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Air quality in urban areas is a cause of concern because of increased industrial activities that contribute 
to large quantities of emissions. The study assess levels and variations of carbon monoxide (CO), 
nitrogen dioxide (NO2) and sulfur dioxide (SO2) in Blantyre, Malawi using a stationary environmental 
monitoring station (EMS).  Results show that CO level (2.47 ± 1.23 mg m

-3
) were below the Malawian limit 

value (10.31 mg m
-3

). Although, NO2 (4.02 ± 2.47 mg m
-3

) and SO2 (8.58 ± 2.88 mg m
-3

) were significantly 
higher than allowable Malawian Standards (0.52 and 0.23 mg m

-3
, respectively). Discernible variations in 

hourly, diurnal, monthly and seasonal CO, SO2 and NO2 were apparent. Independent t-test confirmed 
that day time values were higher than those at night (p < 0.05). Thus, variations in local weather affect 
the disparity in hourly and diurnal values. Analysis of variance (ANOVA) confirmed significant variations 
in monthly observations. Moreover, independent t-test showed that wet season CO (2.32 mg m

-3
), SO2 

(5.10 mg m
-3

) and NO2 (9.41 mg m
-3

) levels were higher than dry season values (CO = 2.32 mg m
-3

; SO2 = 
3.42 mg m

-3
; NO2 = 8.13 mg m

-3
). A hierarchical cluster analysis (HCA) divided the 10 months into three 

groups based on distribution of CO, SO2 and NO2, air temperature, wind speed and wind direction. 
Furthermore, factor analysis (FA) showed that air temperature had significant contribution to variations 
in mean values of CO, SO2 and NO2 for the entire study period. The study shows a need for constant 
urban air quality monitoring in Blantyre and all urban areas in Malawi. It is recommended that the 
experimental site widen the scope of the study by utilizing the flexibility of the EMS.   
 
Key words: Air pollutants, principal component analysis, developing countries, environmental monitoring 
station, Kaiser normalization. 

 
 
INTRODUCTION 
 
Malawi, like many developing countries, has faced 
increased levels of urbanization and population growth 
over the last few years. Most cities in developing 

countries have population sizes more than twice that of 
50 or so years ago (Baldasano et al., 2003). Urbanization 
and population growth have resulted in a corresponding  
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Table 1. Ambient air quality standards limits for Malawi (MSB, 2005). 
 

Pollutant Maximum concentration in ambient air Average period 

Suspended particulate matter 0.5 1 Year 

     -          PM10, µg/m
-3
 25 1 Day 

     -          PM 2.5, µg m
-3
 8 1 Year 

Carbon monoxide, mg m
-3
  

10.31 8 Hours 

40.10 1 Hour 

Sulfur dioxide, mg m
-3
 

0.52 1 Hour 

0.21 1 Day 

0.05 1 Year 

Nitrogen dioxide, mg m
-3
  

0.23 1 Hour 

0.06 1 Year 

Ozone, mg m
-3
 0.14 1 Hour 

Lead, µg m
-3
 0.50 1 Year 

Photo-chemical oxidants (as ozone), mg m
-3
 

0.26 1 Hour 

0.08 4 Hours 

 
 
 
increase in mobile and stationary fuel combustion 
emissions. Mobile sources e.g. motor vehicles, motor 
cycles and locomotives account for a large part of total 
emissions in major cities (Gerardo and Maricruz, 1997; 
Holloway et al., 2000; Makra et al., 2010). Of the mobile 
sources, diesel engines produce comparatively lower 
concentrations of CO and hydrocarbons (HC) than petrol 
engines (Bendelius, 1996). But, diesel engines emit large 
quantities of NOx and SOx as compared to petrol (Chan et 
al., 1997). These factors and challenges in waste 
management have contributed to the atmospheric 
deterioration such as acid rain, formation of smog and 
different ailments to people living in polluted air 
environment.  

The atmospheric deterioration is deleterious to build-
ings, statues, devices, ecosystem integrity, causes visi-
bility problems (Agrawal et al., 2003; Jalaludin et al., 
2004; Lin et al., 2004; Kan et al., 2010; Fattore, et al., 
2011) and many human health ailments (Cohen et al., 
2004; Shah and Balkhair, 2011). Carbon monoxide and 
NO2 are considered to be amongst other tropospheric O3 
precursors (Macdonald et al., 2011). Yet, tropospheric 
ozone is a threat to human health (WHO, 2003), has 
deleterious impact on vegetation (Fowler et al., 2009). 
During wet deposition, NO2 and SO2 react to produce 
acid rain which damages building structures and 
vegetation. 

Human vulnerability to air pollutants depends on time 
and extent of sensitivity to particular air pollutants 
(Laumbach, 2010). The nature and significance of air 

quality issues depend on the many factors. Such factors 
include size of a city, physical and chemical industrial 
processes, meteorological processes, geographical 
features and social factors (Pires et al., 2008). 

Urban air quality has received great attentions in recent 
years as attested by several research and documentation 
(Wolf, 2002; Agrawal et al., 2003; Vargas, 2003; Riga-
Karadinos and Saitanis, 2005; Brajer et al., 2006; 
Oudinet et al., 2006). The growing concerns on air 
pollution have seen most developing countries intro-
ducing strict regulations (Bailey and Solomon, 2004; Mao 
and Zhang, 2003). Despite scientific investigations and 
abatement strategies, urban air pollution is still on the rise 
in many cities worldwide, or has experienced only small 
improvements (Makra et al., 2010). Besides, ambient air 
pollution serves as a major source of gaseous pollutants 
for indoor air quality (Freijer and Bolemen, 2000). In 
Malawi, we have the Malawi Standards (MS) that were 
developed and published by Malawi Standards Board 
(MSB, 2005). The MS stipulates threshold values for air 
quality (Table 1).  

To improve air quality in cities, a need for air pollution 
control and prediction of trends is urgent. In addition, 
short-term forecasting of air quality is crucial since it 
assists in taking preventive and evasive action during 
episodes of elevated air pollution (Makra et al., 2010).  
Blantyre city is one of such cities where air pollution 
needs scientific evaluation and monitoring hence this 
study. But, information on CO, NO2 and SO2 pollution in 
Blantyre city is scarce and if any, the information is 

 
*Corresponding author. E-mail: ctenthani@poly.ac.mw. Tel: +265 1 870 411. Fax: +265 1 870 578.  
 
Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 
International License 

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


 

 

332          Afr. J. Environ. Sci. Technol. 
 
 
 

 
 
Figure 1. Location of Blantyre district in Malawi (a) found in southern Africa region (b). The blue rectangle is extruded to show the exact 

location of the study site. 
 
 
 
unpublished (Mapoma et al., 2013; Mapoma and Xie, 
2013). 

The study evaluated diurnal, monthly and seasonal 
variations in CO, NO2 and SO2 levels. We envisaged high 
concentrations of CO, NO2 and SO2 during working hours 
(day time) as compared to non-working hours due to 
emissions from mobile and industrial activities. Further-
more, the study evaluated the effect of air temperature, 
wind speed and wind direction on levels of CO, NO2 and 
SO2. Data was collected between April 2011 and January 
2012 using a fixed continuous active environmental 
monitoring station (EMS) located in Blantyre city along 
the main highway connecting Blantyre city and Limbe 
business district in Malawi (Figure 1).  
 
 
MATERIALS AND METHODS 
 
Experimental site 

 
The study took place in  Blantyre city, Malawi.  Tables 2 and 3 sum- 

marize data on Blantyre City, elaborating on average climate 
condition, geographic data and commercial activities of the city. 
Furthermore, Figure 1 illustrates the geographical location of the 
city. Blantyre is a commercial city with high vehicle and motorcycle 

traffic in its main roads. Blantyre has designated industrial areas 
with Makata being the main industrial site (Figure 1). The 
experimental site is located near the main highway (Figure 1). The 
main highway (Chipembere) shown in Figure 1 connects Blantyre 
business district and Limbe business district. As such, the highway 
is one of the roads with higher vehicle traffic intensity during peak 
hours. Running parallel south of the main highway is another busy 
road (Kenyatta drive) that reduces congestion in the main highway 
when driving to Limbe (Figure 1). As such Kenyatta drive is one of 

the busiest roads in Blantyre.   
 
 
Study design 
 
A stationary EMS is located at 25 m above ground on top of the 
building at the experimental site in Blantyre city (Figure 1). The 
experimental site is at 1080 m mean altitude above sea level on 
coordinates 15°48'07"S, 035°01'37"E. The EMS (model MM900) is 
a dynamic and continuous data logger 
(http://www.nr.no/nb/projects/environmental-monitoring-station?
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Table 2. Average climate data for Blantyre district
a
. 

 

Month January February March April May June July August September October November December Year 

Average high °C 28 28 28 28 26 24 24 26 29 32 31 29 27.8 

Average low °C 20 19 19 18 15 13 13 14 17 19 21 20 17.3 

Precipitation mm 208 206 170 43 8 3 3 3 5 20 86 132 887 
 
a
Source: http://www.weatherbase.com/weather/weather.php3?s=39676&cityname=Blantyre-Malawi. 

 
 
 

Table 3. Summary of location and important productive activities in Blantyre. 

  
Location / important productive activities Description 

District area 228 km
2
 

Population 1,895,973 (www.worldgazetteer.com, 2012) 

Average Elevation 1,039 m above mean sea level 

Coordinates 15°47’10”S; 35°0’21”E 
  

Some commercial activities related to air quality issues 

Manufacturing and production of paint, fertilizers, soft drinks, detergents, milk pasteurization, steel industries. 

Petroleum storage and distribution. 

Waste management 

Locomotive transportation 

Road transport network hub for the southern region 

 
 
language=en). It is capable of monitoring a wide range of 
air quality parameters due to its flexibility. Up to 30 sensors 

can be attached to the equipment based on needs. At the 
moment of data collection, the EMS sensors available were 
for average air temperature (°C), wind speed (m s

-1
), wind 

direction (degrees), SO2 (parts per million (ppm)), NO2 
(ppm) and CO (ppm). Hourly recording of data for a 
continuous 24 h period was chosen for 10 months (1

 
April 

2011 to 31 January, 2012). Choice of hourly data logging 

as opposed to half hourly recording was to lessen battery 
power loss. Thereafter, the units (ppm) for CO, SO2 and 
NO2 were converted to mg m

-3
 before data analysis 

(Formula 1). Then, hourly values were grouped into non-
working and working h of the 24 h period. The non-working 
hours are between 7:00 pm and 7:00 am while the working 
hours are between 7:00 am and 7:00 pm. 

1-31-

-1-1
3

L m 1000 x )mol (L meMolar volu

g mg 1000 x )mol (g massMolar  x (ppm)x 
)m mg(x      (1) 

 
 
Statistical analysis 

 
Data analysis used IBM

®
 SPSS

®
 statistics version 20 

coupled with SigmaPlot 12.5 (http://www.sigmaplot.com/) 
for graphical illustrations. SPSS is a versatile statistical 
package used for statistical data analysis in many scientific 
and medical studies.  

The SPSS base software includes descriptive statistics, 
parametric and non-parametric tests, linear regression and 
multivariate statistics (IBM, http://www-

01.ibm.com/software/analytics/spss/). In this study, outliers 

and extreme values were removed using through box plot 
method. One sample t-test was used to compare CO, SO2 

and NO2 mean values with national standards for air 
pollutants (MSB, 2005). Moreover, independent samples t-
test compared diurnal and seasonal mean values while 
ANOVA assisted in understanding hourly and monthly 
variations amongst the dataset.  

Multivariate statistics identified the underlying factors 
attributing to variations in CO, SO2 and NO2. The 

multivariate tools selected for this analysis were 
hierarchical cluster analysis (HCA) and factor analysis 
(FA). HCA and FA are quantitative and independent 
approaches used to classify months and making of 
correlations amongst variables, respectively. The goal of 
HCA was to examine and classify months based on 
distribution of the dataset. The Squared Euclidian distance 

http://en.wikipedia.org/wiki/Precipitation
http://www.sigmaplot.com/
http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/analytics/spss/
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was used as a similarity/dissimilarity measure, while Ward’s linkage 
method linked the clusters (Yidana, 2010; Hair et al., 2011). Raw 
data was standardized by converting each variable to standard 

scores by subtracting the mean and dividing by the standard 
deviation for each variable (Hair et al., 2011). 

The FA technique was considered useful in this study to identify 
underlying variables that explain the pattern of correlations within 
the dataset.  Principal component analysis (PCA) was the extraction 
method employed while the rotation method was Varimax with 
Kaiser Normalization (Hair et al., 2011). 
 
 

RESULTS AND DISCUSSION 
 

Levels of CO, NO2 and SO2 
 
Table 4 presents results obtained between April 2011 
and January 2012. The averages are direct computations 
from hourly recorded data over a 24 h continuous period. 
A one sample t-test compared the results with national air 
quality standards (MSB, 2005). With this test the mean 
value of CO (2.47 mg m

-3
) was significantly lower than 

the threshold limit value (Table 4). Similar CO 
observations were made in an earlier performed in the 
main highway (Mapoma et al., 2013) near the 
experimental site (Figure 1). However, the current study’s 
sampling and experimental design were different from 
that of Mapoma et al. (2013). The earlier study’s 
sampling position was at 3 m elevation (ground surface 
reference) as compared to 25 m above ground. 
Conversely, the test results for SO2 (4.02 mg m

-3
) and 

NO2 (8.58 mg m
-3
) were significantly higher than standard 

limit values averaged over a 1 h period (Table 4). Such 
higher values are detrimental to infrastructure and a 
health hazard to human beings.  

The recorded microclimatic variables show that 
November had the highest recorded air temperature over 
the experimental site while the lowest mean monthly air 
temperature was recorded in July (Table 4). On the 
contrary, the highest mean value for wind speed was in 
August and the lowest computed for June and December 
(Table 4). 

The concentration of NO2 and SO2 were relatively 
highest in April 2011 and January 2012 (Table 4). The 
lowest concentrations for NO2 and SO2 were observed in 
August. Across the entire year, it shows that the month of 
August is the turning point since it is the month of the 
lowest recorded average NO2 and SO2 concentration. 

Concentration of CO was highly variable with highest 
levels in April 2011 and January 2012 (Table 4). Thus, 
differences in local weather contributed to the observed 
trends with wind direction and air temperature as main 
factors (Figures 2 and 3, respectively). 

The study scope concentrated on three pollutants due 
to lack of sensors to detect more pollutants. Besides, 
reliance on battery mains that requires constant checking 
and recharging has effect on continuity of data collection 
unless constant checking is employed.  

 
 
 
 
Variances  
 
Hourly and diurnal variations 
 
The mean value of air temperature for the working hours 
was 21.7°C (standard deviation, SD = 4.05) while that of 
non-working hours was 18.4°C (SD = 3.51). This is an 
obvious characteristic considering daily sunlight energy 
routine. Even though, wind speed varied on hourly basis 
(F = 4.077, p < 0.05), the mean value for working hours 
(WSmean = 4.88 mg m

-3
; SD = 2.04) did not differ from that 

of non-working hours (WSmean = 4.87 mg m
-3

; SD = 2.10) 
as compared to when using independent t-test (p < 0.05).   

The study noted remarkable hourly variations of CO, 
SO2 and NO2 characterized by high values during the day 
time as compared to night time (Figure 4). ANOVA 
results show significant variations in hourly values over 
the entire study period for CO (F = 32.049, p < 0.05), SO2 
(F = 9.488, p < 0.05) and NO2 (F = 12.709, p < 0.05). 
Thus, indicating significant influence of human activities 
and variations in weather (Elminir, 2002). Independent 
samples t-test showed that working hours mean values of 
CO (2.81 mg m

-3
), SO2 (4.37 mg m

-3
) and NO2 (9.10 mg 

m
-3

) were significantly higher (p < 0.05) than those of 
non-working hours mean values of CO (2.13 mg m

-3
), 

SO2 (3.66 mg m
-3

) and NO2 (8.06 mg m
-3

). More so, the 
computed standard deviations (SD) for working hour 
values of CO (1.28), SO2 (2.47) and NO2 (2.86) were 
higher than those of non-working hours CO (1.08), SO2 
(2.42) and NO2 (2.81) suggesting that working hour 
values varied more than non-working hour values (Figure 
4). This suggests that these pollutants are a result of 
human activities. During working hours (day time) human 
activities are more than at night. Transportation in 
Blantyre city is more active during the day. The same can 
be said of heavy traffic in the main roads such as the 
Chipembere highway and industrial activities near the 
experimental site. Based on variations in air temperature 
(Figure 3) as compared to CO, SO2 and NO2 variations 
(Figure 4), much of the variations can be attributed to 
temperature changes and may be the persistent wind 
direction (Figure 2). 
  
 
Monthly and seasonal variations 
 
Across the entire study period, CO, SO2 and NO2 
concentrations varied significantly amongst months (F = 
65.781, 437.652 and 119.553 respectively; p < 0.05). 
Also, the variations in mean air temperature and wind 
speed across amongst months for the study period were 
significant (F = 281.124 and 53.977, respectively; p < 
0.05). As mentioned earlier, the variation in weather for 
each month may contribute to the observed differences. 
A post hoc pair wise analysis implemented with least 
square deviations (LSD) showed some pairs of months  
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Table 4. Summary of results of the entire study period aggregated into minimum and maximum monthly values.  
 

Month Air temperature (°C) WS (m s
-1

) CO (mg m
-3

) SO2 (mg m
-3
) NO2 (mg m

-3
) 

April 11 Min 14.3 0.0 1.15 3.76 0.00 

Max 29.8 10.7 8.02 18.82 20.96 

Mean 20.4 4.5 3.04 7.91 11.26 

Std. Dev 2.7 1.9 1.12 3.32 5.07 

May 11 Min 13.6 0.0 0.00 0.00 2.62 

Max 28.0 10.5 3.44 9.41 15.72 

Mean 20.2 4.4 2.32 3.73 8.49 

Std. Dev 2.6 1.7 0.64 1.15 1.37 

June 11 Min 10.0 0.0 0.00 0.00 0.00 

Max 27.0 11.0 4.58 9.41 15.72 

Mean 18.0 4.1 1.95 3.83 8.67 

Std. Dev 3.6 2.6 0.92 1.69 1.76 

July 11 Min 10.1 0.0 0.00 0.00 0.00 

Max 26.9 10.7 12.60 11.29 15.72 

Mean 17.0 4.7 2.81 3.18 7.77 

Std. Dev 3.7 2.2 2.15 1.45 1.75 

August 11 Min 10.3 0.0 0.00 0.00 0.00 

Max 27.1 11.0 4.58 16.93 20.96 

Mean 17.0 5.8 2.02 2.89 7.67 

Std. Dev 4.0 2.3 1.07 1.63 1.93 

September 11 Min 10.3 0.0 0.00 0.00 0.00 

Max 30.1 11.0 6.87 9.41 18.34 

Mean 20.9 5.2 2.32 3.28 7.80 

Std. Dev 3.2 1.8 0.75 1.28 1.88 

October 11 Min 10.5 0.0 0.00 0.00 0.00 

Max 34.8 11.0 6.87 11.29 15.72 

Mean 22.5 5.4 2.52 3.61 8.41 

Std. Dev 5.0 2.1 0.99 1.84 2.32 

November 11 Min 11.9 0.2 0.00 0.00 0.00 

Max 34.7 11.0 4.58 9.41 15.72 

Mean 23.5 5.5 2.66 3.31 8.68 

Std. Dev 3.9 2.3 0.91 1.60 2.56 

December 11 Min 10.2 0.0 0.00 0.00 0.00 

Max 32.5 10.8 9.16 18.82 20.96 

Mean 21.5 4.4 2.39 3.59 8.03 

Std. Dev 3.1 1.7 0.85 1.53 2.32 

January 12 Min 12.3 0.0 0.00 0.00 0.00 

Max 27.7 10.4 11.46 18.82 20.96 

Mean 20.7 4.6 3.10 6.60 10.18 

Std. Dev 2.5 2.4 2.28 4.52 5.27 

   Overall mean 20.1 4.9 2.47 4.02 8.58 

MSB 
  

10.31 0.21 0.23 

p-value 
  

< 0.05 < 0.05 < 0.05 
 

Min = Minimum, Max = maximum, Std. Dev = standard deviation, MSB = Malawi standards (MSB 2005), p-value = significance level 
for a one sample t-test. 

 
 
 

that had similar results. The paired mean CO values that 
were not significantly different were for pairs of 

April/January, May/September, May/December, 
September/December and June/August (p > 0.05). The  



 

 

336          Afr. J. Environ. Sci. Technol. 
 
 
 

 
 
Figure 2. Wind direction in Blantyre illustrating the prevailing southerly winds consistent with a wind speed of 4-6 m s

-1
. 

 
 
 

months of May, June, October and December SO2 mean 
values did not significantly differ (p > 0.05) as was the 
case for the months of July, September, November 
paired against each other. Similar observations were 
noted for NO2 results for two groups (May, June, October, 
November) and (July, August, September, December) 
when paired against each other within the group (p > 
0.05).    

As indicated earlier, there were significant diurnal 
variations (p < 0.05) on a daily basis. As such, the same 
pattern showed up in seasonal diurnal variations except 
for wind speed (Figure 5). Furthermore, independent t-
test showed that there were significant differences (p < 
0.05) between wet season mean values (CO = 2.73 mg 
m

-3
; SO2 = 5.10 mg m

-3
; NO2 = 9.41 mg m

-3
) and dry 

season mean values (CO = 2.32 mg m
-3

; SO2 = 3.42 mg 
m

-3
; NO2 = 8.13 mg m

-3
). Similarly, there were significant 

differences between dry and wet season mean air 
temperature and wind speed (p < 0.05). Higher air 

temperature values were noted in wet season (21.7°C) as 
compared to dry season (19.3°C). But, higher wind speed 
values occurred in dry season (4.94 m m

-1
) as compared 

to wet season (4.77 m m
-1

) (Figure 3). 
Temperature is a driving force in chemical reactions 

while lower wind speed may promote buildup of 
chemicals in the atmosphere since there will be less 
dispersive force to dilution effect. Thus, pollutants will 
readily react to form new compounds in ambient air such 
as (Bailey et al., 2005): 
 

NO2 + O2  NO3 (dry deposition)                                (2a) 

NO3
-
 + H2O  HNO3 + OH

-
 (wet deposition)               (2b) 

CO + 2O2 + hv  CO2 + O3 (fast process)                  (3) 

SO2 + O2  SO3 (slow process)          (4a) 

SO3 + H2O  H2SO4            (4b) 
 

During wet season, the humid atmosphere and high air 
temperature may promote photochemical reactions of 
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Figure 3. Hourly variations of air temperature and wind speed recorded using the EMS. 

The graphs indicate mean values where error bars represent standard deviation of 
mean. 

 
 
 
NO2 and SO4 to form their acidic products leading to 
attenuation of the pollutant. For instance, in fog or cloud, 
SO2 reacts with water to form sulfurous acid (H2SO3) 
followed by oxidation to form H2SO4, a similar outcomeof 
Equation 4 (Bailey et al., 2005). Yet, such products are 
caustic and may destroy natural and man-made 
infrastructure. However, low wind speed and maybe 
consistent wind direction lead to reduced air pollutant 
dilution. Also, maybe the fact that higher temperatures 
leads to air from lower level to rise, increasing pollutant 
concentration in air at the level of the EMS. As such, 

effective recording of emissions from vehicles and motor 
cycles by the instrument is increased. CO reacts in air to 
form CO2 (Equation 3). Due to CO having a lower 
residence time than SO2 and NO2, the formation of CO2 
reduces the concentration in ambient air way below 
national threshold values in Blantyre.  
 
 
Multivariate analysis 
 
Hierarchical cluster analysis (HCA) revealed natural
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Figure 4.  Hourly variations of CO, SO2 and NO2 recorded using the EMS. 

The graphs indicate mean values where error bars represent standard 
deviation of mean. 

 
 
 
groupings of months within the study period. After 
drawing the phenon line at rescaled distance of 7.5, three 

clusters emerged.  The choice of phenon line is based on 
semi-objective inspection of the dendrogram (Figure 6).  



 

 

Mapoma et al.          339 
 
 
 

 
 
Figure 5. Diurnal and seasonal variations of air pollutants and microclimatic variables for the entire 

study period. The error bars represent standard deviations of mean. The labels in the x-axis represent 
wet season non-working hours, wet season working hours, dry season non-working hours and dry 
season working hours respectively. 

 
 
 
Cluster I consists of August 2011, September 2011, 
October 2011 and November 2011. Cluster II is a group 
of May 2011, June 2011, July 2011 and December 2011 
while Cluster III is a pair of April 2011 and January 2012.  

The first cluster consists of months belonging to the dry 
warm season. The second cluster is dry cool and 
sometimes humid season except December which 
belongs to the warm wet season. The last cluster (April 
and January) is a pair of months in the wet season. Thus 
the first cluster describes months with lower air 

temperature, high wind speed and relatively lower CO, 
SO2 and NO2. The last cluster (April and January) 
describes months having the highest concentrations of 
CO, SO2 and NO2 (Table 4).  

Furthermore, FA’s principal component analysis (PCA) 
explained the impact of microclimatic variables on CO, 
SO2 and NO2. Based on significant Eigen values (Hair et 
al., 2011), PCA yielded two factors otherwise referred to 
as principal components (PCs) in this case. The two 
factors or PCs explained 52.3% of the total variance. The  
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Figure 6. A dendogram produced from hierarchical cluster analysis. 

The phenon line (red) was drawn at a rescaled distance of 7.5 to 
identify monthly clusters based on distribution of CO, SO2, NO2, air 
temperature, wind speed and wind direction. 

 
 
 

Table 5. Factor analysis’ rotated component matrix 

showing significant factor loadings (principal 
components, PCs)

a
. 

 

Parameter  PC1 PC2 

Air temperature  0.714 

Wind direction  0.634 

CO 0.669 -0.103 

NO2 0.933  

SO2 0.940  

Wind speed  -0.498 

Eigenvalue   2.039 1.099 

Variance explained (%) 33.99 18.32 
 
a
Extraction method was principal component analysis 

and rotation method being Varimax with Kaiser 

normalization. 

 
 
 
first factor accounted for 40.6% of the total variance. 
From the rotated component matrix (Table 5), PC1 
explained the positive relationship amongst the three air 

pollutants (CO, SO2 and NO2) suggesting their co-
occurrence in air in the vicinity of the experimental site.  

The second PC identifies the positive high loading of air 
temperature, wind direction and negative loading of wind 
speed (Table 5). In this PC, air temperature has a 
negative relationship with wind speed. Furthermore, a 
significant positive loading of CO is explained in PC2. 
The negative influence of air temperature on CO is 
shown and so is the positive impact of wind speed on 
CO. The rotated component in space (Figure 7) illustrates 
the relationship amongst the variables where mostly air 
temperature shows a strong influence on CO, SO2 and 
NO2 as compared to wind speed and wind direction. 
From the correlation matrix (Table 6), there is a strong 
correlation between SO2 and NO2 (p = 0.611) which 
suggests similar sources of SO2 and NO2.   

Besides vehicles, industrial activities closer to the 
experimental site such as milk production, fertilizer 
manufacturing, animal slaughter company and matches 
making that may involve burning of fossil fuels as well as 
sulfur and nitrogen ingredients or products are emission 
sources. Moreover, motor vehicles contribute large 
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Figure 7. Rotated component graph showing relationship of variables in space. 

 
 
 

Table 6. Correlation matrix of initial solutions showing coefficients and significance levels.  

 

Parameter Air temperature WD CO NO2 SO2 WS 

Correlation coefficients  

Air temperature 1.000      

WD 0.123 1.000     

CO -0.072 0.010 1.000    

NO2 0.006 0.022 0.414 1.000   

SO2 0.012 0.013 0.438 0.900 1.000  

WS -0.077 -0.047 0.011 -0.030 -0.012 1.000 
  

      

P-value 

Air temperature       

WD 0.000      

CO 0.000 0.236     

NO2 0.333 0.057 0.000    

SO2 0.192 0.171 0.000 0.000   

WS 0.000 0.000 0.206 0.015 0.198  
 

WD = Wind speed, WS = wind direction. 

 
 
 
quantities of atmospheric NO2 pollutant in cities as 
compared to other sources (Makra et al., 2010). As such, 
most of the NO2 detected may be from vehicular sources. 
Considering the low residence time of CO, we can 
conclude that the main source is vehicular emissions in 
the main highway (Mapoma et al., 2013) as opposed to 
industrial activities.  

With the observed relationships between CO, SO2 and 
NO2 on one hand and micro climatic variables on the 
other, various remarks can be made from the results. 
Effect of wind speed and wet periods can be explained 
as: most of the time wind is calmer at night than day time, 
leading to a relatively stable atmosphere at night (Elminir, 
2002).  The  stable  atmosphere  hinders   mixing  of  air  
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leading to reduced concentrations of CO, SO2 and NO2 to 
rise to 25 m. Moreover, transport effects due to increased 
wind speed in dry season give an explanation for the 
dilution and clearing of the local air (Elminir, 2002). This 
explains in part the low concentrations of CO, SO2 and 
NO2 recorded at the experimental site at night and in dry 
season coupled with lower air temperature. Effect of 
changes in wind direction is significant on hourly 
variations in CO, SO2 and NO2 while consistent southerly 
winds over the entire study period (Figure 2) show that 
wind direction effect is not critical in explaining the 
seasonal variations. 
 
 
Conclusions and recommendations  
 
The observed CO level (2.47 ± 1.23 mg m

-3
) fell below 

the Malawian limit value of 10.31 mg m
-3
. But, NO2 (4.02 

± 2.47 mg m
-3

) and SO2 (8.58 ± 2.88 mg m
-3

) were 
significantly higher than allowable Malawian Standards 
(0.52 and 0.23 mg m

-3
, respectively). Such higher values 

are detrimental to infrastructure and are a health hazard 
to human beings. The variations in hourly, diurnal, 
monthly and seasonal CO, SO2 and NO2 signify the 
important contributions of industrial and transportation 
activities in the city. Variations in vehicle traffic during the 
day (peak hour as compared to non peak hours), 
coincides with variations in emission levels. Independent 
t-test showed that wet season CO (2.32 mg m

-3
), SO2 

(5.10 mg m
-3

) and NO2 (9.41 mg m
-3

) levels were higher 
than dry season values (CO = 2.32 mg m

-3
; SO2 = 3.42 

mg m
-3
; NO2 = 8.13 mg m

-3
). Factor analysis’ (FA) 

showed that air temperature had significant contribution 
to variations in mean values of CO, SO2 and NO2. Based 
on results, the study shows a need for constant urban air 
quality monitoring in Blantyre and urban cities in Malawi. 
It is recommended that the experimental site widen the 
scope of the study by utilizing the flexibility of the EMS.    
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