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Abstract Background: Long noncoding RNAs (lncRNAs) are a recently discovered class of tran-

scribed RNA molecules with a length of more than 200 nucleotides. Recent studies have shown that

lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) could play an impor-

tant role in carcinogenesis and cancer progression in several types of malignancies.

Objective: As little is known about the role and clinical significance of lncRNA MALAT1 in

glioblastoma multiform (GBM) patients in Egyptian population, this study aimed to investigate

the expressions of lncRNA-MALAT1 in human GBM samples and to correlate these expressions

with the available clinicopathological features including patient survival data.

Subjects and methods: The relative expression of MALAT1 was determined in 37 human

glioblastoma formalin-fixed paraffin embedded (FFPE) tissue samples and 10 FFPE

non-neoplastic brain tissues using quantitative reverse transcription polymerase chain reaction

(qRT-PCR) technology.

Results: The current results revealed that lncRNA MALAT1 expression was down-regulated in

all tumor specimens compared to normal tissues. A receiver operating characteristic (ROC) curve

analysis showed high diagnostic performance; area under curve (AUC) = 0.925 ± 0.038

(P < 0.001), 95% CI = 0.850–1.00, with 94.6% sensitivity, and 72.7% specificity. Lower MALAT1

expression was associated with poor prognosis; higher frequency of recurrence (P < 0.044), lower

overall survival (P < 0.005), and shorter disease-free survival (P < 0.004).
-coding
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Conclusion: Taken together, we could postulate that MALAT1 might have a tumor-suppressive

function in GBM in Egyptian population and this specific type of lncRNAs may be included in the

lists of both potential prognostic biomarkers and the future therapeutic targets for glioblastomas.

� 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Glioma is by far the most common primary brain tumor
associated with poor outcome and survival [1]. It has been

classified into well-differentiated low grade astrocytomas
(grade I–II), anaplastic astrocytomas (grade III), and glioblas-
toma multiforme (GBM; grade IV) according to World Health

Organization (WHO) [2]. Despite standard treatment that typ-
ically includes neurosurgery, chemotherapy and, radiation,
recent clinical trials have reported a median survival of only
14–16 months with a 26–33% 2-year survival rate [3]. It has

been suggested that the WHO criteria to predict the patient
clinical outcomes may not be sufficient alone to estimate
patient prognosis [4]. More recently, improved understanding

of glioma molecular genetics has led to identifying new poten-
tial biomarkers for early diagnosis, prognosis prediction, and
novel therapeutic targets [5].

Long noncoding RNAs (lncRNAs) are a recently discov-
ered class of transcribed RNA molecules with a length of more
than 200 nucleotides. Similar to protein-coding genes, they

have promoter structure, and are transcribed by RNA poly-
merase II, polyadenylated, and subjected to splicing. However,
unlike mRNA, they do not encode proteins [6]. LncRNAs are
thought to be important regulators of gene expression at tran-

scription, translation and epigenetic levels [7,8]. An accumulat-
ing number of evidences suggested that lncRNAs may have
critical roles in a wide range of biological processes [9]. Screen-

ing lncRNAs expression profile in glioma has revealed a signif-
icant contribution to pathogenesis [10], development and
progression [11–13] by regulating cell growth and metastasis;

indicating that lncRNAs play significant roles in glioma
tumorigenesis [14].

The functional lncRNA-MALAT1 (metastasis-associated
lung adenocarcinoma transcript 1); encoded by MALAT1

gene, which is located at chromosome 11q13.1. [15], and also
known as nuclear-enriched abundant transcript 2 (NEAT2),
was one of the first lncRNAs found to have a pathogenic role

[16] and it has been linked to various cancers besides lung ade-
nocarcinoma [17]. Its expression profile has been found to be
dysregulated and correlated with clinical parameters and prog-

nosis in several types of human cancer, such as hepatocellular
carcinoma [18], osteosarcoma [19], lung cancer [20], bladder
cancer [21], and glioblastoma multiforme [22].

As there are no previous studies, up to the researchers’
knowledge, on the expression of this type of lncRNAs in
GBM patients among the Arab population, this study for
the first time will aim to determine the expression levels of

MALAT1 in a sample of GBM patients and correlate these
expressions with the available clinicopathological features
including patient survival data in a sample of Egyptian

population.
2. Subjects and methods

2.1. Patients and tissue samples

The present study included 37 formalin-fixed paraffin embed-
ded (FFPE) glioblastoma samples, fulfilling the WHO criteria

of GBM and 10 FFPE non-neoplastic brain tissue specimens.
GBM patient samples (9 females and 28 males, aged 35 to
60 years old) have been assessed retrospectively from the

archive of the Pathology Departments, Mansoura University
Hospitals and Suez Canal University Hospitals, Egypt, from
2010 to 2013. Detailed patients’ data were retrieved from their
medical follow up records. All patients had GBM (i.e. grade

IV), undergone surgical removal and post-operative irradia-
tion, and followed for more than 3 years. The work has been
carried out in accordance with the code of ethics of the world

medical association (Declaration of Helsinki) for experiments
on humans. All patients gave written informed consent, except
for deceased individuals or patients who provided archived tis-

sue samples and can’t be traced.

2.2. Total RNA extraction

Following deparaffinization in xylene and washing with alco-

hol, the total RNA was extracted from tumor and control
FFPE tissue sections (4–5 lm) collected in sterile eppendorf
tubes. Qiagen RNeasy FFPE Kit (Cat. No. 73504, Qiagen,

Hilden, Germany) has been used following the protocol sup-
plied by the manufacturer. Extracted total RNA concentration
and purity at the absorbance ratio 260/280 nm were deter-

mined by NanoDrop ND-1000 spectrophotometer (Nano-
Drop Tech., Inc. Wilmington, DE, USA). In addition, RNA
degradation and contamination were assessed by 1.5% agarose

gel electrophoresis.

2.3. Reverse transcription

High Capacity cDNA Reverse Transcription Kit (Applied

Biosystems, P/N 4368814) was used for reverse transcription
(RT) reaction. For each 20 ll RT reaction, 10 ll (10 ng)
RNA sample was combined with 10 ll of 2� RT reaction

mix containing 2 ll of 10� RT Buffer, 0.8 ll of 25� dNTP
Mix (100 mM), 2 ll of 10� RT random primers, 1 ll of
MultiScribeTM Reverse Transcriptase, 1 ll of RNase inhibitor,

and 3.2 ll of nuclease-free water. RT was carried out
in a T-Professional Basic, Biometra PCR System (Biometra,
Goettingen, Germeny) at 25 �C for 10 min, followed by

37 �C for 120 min, and finally 85 �C for 5 min, then held at
4 �C. Appropriate negative controls were included in each
experiment.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2.4. Gene expression analysis

Real-time polymerase chain reaction (PCR) was performed in
accordance with the Minimum Information for Publication of
Quantitative Real-Time PCR Experiments (MIQE) guidelines.

Expression of MALAT1 and the endogenous control TBP
(Tata binding protein) were quantified using TaqMan� assays
(Applied Biosystems, assay ID Hs00273907_s1, and
Hs00427620_m1, respectively) and Taqman� Universal PCR

master mix II, No UNG (2�) (Applied Biosystems, P/N
4440043). Apart for TBP, none of the other conventionally
used housekeeping genes in GBM studies, were found to be

suitable as they showed variation in RNA expression [23].
Hence, TBP expression was used for normalization of qPCR
data in the current work. The PCR reactions were carried

out in a final volume of 20 ll, including 1.33 ll RT product,
10 ll 2 � TaqMan� Universal PCR Master Mix, 1 ll Taq-
Man� assays. All reactions included a non-template control

(with water instead of cDNA), and a no-reverse transcriptase
control. The PCR was performed on StepOneTM Real-Time
PCR System (Applied Biosystems) as follows: 95 �C for
10 min followed by 40 cycles of 92 �C for 15 s and 60 �C for

1 min.

2.5. Statistical analysis

Statistical Package for the Social Sciences (SPSS) for Windows
software (version 20.0) was used for statistical graphics and
analyses. The following parameters were considered besides

the expression values of theMALAT1 analyzed: age at diagno-
sis, gender and tumor site. Categorical variables were com-
pared using the chi-square (v2) or Fisher’s exact tests where
appropriate, while Student’s t test or One way ANOVA were

used to compare continuous variables between two groups or
more than two groups, respectively in case the data distribu-
tion was concordant with normal distribution (Shapiro–Wilk

test) and after checking variance homogeneity (Levene’s test).
If the data did not meet the criteria mentioned above, the non-
Table 1 Baseline patient characteristics (n= 37) and survival.

Mean ± SD or Number (%) OS (

Age (years) 51.5 ± 5.9

Age, categories

35- 16 (43.2) 17.3

50- 21 (56.8) 13.9

Gender

Female 9 (24.3) 18.5

Male 28 (75.7) 14.3

Tumor site

Frontal 18 (48.6) 14.4

Fronto-temporal 4 (10.8) 19.0

Parietal 1 (2.7) 11.0

Temporo-parietal 14 (37.8) 19.5

Recurrence

Non-recurrent 30 (81.1) 15.5

Recurrent 7 (18.9) 15.0

OS, overall survival; DFS, disease-free survival; mo, months. Student’s t
* Statistically significant, P < 0.05.
parametric Mann–Whitney-U test or Kruskal–Wallis tests
were used for comparison between groups with subsequent
Bonferroni’s post hoc test for multiple testing. The receiver

operating characteristic (ROC) curves were derived and area-
under-the curve (AUC) analysis performed to get the best cut-
off value of MALAT1 for discriminating GBM patients from

controls. P-values < 0.05 were considered statistically signifi-
cant. Disease-free survival is defined as the time between diag-
nosis of disease and recurrence or distant metastasis. Overall

survival is defined as time from diagnosis of disease to death
of patients with brain cancer [24]. Median follow-up time
was computed by the Kaplan–Meier method. For analysis of
disease-free and overall survival, frontal and fronto-temporal

tumors were combined for comparison with those with parietal
and temporo-parietal. Log rank (Mantel–Cox) was used for
survival curves comparison. The fold change of MALAT1

expression was calculated using Livak’s method based on the
threshold cycle (CT) value with the following equation: relative
quantity = 2�DDCT [25].

3. Results

3.1. Baseline characteristics of the study population

The main patient characteristics have been summarized in

Table 1. In addition, the mean ± SD of the GBM patients
overall survival (OS) and disease-free survival (DFS) were
15.4 ± 5.17 months and 14.7 ± 5.34 months with a range of

(8–27) and (6–27) months, respectively. Twenty three patients
(62.2%) showed short (61 year) disease free survival (DFS)
and only 12 (32.4%) showed a higher overall survival rate
(>1 year). As shown in Table 1, male gender was significantly

associated with shorter DFS than females (P < 0.04).

3.2. Expression of MALAT1 in glioblastoma multiform

Compared with normal brain tissues, all GBM patients
showed low expression levels of lncRNA MALAT1
mo) P value DFS (mo) P value

± 7.08 0.241 17.0 ± 6.89 0.123

± 2.25 13.09 ± 2.98

± 6.9 0.086 18.5 ± 6.9 0.040*

± 4.13 13.5 ± 4.20

± 5.09 0.179 13.5 ± 5.14 0.133

± 3.46 19.0 ± 3.46

11.0

± 5.52 15.4 ± 5.72

± 5.25 0.719 15.3 ± 5.26 0.259

± 5.22 12.4 ± 5.47

and ANOVA tests were used.



Figure 1 LncRNA-MALAT1 expression levels in glioblastoma.

Data are represented as medians. The box defines upper and lower

quartiles (25% and 75%, respectively) and the error bars indicate

upper and lower adjacent limits. Mann–Whitney U test was used;
*Statistically significant.

Area Std. Error Asymptotic Sig.

Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

0.925 0.038 .000 0.850 1.000

Figure 2 Receivers operating characteristic curve of MALAT1.

AUC: area under curve; CI: confidence interval; SE, standard

error; SEN, sensitivity; SP, specificity.
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(P < 0.001, Fig. 1) with a median expression value (quartile)
= 0.015 (0.001–0.086).

3.3. ROC curve analysis

Relative expression levels were used to determine MALAT1
sensitivity and specificity at the cutoff fold change value for
discriminating GBM patients from controls. The curve showed

high diagnostic performance with an AUC = 0.925 ± 0.038
(P < 0.001), 95% CI = 0.850–1.00, with 94.6% sensitivity
and 72.7% specificity (Fig. 2).

3.4. LncRNA MALAT1 relative expression and

clinicopathological features in GBM patients

Median MALAT1 relative expression was not associated sig-
nificantly with age (<50 vs. P50, P = 0.387) or gender
(females vs. males, P = 0.196), however fronto-temporal brain

tissue samples showed a significant lower expression in com-
parison to other sites, (P = 0.025); Fig. 3. Lower MALAT1
expression, in addition, was associated with poor prognosis;
higher frequency of recurrence, lower overall survival, and

shorter disease-free survival (Fig. 3).
As summarized in Table 2, MALAT1 expression was

directly correlated with shorted overall survival (r= 0.359,

P = 0.029) and disease-free survival (r = 0.361, P = 0.028)
and was inversely correlated with recurrence (r = �0.334,
P = 0.044).

3.5. MALAT1 expression and survival of patients with different

clinical variables

To explore the prognostic value of the lncRNA-MALAT1
expression in GBM patients, Kaplan–Meier analysis with the
log-rank test was used in comparing survival of patients with
different clinical variables (Fig. 4). Poor survival has been
shown in older patients [median (95% CI); 14 (12.5–15.4)
and 16 (8.81–23.1) in patients P50 year-old and <50 year-
old, respectively] and among males [median (95% CI); 14

(12.2–15.7) and 22 (13.6–30.3) in males and females, respec-
tively]. Otherwise, there were no significant differences of
lncRNA MALAT1 expressions and survival of patients

regarding the tumor location or recurrence rate (Fig. 4).

4. Discussion

Human transcriptome analysis has been revealed that the
majority of human genome transcripts are non-coding RNAs,
including lncRNAs that previously were considered as tran-

scriptional noises [26]. However, an accumulating number of
evidences have revealed that lncRNAs could have important
functions and may interact with a broad range of RNA mole-
cules through competitively binding with miRNAs, suggesting

their vital roles in a wide range of biological processes and
human diseases [27]. More specifically, they have been found
to be involved in brain development and in the pathogenesis

of gliomas, and could serve as novel biomarkers for early diag-
nosis, prediction of prognosis, and therapeutic targets in glio-
mas [28,29].

The lncRNA MALAT1 gene produces a highly abundant
and ubiquitously expressed transcript of >8000 nucleotides
that is retained in the nucleus where it is thought to form

molecular scaffolds for ribonucleoprotein complexes [30].
MALAT1 was found to act as decoys that bind to and inter-
fere with the function of other RNAs or proteins (e.g. miR-
NAs, transcription factors, or RNA-binding proteins),



Figure 3 LncRNA MALAT1 relative expression and clinicopathological features in GBM patients. Data are represented as medians.

The box defines upper and lower quartiles (25% and 75%, respectively) and the error bars indicate upper and lower adjacent limits. *N.B.

In posthoc test parietal tumor group was merged with tempero-parietal one as test could not be performed by single sample.
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especially those involved in cell cycle regulation, cell migration,
and cancer metastasis [31].

Initially, MALAT1 was identified by Ji and co-workers in
(2003) [32], through subtractive hybridization in a screen for
genes associated with metastasis in non-small cell lung cancer.

Subsequently, several studies have associated MALAT1
expression with various cancers and metastasis [33–35]. In
the current study, MALAT1 showed significant lower expres-

sion levels in all GBM tissues compared with normal brain tis-
sues. This is consistent with a recent study finding conducted
by Han et al. [22] who found that lncRNA MALAT1 could
have a tumor-suppressive function in glioma. This inhibitory

effect could be due to suppression of both growth and cell
invasion. At the molecular level, they suggested that this could
be mediated via regulation of the ERK/MAPK (extracellular

signal-regulated kinase/mitogen-activated protein kinase)
pathway and expression of MMP2 (matrix metalloproteinase
2). The ERK/MAPK pathway is one of the most important

signal transduction pathways, and MALAT1 upregulation in
glioma cells inhibits the growth and invasion of tumor by



Table 2 Spearman’s rho correlation analysis between brain

tissue MALAT1 relative expression and the clinicopathological

features in GBM patients (n= 37).

Correlation coefficient P

value

Age 0.104 0.539

Gender 0.142 0.402

Tumor site 0.050 0.768

OS 0.359 0.029
*

DFS 0.361 0.028
*

Recurrence �0.334 0.044*

OS, overall survival; DFS, disease-free survival.
* Statistically significant, P< 0.05.

Figure 4 Kaplan–Meier curves and the log-rank (Mantel–Cox) tes

variables. Cum. Cumulative; mo, months.
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reducing the phosphorylated ERK1/2 expression rather than
affecting the total ERK1/2, leading to inactivation of this sig-
naling cascade [22]. In earlier studies, it has been proved that

knockout of MALAT1 in lung cancer cells could significantly
reduce the expression of several metastasis-related genes,
including Glypican 6 (GPC6) [36] and C-X-C motif chemokine

5 (CXCL5) [37], leading to MAPK pathway inactivation.
Hence GPC6 or CXCL5 expression down-regulation could
be one of the underlying mechanisms by which MALAT1inac-

tivate ERK/MAPK pathway in glioma which require further
future validation.

In addition, Bernard et al. [38] have found that MALAT1
expression in B-cell malignancies was decreased compared

with solid tumors. Another study demonstrated significantly
lower MALAT1 expression levels in the plasma of multiple
t for comparison of the patients’ survival with different clinical
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myeloma patients [39]. The results of the present study, how-
ever, were a little different from others. It has been found that
MALAT1 expression was increased in glioma tissues compared

with paired adjacent brain normal tissues by Ma et al. [14].
MALAT1 was shown, in addition, to act as oncogene in sev-
eral types of human cancer, such as lung cancer [40], breast

cancer [41], cervical cancer [42], bladder urothelial carcinoma
[21], gastric cancer [43], colorectal cancer (CRC) [44], hepato-
cellular carcinoma [34], pancreatic duct adenocarcinoma [45]

and melanoma [46]. However, MALAT1 was downregulated
in the cell culture, with the cells exhibiting high metastatic
potential for ovarian cancer metastasis [47]. This discrepancy
of results among some studies and ours could be due to the fact

that MALAT1 function may vary with various cancer types
and context; the same gene may play opposite roles in different
cancer types or in different stages of cancer progression [48].

Additionally, emerging evidence has suggested that lncRNAs
can potentially interact with other classes of non-coding RNAs
including miRNAs [49], or are regulated by transcription fac-

tors [50], indicating that lncRNAs may have regulatory roles in
a wide range of cellular processes at various levels. In addition,
the recent molecular sub-classification of GBM includes IDH1

(isocitrate dehydrogenase 1) mutation, p53 mutation, EGFR
(epidermal growth factor receptor) amplification and MGMT
(O-6-methylguanine-DNA methyltransferase) promoter
methylation status, all of which have proved to be partly asso-

ciated and are useful in clinical practice [13]. Their aberration
may result in significant epigenetic changes, including DNA
methylation level, mRNA expression level [51], and lncRNA

expression level [52]. Therefore, it is recommended to investi-
gate whether there are some associations between MALAT1
signature and these well-recognized genetic biomarkers by an

intriguing multi-dimension analysis that can give useful expla-
nations for the potential result discrepancies in GBM molecu-
lar research.

In the present study, we further found that lower MALAT1
expression was associated with poor prognosis (i.e. higher fre-
quency of recurrence, lower overall survival and shorter
disease-free survival). Several reports indicate that MALAT1

contributes to the complex molecular mechanisms involved
in the control of cell growth, differentiation and motility that
could predict the overall prognosis and survival [21]. For

example, the expression of MALAT1 was associated with
prostate cancer progression and prognosis [53], GBM survival
[13], tumor progression and survival in lung, liver and breast

cancer [54], invasion and metastasis of CRC cells [55],
proliferation and metastasis of gallbladder cancer cells [56]
and tumor recurrence of hepatocellular carcinoma after liver
transplantation [57]. All these findings indicate that lncRNA

MALAT-1 could be considered as an important novel
candidate for future therapeutic intervention. However, the
applicability and epigenetic regulation of MALAT-1 targeted

strategies for the clinical treatment of GBM requires addi-
tional studies.

5. Conclusion

In summary, the current study does confirm the lncRNA
MALAT1 association with the glioblastoma and its potential

role as prognostic biomarker. The study was limited by the rel-
atively small sample size, and the fact that all patients were
grade IV gliomas. We recommend further studies of a larger
scale with different glioma grades, to explore the correlation
of MALAT1 expression with different WHO grades and to

confirm its possible role as prognostic biomarker. Further
functional investigations of this type of lncRNAs on tumor cell
lines and xenograft models may increase our outstanding of its

detailed molecular roles in GBM pathogenesis and progress.
Hence, this may be an interesting target for future therapeutic
interventions in GBM patients.
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