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Abstract 

The consequences of collapsed stopes can be dire in the mining industry. This can lead to the revocation of a mining license 

in most jurisdictions, especially when the harm costs lives. Therefore, as a mine planning and technical services engineer, it is 

imperative to estimate the stability status of stopes. This study has attempted to produce a stope stability prediction model 

adopted from stability graph using ensemble learning techniques. This study was conducted using 472 case histories from 120 

stopes of AngloGold Ashanti Ghana, Obuasi Mine. Random Forest, Gradient Boosting, Bootstrap Aggregating and Adaptive 

Boosting classification algorithms were used to produce the models. A comparative analysis was done using six classification 

performance metrics namely Accuracy, Precision, Sensitivity, F1-score, Specificity and Mathews Correlation 

Coefficient (MCC) to determine which ensemble learning technique performed best in predicting the stability of a stope. 

The Bootstrap Aggregating model obtained the highest MCC score of 96.84% while the Adaptive Boosting model obtained 

the lowest score. The Specificity scores in decreasing order of performance were 98.95%, 97.89%, 96.32% and 95.26% for 

Bootstrap Aggregating, Gradient Boosting, Random Forest and Adaptive Boosting respectively. The results showed equal 

Accuracy, Precision, F1-score and Sensitivity score of 97.89% for the Bootstrap Aggregating model while the same 

observation was made for Adaptive Boosting, Gradient Boosting and Random Forest with 90.53%, 92.63% and 95.79% scores 

respectively. At a 95% confidence interval using Wilson Score Interval, the results showed that the Bootstrap Aggregating 

model produced the minimal error and hence was selected as the alternative stope design tool for predicting the stability status 

of stopes. 
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1 Introduction 

 

In underground mines, excavations are made either 

for development purposes or to extract the desired 

mineral. This is done when the surrounding rock is 

competent enough not to break into the void created 

or the stope. However, as several tonnes of materials 

are excavated from underground, the shielding 

effect of the intact rock mass is let loose. After 

studying several underground excavations, 

Mathews et al. (1981) proposed an empirical 

technique based on a stability number (N) which 

defines the capacity of rock masses to resist a given 

condition of the ground and the Hydraulic Radius 

(HR) which represents the geometry of the stope 

face which is termed the stability graph. The 

stability graph of Mathews et al. (1981) was founded 

on 26 stope data points.  The original stability graph 

was extended by Potvin (1988) with another 175 

stope cases. The updated stability number, N', was 

introduced to replace the Mathews stability number, 

N. This calibration was done to improve upon the 

reliability of the idea of the stability graph. This 

modification, however, could not resolve the 

limitations of the original stability graph, being that 

the stability graph was empirically developed from 

Australian and Canadian geological conditions and 

thus not widely applicable in other geotechnical 

domains. Potvin (2014), therefore suggested that 

stability graphs should be calibrated for specific site 

conditions. This recommendation is to caution 

mining practitioners about the non-universality of 

his design approach as the properties of the rocks, 

and geological conditions may differ from location 

to location. 

 

However, these stability graphs, original and 

modified, are currently the only available tools for 

designing stable stopes and predicting stope 

performance in underground mines, irrespective of 

the mining method, type of deposit, ground 

conditions or the geological location in the 

considered study area. Suorineni (1998) noted that 

the stability graph does not extend to narrow vein 

stopes; it dilutes the ore when applied to such 

orebodies. This was revealed by using the stability 

graph at AngloGold Ashanti Ghana, Obuasi Mine 

(AGAGOM) to evaluate open stope efficiency. He 

considered that the rocks on which the original 

stability chart database was built were more 

competent than the rocks in the Obuasi Mine. 

Hence, for the AGAGOM, there is a need to have a 

stability graph that is peculiar to the geological 

conditions and accounts for orebody size. This is 

necessary because the stability graph method is 

empirical, rendering its strength and accuracy to be 

dependent on the database from which it was 

derived (Stewart and Forsyth, 1995).  

 

Till date, underground mining companies in Ghana 

use either the original or the modified stability graph 

in assessing stope stability. This research seeks to 
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obtain a stope stability model using 472 case 

histories gathered from 120 stopes of AGAGOM. 

The aim is to get a site-specific model for predicting 

the stability of stopes that incorporates the width of 

the orebody. This has become necessary because 

AGAGOM keeps recording more unstable cases, 

while caved instances are also on the rise, as 

illustrated in Fig. 1. As recommended by Potvin 

(2014), there is the need to calibrate the stability 

graphs for site-specific use and hence the application 

of new methods to achieve this. 

 

In recent years, several computer-aided pattern 

recognition and artificial intelligence techniques 

have been developed for numerical modelling and 

intensive analytic purposes in various fields of 

research. The critical theoretical difficulties 

involved in the problem of finding fascinating and 

formerly unknown information from real-world 

databases have made these research areas vital and 

active (Jain, 2009). Literature revealed that 

Artificial Intelligence has been less explored in 

stope stability assessment. Santos et al. (2020) 

conducted similar research to predict the stability of 

stope using Artificial Neural Network in a Zine mine 

with data gathered from 35 stopes. However, their 

method recorded higher misclassified errors of 

which they attributed to the insufficiency of the data. 

Therefore, this research shall use more stope cases 

and the four most widely used ensemble learning 

techniques (Random Forest, Gradient Boosting, 

Bootstrap Aggregating and Adaptive Boosting 

classification algorithms) to produce the models that 

account for orebody size and compare them using 

classification performance metrics. 

 

2 Resources and Methods Used  

 
2.1 Resources 
 

A total of 472 stope cases were obtained for this 

research from AGAGOM. The parameters of the 

data comprised the stability number (N), orebody 

width (OW), the Hydraulic Radius (HR) and the 

stability statuses (SS) of the respective stope faces. 

Each of the shape factors was obtained using the 

stope geometry data which included the width, 

height and length of the stopes while the stability 

numbers were obtained using the joint orientation, 

stress and gravity factors including the rock mass 

quality index of the stope. The input and output 

parameters of the dataset are described statistically 

in Table 1, while Fig. 2 shows the frequencies of the 

stope faces.  

 

 

 

 

Table 1 Statistical Description of Stope 

Parameters 

 

Parameter Unit Min Max Mean 
Std 

Dev 

Height (H) m 10.00 85.00 26.80 9.94 

Width (W) m 1.90 60.00 16.50 11.32 

Length (L) m 10.00 85.00 29.10 15.75 

Orebody 

Width 
m 1.90 54.00 15.10 10.05 

Hydraulic 

Radius 

(HR) 

m 1.90 12.60 5.63 1.73 

Rock Mass 

Quality 

Index (Q') 

- 0.60 23.60 5.36 4.78 

Stress 

Factor (A) 
- 0.10 1.00 0.77 0.28 

Joint 

Orientation 

Factor (B) 

- 0.06 1.00 0.33 0.18 

Gravity 

Factor (C) 
- 2.00 8.00 5.84 1.83 

Modified 

Stability 

Number 

(N') 

- 0.24 60.00 9.09 8.46 

 

 
Fig. 1 Frequencies of the Stope Stability 

Statuses 
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Fig. 2 Frequencies of the Stope Faces 

 

2.2 Ensemble Learning Techniques Used  
 

A brief description of the four ensemble learning 

techniques, namely Gradient Boosting Classifier 

(GBC), Bootstrap Aggregating Classifier (BAC), 

Adaptive Boosting Classifier (ABC) and Random 

Forest Classifier (RFC) is presented in this section. 

The ensemble method is a combination of the 

predictions of several classifiers to obtain a single 

and robust classifier (Wolpert, 1992). This makes 

the classifier's output better than the individual 

(base) classifiers in the ensemble. Some examples of 

the early proposed and widely used ensemble 

methods are Bootstrap aggregating by Breiman 

(1996) and Adaptive Boosting by Freund and 

Schapire (1996).  

 

2.2.1 Bootstrap Aggregating 

 

This algorithm is a type of ensemble method also 

known as bagging. It suggests separating decisions 

of bootstrap-trained base classifiers (Zor et al., 

2011). Bagging is used when the goal is to reduce 

the variance of a decision tree classifier. According 

to Boehmke and Greenwell (2019), the idea behind 

bagging can be referred to as the “wisdom of the 

crowd” popularised in 2005 by Surowiecki. This 

quote emphasises that the accumulation of evidence 

in large, diverse groups results in decisions that are 

often better compared to that of an individual in a 

group. This classification algorithm is an “ensemble 

meta-estimator that can fit base classifiers on 

random subsets of the original dataset and then 

combine the individual” predictions by averaging or 

voting to get the final prediction (Breiman, 1996; 

Dey, 2020). See Equation (1).  

 

𝑓𝑏𝑎𝑔 = 𝑓1(𝑋) + 𝑓1(𝑋) + ⋯ + 𝑓𝑏(𝑋)           (1) 

 

where 𝑓𝑏𝑎𝑔 is the bagged prediction, 𝑋, is the record 

for which the prediction is generated, 

𝑓1(𝑋), 𝑓1(𝑋), … , 𝑓𝑏(𝑋), the predictions from the 

individual base learners and b is the number of 

copies of the bootstrap of the original training 

dataset. 

 

2.2.2 Random Forest  

 

This algorithm consists of a group of unpruned 

classification trees generated by using training data 

bootstrap samples and randomly selecting an 

attribute for multiple tree stumps. Breiman (2001) 

and Hastie et al. (2009) described it as a 

considerable variation of bagging that develops, and 

averages, an extensive set of de-correlated trees. 

Random Forest is an extension of bagging and 

decision trees as it is built using the same 

fundamental principles of both algorithms. Hence 

the base estimator for random forest classifier is 

decision tree classifier. As the bagging technique 

tries to form an aggregation to reduce variance, 

Random Forest tries to reduce tree correlation by 

introducing more randomness into the tree growing 

process which is a downside of the former 

(Boehmke and Greenwell, 2019; Hastie et al., 2009). 

Random Forest exhibits improved performance 

when compared with Decision trees (Svetnik et al., 

2003). In a Random Forest, a collection of features 

is randomly selected and used to pick the best split 

at each decision node (Singh, 2018). However, the 

trees that are formed in Random Forests are called 

tree stumps because they are trees with a depth of 

one. 

 

2.2.3 Adaptive Boosting  

 

Adaptive Boosting or AdaBoost is a boosting 

algorithm with the ultimate goal of using weighted 

variants of the same training dataset rather than 

using sub-samples as with other boosting techniques 

(Freund and Schapire, 1995; 1996; 1997). The 

advantage of this idea is that the algorithm does not 

require massive data since it repeatedly uses the 

same training dataset (Ferreira and Figueiredo, 

2012). Hastie et al. (2009) said the algorithm is well 

known and trusted for building ensemble classifiers 

to produce an excellent result. The AdaBoost 

algorithm learns using a set of weak learners or 

classifiers to get a robust classifier of the ensemble 

prediction function 𝐻: 𝑋 → {−1, +1} shown in 

Equation (2). 

 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛 ( ∑ 𝛼𝑚

𝑀

𝑚=1

𝐻𝑚(𝑥))             (2) 

 

where H(x), is the generated ensemble classifier’s 

output, α1,... ., αM is a set of weights, Hm(x) is the 

output of the weak learners with m ∈ {1,..., M} which 

are combined to obtain H(x). The weights assigned 

to the training dataset in each round of the algorithm 

at any stage case depends on how previous 
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classifiers performed. In this scenario, the algorithm 

then focuses on the samples or data points that are 

still wrongly classified. AdaBoost is undeniably one 

of its peer's best-known boosting algorithms, which 

has led many data scientists to implement it. 

 

2.2.4 Gradient Boosting  

 

Another ensemble learning method is the gradient 

boosting algorithm or machine. According to 

Friedman (2001; 2002) and Chen et al. (2013), this 

algorithm uses an ensemble of weak learners that are 

sequentially fitted by an additive expansion for its 

predictive model. The principal task of gradient 

boosting algorithm is to learn a functional mapping. 

 

2.3 Model Formulation and Performance 

Metrics Used  
 

The models developed from the ensemble learning 

techniques discussed earlier are presented in this 

section. Furthermore, the performances of these 

models are assessed using several classification 

evaluation metrics. 

 

2.3.1 Model Formulation  

 

The supervised machine learning approach is used 

in developing each of the models. A total of 472 data 

points were used in this research. The dataset was 

split into 377, representing 80% for training and 95 

representing (20%) for testing. Splitting the dataset 

in the ratio 80:20 was done randomly. A larger 

portion of the dataset is conventionally used for 

training the models in other to reduce biasedness and 

variance. The input parameters used are the N, OW 

and the HR, while the SS was used as the output. 

The SS is categorical, which is stated either as 

caved, stable or unstable. The decision trees 

algorithm was used as the base learner for all four 

models, namely the BAC, RFC, ABC and the GBC 

model. The Python programme was used to develop 

all the models.  

 

2.3.2 Performance Metrics  

 

The performance of the classification models is 

evaluated from the confusion matrix, as shown in 

Fig. 3. A Confusion matrix is an n x n matrix that is 

used for evaluating the performance of a 

classification model, where n is the number of target 

classes. The matrix compares the actual target 

values with those predicted by the machine learning 

model. Thus, it gives a complete view of how well 

the classification model has performed and the kinds 

of errors it made.  

 

 
 

Fig. 3 A Typical Confusion Matrix 

 

It should be noted that in confusion matrices 

presented in this research, rows represent actual 

cases while columns represent predicted cases. 

Counting the cells from left to right in Fig. 4, which 

shall apply to all confusion matrices, Cells 1, 5 and 

9 represent correctly predicted cases and are termed 

as True Positives (TP). Also, at Cell 1, (i.e. when 

only caved cases are under consideration), Cells 2 

and 3 are termed False Negatives (FN) and Cells 4 

and 7 are False Positives (FP), and Cells 5, 6, 8 and 

9 are the True Negatives (TN). Similar counts are 

done for stable and unstable cases. 

 

 
Fig. 4 A Typical 3×3 Confusion Matrix Used in 

the Study 

 

The performances of the classification models were 

tested using the metrics; Accuracy, Precision, 

Sensitivity, F1-score, Specificity, Mathews 

Correlation Coefficient (MCC) and Wilson Score 

Interval (WSI). Equations (3) to (8) present a 

mathematical expression for each metric.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁
                 (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
                (4) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                (5) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2

1
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

+
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

            (6) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
           (7) 

 

𝑀𝐶𝐶 =  
(𝑇𝑁 × 𝑇𝑃) − (𝐹𝑁 × 𝐹𝑃)

√(𝐹𝑃 + 𝑇𝑃)(𝐹𝑁 + 𝑇𝑃)(𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁)
 (8) 

 

where FN, FP, TN and TP signify False Negative, 

False Positive, True Negative, and True Positive 

correspondingly. These positive and negative counts 

are computed from the various confusion matrices 

of the four models’ testing dataset. 

 

Confidence Interval -Wilson Score Interval  

 

A comparison of the generalisability of the four 

proposed machine learning models in predicting the 

stability status of stope faces with unseen data was 

carried out. This was done using a confidence 

interval (CI) of 95% (Zα/2=1.96) with the Wilson 

Score Interval formula shown in Equation (9): 

 

𝑊𝑆𝐼 = �̂� ± 𝑍𝛼
2

√
�̂�(1 − �̂�)

𝑛
                       (9) 

 

where �̂� represents the classification error, Z 

represents the critical value and n represents the total 

number of the test dataset. 

 

3 Results and Discussion  
 

3.1 Developed Models  
 

The confusion matrices of the testing dataset of the 

BAC, RFC, ABC and the GBC are shown Fig. 5, 

Fig. 6, Fig. 7 and Fig. 8 respectively. Also, the 

negative and positive counts of each of the 

confusion matrices are summarised in Table 2. 

During the training of the BAC model, the number 

of base learners that could produce the optimal 

results was done by trial and error approach. The 

base learners tried are 5, 10, 15, 20 and 25 with 20 

producing the optimal result. The RFC model was 

developed using 50 estimators with a maximum 

depth of 10.  

 

It should be noted that the number of estimators and 

the depth of the tree were obtained by testing several 

values until an acceptable result was achieved. For 

the ABC model, 40 estimators provided acceptable 

result out of a total number of 100 estimators used 

iteratively. Lastly, the optimal results of the GBC 

model also achieved using 37 base estimators with a 

maximum depth of 4.  

 

 
Fig. 5 Confusion Matrix of BAC Model 

 

 
Fig. 6 Confusion Matrix of RFC Model 

 

 
Fig. 7 Confusion Matrix of ABC Model 

 

 
Fig. 8 Confusion Matrix of GBC Model 
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Table 2 Negative and Positive Counts of the 

Confusion Matrices 
 

Stability Status TP FN FP TN 

Bootstrap Aggregating Classifier (BAC) 

Caved 21 1 1 72 

Stable 21 0 0 74 

Unstable 51 1 1 42 

Total 93 2 2 188 

Random Forest Classifier (RFC) 

Caved 21 1 2 71 

Stable 32 3 1 59 

Unstable 35 3 4 53 

Total 88 7 7 183 

Adaptive Boosting Classifier (ABC) 

Caved 8 3 1 83 

Stable 25 5 0 65 

Unstable 53 1 8 33 

Total 86 9 9 181 

Gradient Boosting Classifier (GBC) 

Caved 11 0 3 81 

Stable 30 0 1 64 

Unstable 50 4 0 41 

Total 91 4 4 186 

 

3.2 Performance Evaluation 
 

The accuracy of the model is a measure of how well 

it separates the groups to be classified into caved, 

stable and unstable. As seen in Table 3, accuracies 

between 90% and 100% with corresponding error 

rates ranging from 2% to 9% were obtained 

Although the categories to be classified may be 

unbalanced, each model produced remarkable 

results. However, precision is the percentage of the 

overall positive observations that have been 

predicted correctly. Of the total observations that the 

model classified as either caved, stable or unstable, 

this metric seeks to find out the number of instances 

that genuinely belonged to the proposed class or 

group. Again, from Table 3, all four models obtained 

excellent scores for precision. It is clear from 

confusion matrices in Figs. 3 to 6 that the Bagging 

technique has the least misclassified items while the 

AdaBoost technique has about 9.47% difficulty 

distinguishing between the caved and unstable 

classes even though classified the stable class 

correctly. The ratio of all observations in the actual 

group of correctly predicted positive observations as 

either caved, stable or unstable is termed sensitivity. 

A typical question that the sensitivity metric answers 

is: of all the actual instances that belonged to a 

particular class, how many did the model accurately 

predict? 

 

 

 

 

 

Table 3 Summary of Results on Models 

Performance 

Technique/ 

Metric 
BAC RFC ABC GBC 

Accuracy 0.9789 0.9263 0.9053 0.9579 

Precision 0.9789 0.9263 0.9053 0.9579 

Sensitivity 0.9789 0.9263 0.9053 0.9579 

F1-score 0.9789 0.9263 0.9053 0.9579 

Specificity 0.9895 0.9632 0.9526 0.9789 

MCC 0.9684 0.8895 0.8579 0.9368 

CI-95 0.0403 0.1087 0.1340 0.0690 

 

Unlike the ABC, GBC and the RFC models, the 

BAC technique obtained 97.89% score for 

sensitivity with one misclassed item each for caved 

and unstable classes. A comparison of the 

performances of all the models for the sensitivity 

metric is illustrated in Fig. 9. It is important to note 

also that as high sensitivity values are recorded on 

the model, the lower the False Negative rate which 

can be computed from Table 2. that model which is 

an indication of good performance. The false 

negative rate complements the sensitivity metric in 

the sense that it measures the miss rate or the 

proportion of positive samples that were wrongly 

classified. Specificity, the converse of sensitivity, 

measures the percentage of correctly predicted 

negative instances. In Fig. 9, it is distinct that BAC 

had 98.95%, which is the highest specificity value in 

this criterion. However, GBC, RFC, and ABC 

specificity scores are equally excellent. 

 

 
 

Fig. 9 Models Performance Using Specificity, 

Sensitivity, Precision and Accuracy 

 

The harmonic mean of sensitivity and precision is 

the F1-score. This score is therefore used when 

precision and sensitivity are equally important as in 

the case of this research; hence, high F1-score values 

0.9789
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are expected. The F1-score is revealed to be ideal for 

problems with imbalanced classes. As shown in Fig. 

10, the BAC model has an F1-score of 97.89%, 

which is the highest score. The GBC model is the 

second higher performed model with 95.79%. The 

models that had an excellent balance between 

precision and sensitivity are BAC and GBC. 

 

Fig. 10 shows the performance of each model using 

the MCC. The MCC is a criterion that examines the 

level of correlation between the observed and the 

predicted values for each group to be classified. The 

Mathews Correlation Coefficient is assessed on a 

scale of -1 to +1. When the value of the MCC is +1, 

it depicts an ideal prediction, a 0 illustrates a chance 

or a coincidental prediction, and -1 shows there is a 

wide discrepancy between the prediction and the 

actual values. However, it can be seen in Fig. 10 that 

all the models show an appreciable level of 

agreement between the predicted and the actual 

values. Among all the proposed models, the BAC 

model out-performed the others with an MCC value 

of 0.96 while GBC followed closely with 0.93 MCC 

values. The BAC and the GBC models can, 

therefore, be considered as having performed 

exceptionally well using the six performance 

metrics. They are selected because it is evident that 

there exists a remarkable correlation between the 

observed and the predicted values of each class and 

not just a random prediction. 

 

 
 

Fig. 10 Models Performance Using F1-score and 

Mathews Correlation Coefficient (MCC) 

 

From the results of the performance metrics used in 

assessing the efficiency of the four ensemble 

learning techniques, it was evident that two models, 

namely BAC and GBC, achieved acceptable results. 

Therefore, these six models are proposed as suitable 

models for assessing the stability status of stopes for 

design purposes. The WSI was used with a 95% 

confidence interval (CI) to ascertain the 

generalisability of these four models. Using Fig. 9 

as a reference, there is 95% probability that the 

confidence interval of [0.0, 0.04] and [0.0, 0.06] 

covers the factual classification error of the BAC 

and GBC models on new dataset respectively. It is 

worth mentioning the confidence intervals on the 

classification errors are clipped to value from 0.0 to 

1.0 as it is impossible to obtain a negative 

classification error or an error greater than 1.0. 

 

 
 

Fig. 9 Model’s Maximum Expected Error at a 

95% Confidence Interval 

 

4 Conclusion  
 

In this study, the feasibility of using Ensemble 

Learning techniques in the classification and 

prediction of the stability status of a stope face was 

investigated. Four of such techniques, namely RFC, 

GBC, BAC, and ABC were proposed and tested. 

These Ensemble Learning techniques have been 

proposed as the new computational alternative 

methods to the existing stability graphs. The 

objective of this research was achieved with a total 

of 472 stope cases from AngloGold Ashanti Ghana, 

Obuasi Mine. 80% (377) of the 472 stope cases were 

used for developing the classification models, while 

the remaining 20% representing 97 stope cases were 

used in testing the performance of each of the 

models. The orebody width, hydraulic radius 

(computed using the stope geometry/dimensions - 

span, length and height) and the stability number 

(obtained using the stress factor, the gravity factor, 

the joint orientation factor and the rock mass quality 

index) were the input parameters, and the status of 

the stope (as either Caved, Stable or Unstable) was 

the response or output parameter. Six classification 

performance metrics: Accuracy, Precision, 

Sensitivity, F1-score, Specificity and Mathews 

Correlation Coefficient (MCC), were used as the 

basis for assessing the performance of the machine 

learning techniques used in this research. The 

Wilson Score Interval with a confidence interval of 

95%, was used to determine the expected error 

margin of each of the proposed model. This 

criterion, including those as mentioned earlier, was 

used in selecting the best machine learning model 

among the four Ensemble Learning techniques 

proposed in this study. The GBC model obtained an 

equal score of 95.79% for sensitivity, precision 

accuracy and F1-score while MCC and specificity 

scores were 93.68% and 97.89% respectively. The 
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sensitivity, precision, F1-score and the accuracy 

score for the BAC model was also 97.89%, and that 

of MCC and specificity were 96.84% and 98.95% 

correspondingly. The MCC values for both RFC and 

ABC were 88.95% and 85.79% respectively. Also, 

the specificity score was 96.32% for RFC while 

ABC obtained a score of 95.26%. The sensitivity, 

precision accuracy and F1-score values stood at 

90.53% for ABC and 92.63% for RFC. Given the 

results obtained after the performance evaluation, it 

was observed that two models out of the four 

proposed machine learning techniques; GBC and 

BAC would be appropriate for classifying and 

predicting the stability status of stopes as either 

caved, stable or unstable. The GBC and BAC are 

therefore proposed as suitable alternative 

computational design tools for the prediction of the 

stability status of a stope for design purposes. 

However, considering all the performance 

evaluation methods used, the BAC model obtained 

the highest score in all the criteria used and was 

therefore selected as the robust model for stope 

design in AngloGold Ashanti Ghana, Obuasi Mine. 
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