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ABSTRACT 
A system of low dimensional condensed ultracold atomic gases inside a field of a laser-driven 
optical cavity exhibits dispersive optical bistability. During such a process the system also 
shows quantum fluctuations. Condensate fluctuations are highly manifested particularly in low 
dimensional systems. In this paper we have investigated the theory and manifestation of 
fluctuations in quantum optical systems in low dimensional Bose-Einstein condensates. We 
have described the system using the mean-field approximation. In this study we have verified 
that low dimensional quantum gases exhibit not only highly fascinating properties but also we 
have indicated that the use of mean field theory to describe quantum gases in low dimensions is 
highly restricted since the possibility of generating low dimensional bosonic condensates is 
dominated by the existence of highly sensitive and intrinsic quantum fluctuations. 
 
Keywords: Bose-Einstein condensates, Optical bistability, Quantum fluctuations, 

Optomechanics, Low dimensionality, Radiation field 
 
1. INTRODUCTION 

Quantum fluctuations are variations or changes in the amount of one or both of the conjugate 

variables in a point in space which arise from the Heisenberg Uncertainty Principle. Fluctuations 

can be classified as quantum fluctuations and thermal (classical) fluctuations. In every physical 

process there are always some sort of fluctuations (Mebrahtu, 2006). The level of manifestation 

of these fluctuations on different systems depends mainly on the system considered and also on 

different aspects such as temperature, the nature of particles and their interaction, and the 

environment of the system under consideration (Mebrahtu et al., 2006). Regardless of their level 

of manifestation, fluctuations do always exist intrinsically. Hence they cannot be avoided 

completely by any means. However it is possible to suppress or minimize them to a certain 

extent by different mechanisms such applying the approach of quadrature fluctuations 

(Mebrahtu, 2005) in a given quadrature without violating the Uncertainty Principle. Other kinds 

of fluctuations that exist in nature are those induced by nonlinear dynamics. Bose-Einstein 

condensation is characterized by a cubic nonlinearity in the so called Gross-Pitaeviskii equation. 

In this paper we focus on quantum fluctuations of low dimensional Bose-Einstein condensates in 

optical systems. 
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A system which considers low dimensional ultracold atomic condensates inside a field of a laser-

driven optical cavity exhibiting dispersive optical bistability at very low temperature 

incorporates more fluctuations due to the dispersive phenomena.  

One unique feature of Bose-Einstein condensates in optical lattices is the occurrence of 

dynamical instability, which in a homogeneous system is only present for attractive interactions 

but can be induced by the presence of a periodic potential even when the interactions are 

repulsive. Dynamical instability implies that small deviations from the stationary solution grow 

exponentially in time. 

Open nonlinear systems often produce bistabilities as well as dynamical phase transitions which 

can lead to fluctuations. A very good example of this phenomenon is the behavior of a Bose-

Einstein condensate (BEC) in a pumped optical cavity, where the nonlinearity is produced by 

the dispersive atom light interaction as indicated in the references (Brennecke et al. 2007, 

Colombe et al. 2007, Brennecke et al. 2008, Ritter et al. 2009, Murch et al. 2008, Gupta et al. 

2007, Klinner et al. 2006, Slama et al. 2007, and Mekhoy et al. 2007). It is evident that weak 

cavity pumping causes classical electromagnetic fields to be built up between the mirrors of an 

optical cavity. In the cavity, atoms are coupled dispersively with the radiation field and detune 

the cavity according to the overlap of their spatial distribution with the mode function of the 

electric field. Then after, the cavity resonance frequency can be shifted away from or towards 

the frequency of the pumping laser. At this level a big variation in intensity can be induced 

merely by the spatial redistribution of the atoms. It is also the case that the intensity change 

translates into the variation of the depth of the optical dipole potential, and so it acts back upon 

the atomic distribution itself. In a very small region of the parameter settings close to the cavity 

resonance two stable or metastable configurations can exist which could give rise to a 

dynamical phase transition. 

Non-classical states of the electromagnetic field are produced by an interaction between light 

and matter/atoms. At this stage, one can identify two fundamental mechanisms namely: the 

emission of atom radiation by resonant interaction and the interaction of light with a non-linear 

medium in a non-resonant process. For resonant interactions a system can be active or passive 

depending on the population of the resonant atomic levels. Active systems such as lasers 

operate with population inversion of the atomic levels.   

Since recent years the atom-light interaction is one of the important issues in the study of 
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ultracold quantum atomic gases. The most universal tool in accessing and studying the 

properties of the system of ultracold atoms is either by slowing the cloud of atoms, trapping 

them in classical potentials, cooling them further applying evaporative cooling which can lead 

to the generation of Bose-Einstein condensates, putting obstacles in their path, or finally 

detecting and imaging them. Besides, recent proposals have raised the possibility of quantum 

state preparation of the atomic ensemble with the help of measuring the output photon signal of 

a pumped optical resonator (Mekhov and Ritsch, 2009; Chen et al., 2007; Chen and Meystre, 

2009; Marquardt and Girvin, 2009; Law, 1995; Vitali et al., 2007). The cornerstone of such a 

quantum state preparation with the help of a quantum nondemolition measurement is also the 

mutual back action between the atomic and photonic degrees of freedom. The study of 

correlations between atomic motion and light generated by atom-light interaction in an optical 

cavity is therefore of fundamental importance to our current study. 

Optomechanics is an important research area on the manifestation of light-matter interaction, 

where the radiation pressure force of a single mode Fabry-P´erot resonator is used to manipulate 

the center of mass motion of a given mechanical oscillator. The reason for the popularity of 

optomechanical study, besides experimental realizability, is that the theoretical description 

could be done in a relatively simpler way, involving only few modes of the cavity field and one 

mode for the motion of the mirror (Genes et al., 2008; Szirmai et al., 2009). Such system is an 

ideal playground to test correlations between light and mesoscopic objects, to understand the 

underlying physics and to predict the possible applications in quantum information processing   

Experiments which are recently conducted with ultracold bosons in optical resonators (Mekhov 

and Ritsch, 2009; Chen et al., 2007; Chen and Meystre, 2009; Marquardt and Girvin, 2009) unify 

nicely the above concepts. Single collective motional excitations of a Bose-Einstein condensed 

atomic sample couples with a cavity radiation field. Starting experiments with a pure Bose-

Einstein condensate, other motional excitations can be safely disregarded and so a situation 

analogous to optomechanics can be realized without a movable mirror, but rather with the 

collective motion of an ensemble of atoms. The difference between the experimental tools of 

traditional optomechanical systems and those with ultracold gases complement each other very 

nicely, while the theoretical description being very similar. 

The main focus of this paper is to discuss quantum fluctuations and correlations generated in a 

system of ultracold bosonic gases and the radiation field, particularly near a region of parameter 
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settings where the system shows bistability and where the optomechanical simplification can be 

better manipulated. Photons leaving out of the resonator can make the cavity field noisier, 

which affects the dynamics of atomic motion as indicated in the reverences by Nagy et al., 2009 

and Horak et al., 2000. On the other hand, quantum fluctuations of the atomic field have a back 

action on the photon statistics (correlations). As a result correlated fluctuations of the light and 

matter wave fields appear. Such fluctuations are strongly enhanced around the critical regime of 

bistability as it is the case with the decrease of dimensionality. Studies associated with 

correlations are further motivated by the need for justifying the basic assumptions of the 

commonly used mean-field theories as described by Horak and Ritsch, 2001; Nagy et al., 2008; 

Zhang et al., 2008; and Zhang et al., 2009. These authors took into account that the atom-photon 

cross correlations are negligible and expectation values of the light and atomic operators can be 

easily decoupled. 

The paper is organized as follows. In the first section a general introduction is given. Section II 

on the other hand focuses on the model and the theoretical description of the system in the 

mean-field level. Other theoretical models considered in this section include cavity cooling of 

Bose-Einstein condensation excitations as elaborated by Horak and Ritsch, 2001, spatial self-

organization of a BEC in the cavity as indicated in the works by Nagy et al., 2009; Horak et al., 

2000; Horak and Ritsch, 2000; and Zhang et al., 2008, and transient collective atomic recoil 

lasing as verified by Zhang et al., 2008; Zhang et al., 2009; and Gopalakrishnan et al., 2009 are 

recapitulated here to give a full account of the mean field dynamics of a condensate in a cavity. 

The aim here is to arrive at the optomechanical model and verify the assumptions and 

approximations in order to reach at the final stage. Furthermore, a special emphasis has been 

given for the effect of nonlinearity, namely:  

 the nonlinearity caused by atom-light interaction which is responsible for the creation of 

a periodic optical potential and also for an effective atom-atom collective interaction, 

and  

  the nonlinearity caused by atomic s-wave collisions.  

In section III, fluctuations around the mean field order parameter (condensate wave function) 

for low dimensional BEC are presented at depth and theoretical results are compared with 

experimental observations wherever applicable. Besides that, auto- and cross-correlations of 

quantum fluctuations of the fields are assessed in the stationary state formed by the balance of 
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cavity loss and vacuum noise driving. Finally a summary is given in the fourth section. 

 

2. DESCRIPTION OF THE SYSTEM  

The system under consideration comprises of a single mode optical Fabry-Perot resonator with 

a waist significantly smaller than the cavity length; and a sample of low dimensional dilute 

ultracold bosonic atoms (Bose-Einstein condensate). Such a condensate is supposed to be a 

cigar-shaped along the cavity axis but with a strong transverse confinement. The radiation field 

inside the cavity is pumped through one of its mirrors by a laser having a frequency p and 

wave number ck p / , with c  being the speed of light. The laser frequency here is considered 

to be a far detuned from the atomic transitions. During such considerations the population of the 

electronic excited states is assumed to be small enough to be neglected. When the population of 

such exited states is negligible, the atomic internal degrees of freedom are also considered to be 

negligible or frozen. Consecutively the atom-light interaction is assumed to be purely 

dispersive. On the other hand, the cavity frequency c  for such a system has to lie close to the 

pump frequency p . On the other hand, the detuning frequency Cp   0  is found to be 

comparable to the value of the wave number k . This value is, latter, considered to be half of the 

inverse lifetime of the photons inside the cavity. 

In a frame co-rotating with the pump laser field, the total Hamiltonian of such a system can be 

approximately expressed as 

0
ˆˆˆˆˆˆ HHHHHH CLACCA  ,                                (1) 

where AĤ  is the Hamiltonian operator of the atoms in the ground state inside the cavity which is 

described as 
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where )(x  is the one dimensional condensate wave function which is also referred to as the order 

parameter for a given condensate, m  is the mass of the condensed atoms, )(xVext  is the external 

confining potential along the cavity axis and g  is the so-called coupling constant in one 

dimension. It is a characterized by the s-wave scattering constant in one-dimension. 

Furthermore, the term CĤ  of the Hamiltonian stands for the radiation field of the empty single-
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mode cavity which is described by 

aaH CC ˆˆˆ   ,                                                                                         (3) 

where   is the reduced Planck’s constant, C is the cavity coupling constant for the single-mode and aa ˆˆ  

stands for the photon number of the radiation field or the photon number operator. The dispersive 

interaction between the cavity radiation field and the atoms in this low excitation limit is given 

by the AC-Stark shift which is also referred to as a light shift and is given by the expression: 

dxkxxxaaUH AC )(cos)()(ˆˆˆ 2
0    ,                                                       (4) 

where 0U  being the single atom light-shift described by AgU  /2
0 which is a unique 

longitudinal mode and a function of the single mode cavity, i.e., )(cos kx with wave 

number  /2/  ck P . The Hamiltonian operator describing the coupling of the cavity field 

with that of the pump laser is expressibel as 

      ,ˆˆˆ *  aaH CL                                                                                  (5) 

where   is the strength of the driving field, â / â  is the annihilation/creation operators; and the 

asterisk on   elaborates complex conjugation. The last part of the Hamiltonian, written as 

aaH ˆˆˆ
0

  , describes the interaction of the cavity field with the broadband reservoir of the 

external radiation field modes through a partially transmittive mirrors with k  being the cavity 

damping rate containing the nonlinearity )2( (Mebrahtu, 2005). This interaction is incorporated 

within the Markov approximation by means of introducing a loss rate of k2  and a Gaussian 

white noise operator )(ˆ t  in the Heisenberg equation of motion for the field operators as 

indicated by Moore et al. 2009 and the references therein. 

The equation of motion or the time evaluation of the photonic annihilation operator â  is given 

by 

  )(ˆˆ)(ˆ)(),(),()(ˆ tiitaikdxxUtxtxta
dt

d
i C                        (6) 

with )(cos)( 2
0 kxUxU   being the local single atom light-shift, which is a periodic function with 

a period of 2/L , since it contains the mode function squared. The operator )(ˆ t describes the 

correlation relation: 
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)(2)(ˆ)(ˆ '' ttktt   .                                                                       (7) 

In Eq. (6) above, it is indicated that the dispersive interaction between the atoms and the 

radiation field causes a shift in the resonator frequency which is proportional to the atomic 

density of the condensate which can be given by 
2* ),(),(),( txtxtx  . However, this 

frequency shift is a property of an operator and couples the equations of motion of the radiation 

field with those of the atomic field operators in a nonlinear way. The equation of motion of the 

atomic field operator on the other hand reads as  

),(),(),()()(ˆ)(ˆ)(
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m
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In the atomic part of the equation of motion given above, in addition to the inert trap 

potential )(xVext , the atom-light interaction creates a half wave-length ( 2/ ) periodic optical 

potential for the atoms is proportional to the dynamical photon number operator aa ˆˆ  . 

Obtaining the solutions of the coupled nonlinear operator equations described above by the 

equations 6, 7 and 8 simultaneously is a difficult task. Hence, to obtain the solutions of these 

equations; we need to apply an approximation. A more convenient approximation is found to be 

the usual mean-field approximation which is frequently used in determining solutions of 

ultracold Bose-Einstein condensates. When we separate the operators into a mean value and 

fluctuation part, we obtain the following expressions: 

),,(),(),( txtxNtx                                                                      (9a) 

),()()(ˆ ttta                                                                                          (9b) 

where here ),(ˆ tx  represents the so-called thermal depletion or more precisely the quantum 

fluctuation term. The mean values are the c-numbers, defined by ),(/1),( txNtx   

which, in this case is the condensate wave function. As it can be verified, the wave function is 

normalized to unity. The expectation value of the time dependent annihilation operator is 

approximated by its corresponding c-number given by )(ˆ)( tat   which is the coherent part 

of the cavity field. Consequently, the fluctuations have a zero expectation value. This is 

basically the inherent characterization of quantum fluctuations as elaborated in the reference 

Mebrahtu, 2006 and the references therein. The time evolution of the expectation values is 
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obtained by substituting equations 9a and 9b into the equations of motion given by equations 6-

8 and neglecting all terms containing fluctuations. By carrying out such an approximation one 

can obtain the expression for the condensate which is referred to as the Gross-Pitaevskii 

equation (GPE): 

  ̂)(ˆ)(ˆ itaikUNta
dt

d
i C  ,                    (10a) 
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where the expectation value  dxtxxUtxU ),()(),(*  . The time evolution of equation 10a is 

governed by two characteristic frequencies, namely the detuning 0  and the photon loss rate k .  

Equation 10b, on the other hand, indicates that the characteristic frequency is set by the recoil 

frequency mkR 2/2 . In this situation the dynamics of the resonator field relaxes very fast in 

comparison with the dynamics of the atomic motion; and therefore can be considered 

instantaneous with respect to the relaxation of the condensate. At this stage, we can also assume 

that for any given atomic configuration the resonator field has already reached its steady state 

value, which, according to Eq. (10a), is given by 

ikUN

i
SS 


0

 .                      (11) 

Hence, at the end, one needs only to integrate Eq. (10b) in order to adiabatically eliminate )(t . 

It is worth noting that if the time scales of the resonator field and the condensate dynamics do not 

differ that much, some complex coupled solutions can exist, which need a simultaneous 

integration of equations 10a and 10b. 

A transformation of a thermodynamic system can be considered adiabatic when it is quick 

enough so that no significant heat transfer happens between the system and the outside 

environment. On the contrary, a transformation of a thermodynamic system can be considered 

isothermal if it is slow enough so that the system’s temperature can be maintained during a heat 

exchange with the outside environment (Mebrahtu, 2006 and references therein). 

After the adiabatic elimination of the photon field, the most direct method to calculate the steady 

state of the condensate wave function )(x  is the one based on the imaginary-time propagation 

based on equation 10b given above. In real-time, the steady-state solution has the time 



Alem, M (MEJS)                                                                                                        Volume 3 (2):3-16, 2011   

© CNCS, Mekelle University                                                                                                    ISSN: 2220-184X 
 

11

dependence: 

,)(),( /tiextx                        (12) 

where /  is the lowest frequency eigenvalue of the nonlinear problem of equation 10b. In the 

imaginary time, all fluctuations around the steady-state die out, since they propagate with higher 

frequencies in real time and consequently vanish faster in imaginary time than the steady-state 

solution. In such a situation, one just needs to renormalize the solution ),( tx after some finite 

propagation time. Note also that, since all the quantities on the left hand side of equation 10b are 

real, the condensate wave function )(x  can also be chosen to be real. We also note that,  , as we 

will see it later, in the case of an effective blue detuning given by 00  UN , the resonator 

field may heat the atomic motion since some excitations might have positive imaginary parts, 

and there is no steady-state condensate wave function at all. However, due to the method of 

imaginary time propagation, one can find a condensate wave function, even in this case, 

corresponding to a dynamically unstable equilibrium situation. 

 

3. FLUCTUATIONS AROUND THE MEAN FIELD ORDER PARAMETER  

For low dimensional Bose-Einstein condensates quantum fluctuations are expressed in the form 

of density and phase fluctuations. In the mean field regime of a condensate, a huge interest has 

been devoted to the study of fluctuations of non-linear dynamics of condensed systems. Having 

obtained the steady-state values of the low dimensional Bose-Einstein condensate wave 

functions and the resonator field amplitudes in a cavity, one can look for the fluctuations of the 

annihilation (creation) operators described as )(ˆ ta , ),( tx   ( )(ˆ ta  , ),( tx ) respectively in 

a linear order. This linear stability analysis corresponds to the famous Bogoliubov theory of low 

dimensional condensates as described in the references described by Fallani et al. 2005, Louisell, 

1973, and Castin, 2001. This approach has an analogy to the optomechanics, and other nonlinear 

systems, especially in hydrodynamics. Inserting the separation of the field operators of equation 

9 into equations 6 and 8, and neglecting fluctuations higher than the first order, we can easily 

arrive at the following equations: 

    )(),(),()()()(ˆ)(ˆ tidxtxtxxUxNtaikUNta
dt

d
i SSC    

,   (13a) 
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   (13b) 

where the zeroth order terms have been canceled, since they fulfill Eq. (10b) and (11) 

with .0/ dtd SS  Here the fluctuation term which is a combination of low dimensionality of the 

condensate and the effect of the condensate being in a cavity which has dispersive phenomena is 

given by the expression 


/2/1 ),(),( tietxNtx    has been introduced. 

A closer look into equation 13 reveals that the time evolution of the annihilation operators 

coupled to those of the creation operators. It is a consequence of the complex nature of the 

photonic and particle fields. In order to diagonalize equation 13, it is possible to choose two 

equivalent ways: 

 First one can separate the complex quantities into real and imaginary parts and study their 

time evolution; this is the approach mainly used in optomechanical studies.  

 The other way is to diagonalize the set of equations not only just containing â  and 


 , 

but also their Hermitian adjoints â  and 


 ; this approach is familiar with the 

Bogoliubov-de Gennes theory of superfluidity. 

 

4. CONCLUSION 

In this paper we have studied the dynamics, effects of interactions and the manifestation of 

quantum fluctuations of low dimensional Bose-Einstein condensate inside an optical cavity. As 

the dispersive atom-photon interaction couples with the atomic motion and the dynamics of the 

photonic field in a nonlinear way, strong correlations are expected to show up. These interactions 

not only cause cavity cooling or cavity heating but also alter the statistics of the constituent 

subsystems. The strength of the coupling is verified to be inversely proportional to the detuning 

of the pump photon frequency. Such a system which considers low dimensional ultracold atomic 

condensates inside a field of a laser-driven optical cavity exhibiting dispersive optical bistability 

at very low temperature shows enhanced fluctuations due to the dispersive phenomena.  

We have analyzed that the mapping of the original system to a two mode effective model in 

which only the two highest populated one-particle states are kept from a plane-wave expansion 

of the atomic motion. Furthermore, we have compared the mean-field solution and the 
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fluctuation spectrum of the optomechanical model to that of the model which is not restricted to 

the first two highly occupied modes. In the cavity heating region, the unstable polariton mode 

can have a positive imaginary part in the order of a kilohertz giving an evaporation rate of the 

Bose-Einstein condensate in milliseconds. It is evident that such a timescale is in the 

experimental reach.  

The experimental progress in combining cavity quantum electrodynamics systems with ultracold 

atoms promises an interesting playground to test the manifestation of light-matter interactions in 

the mesoscopic scale. In such systems both the radiation and the atomic part are dynamical 

entities. The better understanding of their interplay can have a significant impact not just on our 

knowledge of nonequilibrium systems, but also on the implementations of quantum information 

processing devices or quantum simulators of other systems. 

It is evident that low dimensional quantum gases or ultracold gases exhibit fascinating properties 

and attracted a lot of attention both theoretically and experimentally. However it should be also 

stressed that, when viewed theoretically, the use of a mean field theory to describe quantum 

gases in low dimensional Bose gases is highly restricted to extremely low temperatures near the 

absolute zero. The possibility of generating low dimensional bosonic gases (condensates) being 

possible in principle is characterized by the manifestation of intrinsic quantum fluctuations 

which may result in destroying the very existence of the condensate at low dimension. 
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