1] such that

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (3)

The Copula C is the joint df of rv’s Ui = Fi(X
(i)), i = 1, ..., d. It is defined on [0, 1]d by C(u1, ..., ud) =

H(F−1
1 (u1), ..., F

−1
d (ud)), where F

−1
i denotes the quantile function of Fi. This means that the DRM of the sum

is a functional of both copula C and margins Fi. Therefore, one must take into account the dependence structure and
the behavior of margin tails. These two aspects have an important influence when quantifying risks. If the correlation
factor is neglected, the calculation of the DRM follows formula (2), which only focuses on distorting the tail. In order
to highlight the dependence structure, we add a distortion on the copula as well. The notion of distorted copula has
recently been considered by several authors, see for instance Frees and Valdez [8], Genest and Rivest [11], Morillas [13],
Crane and van der Hoek [3] and Valdez and Xiao [16]. Given a copula C and a non-decreasing bijection Γ : [0, 1]→[0, 1],
the distorted copula CΓ is defined by

CΓ(u1, ..., ud) := Γ−1(C(Γ(u1), ...,Γ(ud))).

This transformation will affect the joint df H and consequently the df G of the sum Z. Their new forms will be denoted
by HΓ and GΓ respectively. Morillas [13] describes some of the existing families of distortion functions, among which
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the following are frequently used:
Γr(s) = sr, for 0 < r ≤ 1,

Γδ(s) =
ln(δs+ 1)

ln(δ + 1)
, for δ > 0,

Γξ,ϑ(s) =
(ξ + ϑ)s

ξs+ ϑ
, for ξ, ϑ > 0,

Γν(s) =
sν

2− sν
, for 0 < ν ≤ 1/3.

We call the corresponding distorted risk measures by copula distorted risk measure (CDRM) defined as

πΓ
ψ[Z] =

∫ ∞

0

ψ(1−GΓ(z))dz.

It is worth mentioning that if X(1), ..., X(d) are independent, the corresponding copula function C(u1, ..., ud) =
d∏
i=1

ui

is called the product copula and denoted by C⊥. In this case, we have CΓ = C and therefore πΓ
ψ[Z] = πψ[Z].

The remainder of this paper is organized as follows. In Section 2, we give a copula representation of the DRM’s. In
Section 3, we present a more flexible class of copula given by the notion of distorted Archimedean copulas. By the nice
properties of this class and the copula representation of the DRM, we introduce, in Section 4, the CDRM’s. Finally,
an illustrative example, explaining the CDRM computation, is given in Section 5.

2. Copula representation of the DRM

Given a vector of risk losses X = (X(1), ..., X(d)), d ≥ 2, with joint df H and continuous margins Fi, i = 1, ..., d. The

df of the rv Z =
∑d
i=1Xi, is

G(t) =

∫
A(t)

dH(x1, .., xd), for any t ≥ 0,

where A(t) := {(x1, .., xd) : 0 ≤
∑d
i=1 xi ≤ t}. Using the representation (3), we get

G(t) =

∫
A(t)

dC(F1(x2), ..., Fd(xd)).

If we suppose that the copula C and margins Fi are differentiable with densities c and fi, respectively, then

G(t) =

∫
A(t)

c(F1(x1), ..., Fd(xd))
d∏
i=1

fi(xi)dx1, ...dxd.

The change of variables Fi(xi) = ui, i = 1, ..., d, yields

G(t) =

∫ Fd(t)

0

∫ Fd−1(t−F−1
d (ud))

0

...

∫ F1(t−
∑d−2

i=0 F
−1
d−i(ud−i))

0

c(u1, ..., ud)du1...dud. (4)

According to (4), the computation of the DRM corresponding to Z, given in (2), requires the knowledge of the copula
density and the margins of vector X. In particular, for the bivariate case (d = 2), we have

G(t) =

∫ F2(t)

0

∫ F1(t−F−1
2 (u2))

0

c(u1, u2)du1du2.

Whenever X1 and X2 are independent, we have c(u1, u2) = 1, and therefore

G(t) =

∫ F2(t)

0

F1(t− F−1
2 (u2))du2 =

∫ t

0

F1(t− x)dF2(x),

which is the usual convolution of the Fi’s.
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3. Distorted Archimedean copulas

In this paper, we focus on one important class of copulas called: Archimedian copulas. This class contains several
copula families useful in dependence modelling. Their nice properties are captured by an additive generator function
φ : [0, 1] → [0,∞], which is continuous, strictly decreasing and convex with φ(1) = 0. The main advantage of the
Archimedean copulas is the achievement of the reduction in dimensionality of a d-variate distribution in a single
argument. In econometrics, this property has the potential to be of use in models of limited dependent variables,
especially those requiring some probabilistic enumeration on high-dimensional subspaces. In the bivariate case, an
Archimedean copula is defined by

C(u, v) = φ[−1](φ(u) + φ(v)),

where

φ[−1](t) =

{
φ−1(t), 0 ≤ t ≤ φ(0),

0, φ(0) ≤ t ≤ ∞.

Note that φ[−1] is continuous and non-increasing on [0,∞] and φ is the unique generator up to a scaling constant. If the
terminal φ(0) = ∞, the generator is called strict and φ[−1] = φ−1. Numerous single-parameter families of Archimedean
copulas are listed in Table 4.1 in Nelsen [14]. Particular examples are φθ(t) = (t−θ − 1)/θ, φα(t) = (− ln t)α and
φβ(t) = − ln((e−βt − 1)/(e−β − 1)) which are, respectively, the generators of the Clayton family

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ, θ ≥ 0,

the Gumbel family
Cα(u, v) = exp{−[(− lnu)α + (− ln v)α]1/α}, α ≥ 1,

and the Frank family

Cβ(u, v) = − 1

β
ln[1 +

(eβu − 1)(eβv − 1)

eβ − 1
], β ∈ R\{0}.

The generators φθ, φα and φβ are strict and therefore their corresponding copulas Cθ, Cα and Cβ verify

C(u, v) = φ−1(φ(u) + φ(v)).

Next, we discuss some properties of distortion functions acting on bivariate Archimedean copulas. Given an
Archimedean copula C and a strictly increasing bijection Γ : [0, 1]→[0, 1], we consider the function CΓ : [0, 1]2 → [0, 1]
defined by

CΓ(u, v) = Γ−1(C(Γ(u),Γ(v))).

Under what conditions on Γ, the function CΓ is an Archimedean copula?

First, from Theorem 3.3.3. in Nelsen [14], CΓ is a copula if Γ is concave and continuous on [0, 1] with Γ(0) = 0 and
Γ(1) = 1. The following Theorem gives an additional condition so that the copula CΓ remains Archimedean. For
convenience, let K represents the set of the functions Γ verifying the assumptions above.

Theorem 1. Let C be an Archimedean copula with generator φ and suppose that Γ ∈ K, then the copula CΓ is
Archimedean if and only if φ ◦ Γ is convex.

Proof. Indeed, let φ be the generator of the copula C and let Γ ∈ K, then

CΓ(u1, ..., ud) = Γ−1(C(Γ(u1), ...,Γ(ud))).

We have Γ[−1] = Γ−1, then
CΓ(u1, ..., ud) = Γ[−1]φ[−1](φ(Γ(u1)) + ...+ φ(Γ(ud))).

It is easy to show that Γ[−1]φ[−1] = (φ ◦ Γ)[−1], it follows that

CΓ(u1, ..., ud) = T [−1](T (u1) + ...+ T (ud)), (5)

with T := φ ◦ Γ. From Theorem 4.1.4. Nelsen [14], CΓ is Archimedean if and only if T is convex. Notice that φ ◦ Γ is
the generator of CΓ.

Corollary 1. The distortion function t→ Γ⊥(t) := exp(−φ(t)) transforms any Archimedean copula C in the product
copula C⊥.
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Proof. Straightforward.

Next, we see the influence of the distortion of copulas on the association measures. Kendall’s tau and Spearman’s rho
are the most popular measures of association, their representations in terms of the copula C are given by

τ = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1 and ρ = 12

∫ 1

0

∫ 1

0

(C(u, v)− uv)dudv,

respectively. Let τΓ and ρΓ , respectively, denote Kendall’s tau and Spearman’s rho of copula CΓ. According to Theorem
10 in Durrleman et al. [7], we have under suitable assumptions

1 +
τ − 1

a2
≤ τΓ ≤ 1 +

τ − 1

b2
,

and
ρ+ 3

a3
− 3 ≤ ρΓ ≤ ρ+ 3

b3
− 3,

where 0 < a ≤ b <∞ are bounds for the derivative of Γ.

4. Risk measures for sums of losses

It may happen that the model (represented by the copula C) chosen, to fit the data, does not provide enough
information on the dependence structure. This leads us to transform C to a more flexible copula CΓ of the same class.
Consequently, the joint df of X may be represented, via Sklar’s Theorem, as

H(x1, ..., xd) = CΓ(F1(x1), ..., Fd(xd)).

Suppose that C is Archimedean with generator φ, then from Theorem 1, CΓ defined in (5) is also Archimedean.
Assume that CΓ has a density function cΓ, then in view of the representation (4) the df GΓ of the sum Z may be
written as

GΓ(t) :=

∫ Fd(t)

0

∫ Fd−1(t−F−1
d (ud))

0

...

∫ F1(t−
∑d−2

i=0 F
−1
d−i(ud−i))

0

cΓ(u1, ..., ud)du1...dud.

Applying Wang’s principle (1) to the loss distribution GΓ, we have

πΓ
ψ[Z] :=

∫ +∞

0

ψ(1−GΓ(t))dt,

which we call the CDRM. This may be considered as a manner of measuring the risk Z by distorting both the
dependence structure and the distribution tail, without losing the coherence feature. The CDRM adjusts the true
probability measure to give more weight to higher risk events and less weight to the dependence structure. In other
words, the simultaneous transformations yield a new risk measure bounded by the expectation and Wang’s measure,
that is

E[Z] ≤ πΓ
ψ[Z] ≤ πψ[Z]. (6)

In the following example, we verify the previous inequalities on a selected model.

5. Illustrative example

Let X1 and X2 be two risks with joint df represented by the Clayton copula Cθ, θ > 0 and Pareto-distributed margins

F1 and F2 with respective parameters 0 < α1, α2 < 1, that is Fi(xi) = 1 − x
−1/αi

i , xi > 1, i = 1, 2. Kendall’s tau of
Cθ is τ = θ/(θ + 2). Let ψ(x) = x1/ρ, ρ ≥ 1, and Γ(t) = t1/δ, δ ≥ 1. The distorted copula CΓ

θ , denoted by Cδθ , is of
Clayton type with generator (φ ◦ Γ)(t) = (t−θ/δ − 1)/θ and Kendall’s tau is τΓ = (θ/δ)/(θ/δ + 2). The df of the sum
Z = X1 +X2 is

Gδ(t; θ, α1, α2) =

∫ 1−t−1/α2

1

(

∫ 1−(t−(1−v)−α2 )−1/α1

1

cδθ(u, v)du)dv,

where
cδθ(u, v) = (θ/δ + 1)u−θ/δ−1v−θ/δ−1(u−θ/δ + v−θ/δ − 1)−δ/θ−2,

is the density of Cδθ . Figure 1 gives a preview of the effect of the copula distortion.

Journal home page: www.jafristat.net



B. Brahimi, D. Meraghni and A. Necir, Journal Afrika Statistika, Vol. 5, N◦9, 2010, page 260–267.
Distortion risk measures for sums of dependent losses 265

Clayton copula density Distorted Clayton copula density

Figure 1. Clayton copula density with θ = 2 (left panel)
and its distorted copula density with δ = 4 (right panel)

The DRM and the CDRM of Z are respectively denoted by

πρ[Z] =

∫ ∞

2

(1−G(t))1/ρdt, and πδρ[Z] =

∫ +∞

2

(1−Gδ(t))1/ρdt.

We select a Pareto model with θ = 3/2, α1 = 1/3 and α2 = 1/5. We obtain E(Z) = 0.750 and τ = 0.428. For two
different tail distortion parameters ρ = 1.2 and ρ = 1.4 the respective DRM’s are 1.225 and 2.091. The CDRM’s
for distinct values of the copula distortion parameter δ are summarized in Tables 1 and 2, where we see that the
inequalities (6) are satisfied for any value of the copula distortion parameter. This is well shown graphically in Figure
2 in which the three risk measures of (6) are plotted as functions of δ.

δ 1 1.5 2 2.5 3 3.5 4 5 6

τ δ 0.428 0.333 0.272 0.230 0.200 0.176 0.157 0.130 0.111
πδρ[Z] 1.225 1.030 0.988 0.969 0.964 0.961 0.958 0.953 0.950

Table 1. CDRM’s and transformed Kendall tau of the sum of two Pareto-distributed
risks with tail distortion parameter ρ = 1.2.

δ 1 1.5 2 2.5 3 3.5 4 5 6

τ δ 0.428 0.333 0.272 0.230 0.200 0.176 0.157 0.130 0.111
πδρ[Z] 2.091 1.801 1.736 1.712 1.703 1.699 1.694 1.685 1.680

Table 2. CDRM’s and transformed Kendall tau of the sum of two Pareto-distributed
risks with tail distortion parameter ρ = 1.4.
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Figure 2. Risk measures of the sum of two Pareto-distributed risks
with tail distortion parameter ρ = 1.2.

Taking δ = 1 means that no distortion on the dependence structure is made, that is C1 = C, and π1
ρ[Z] = πρ[Z]. In

other words, the CDRM with δ = 1 reduces to Wang’s DRM, which can be seen in the second columns of Tables 1
and 2. This fact is also clear in Figure 2. On the other hand, as δ increases, the transformed Kendall’s tau decreases
meaning that the dependence gets weaker (see the second lines of Tables 1 and 2). Moreover, starting from some δ the
CDRM values become roughly constant while being always greater than the expectation (see the third lines of Tables
1 and 2).

6. Concluding remarks

In portfolio analysis, the dependence structure has a major role to play when quantifying risks. This led us to think of
risk measure taking into account this fact in addition to the tail behavior. In this paper, we proposed a risk measure for
the sum of two dependent losses by simultaneously transforming the distribution tail and the copula, which represents
the dependence between the margins, by means of two distortion functions. We obtained a coherent measure that we
called the Copula Distorted Risk Measure. This new measure has the characteristic to be greater than the expectation
and less than the popular Wang’s DRM. In the insurance business, the main advantage of this property is to reduce
Wang’s premium while respecting the standard axioms of the premium principle.
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