DIVERSITY OF BENTHIC BIOTA OF SOME FRESHWATER HABITATS IN KABBA/BUNU LOCAL GOVERNMENT, KOGI STATE, NORTH-CENTRAL, NIGERIA

*ADESALU, T.A., ¹ KUNRUNMI, O.A. ¹ AND LAWAL, M.O. ²

¹Department of Botany, University of Lagos, Nigeria ²Department of Marine Sciences, University of Lagos, Nigeria

Abstract

The composition and diversity of different water bodies in Kaaba/Bunu Local Government, Kogi State were investigated for both micro and macrobiota. The study covered Oinyi, Odogo and Odonkolo Rivers. Salinity values ranged between 0.03‰ and 0.07‰ indicating the freshwater status of these water bodies, pH was between 6.50 and 7.61. Conductivity values were between 88.1μ S/cm and 131.7μ S/cm while dissolved oxygen highest value (5.12mg/L) was recorded at Odonkolo River. For the phytobenthos, eighty-five taxa recorded were distributed among five divisions, Bacillariophyta, Chlorophyta, Charophyta, Euglenophyta and Cyanobacteria. Bacillariophyta (Diatoms) accounted for 78.28% of the identified species, followed by the Charophytes, (6.99%), Chlorophytes (5.61%), Euglenophytes (7.43%) and Cyanobacteria (1.69%). Macrobenthic invertebrates recorded three group; gastropoda (37.71%), insecta (28.57%) and oligochaeta (35.71%).

Key Words: Phytobenthos, macrobenthic, Water, River, Diversity, Kogi State

Introduction

Water bodies like rivers. are important being involved by in maintaining a balance in the ecosystem by supporting diverse plankton and other organisms in the food chain. Algae are important primary producers. since phytoplankton communities produce approximately half of the global net primary production (Field et al., 1998) as cited by Marinković et al. (2016). According to the European Water framework Directive (WFD 2000), phytoplankton and phytobenthos are used in the determination of water quality. They help to improve water quality and serve as nursery grounds for fish and crabs. Benthic algae, according to Makovinsca and Hlubikova (2015) are the most successful primary producers in aquatic habitats. They are important chemical modulators, transforming inorganic chemicals into organic forms, (Molholland, 1996) functions as stabilizers of substrata and serve as important habitat for many organisms (Makovinsca and Hlubikova, 2015). Biggs et al. (1998) were of the opinion that benthic algal community structure is driven by light and nutrients availability and disturbances which is hydrological stress. According to George et al. (2009)

cited by Esenowo and Ugwumba (2010), macrobenthos play an important role in aquatic community which includes mineralization, mixing of sediments and flux of oxygen into sediment, cycling of organic matter and assessing the quality of inland water. The ecological problems in Kogi State include leaching, erosion and general impoverishment of the soil. These problems are compounded by the annual bush burning of the savanna that further exposed the top soil to more erosion. (Adeoye, 2012). This study was undertaken in order to have the baseline biota of these rivers since no phycological work has been done in these waters.

Materials and Methods Description of Study Sites

The study site is located at the northern part of Kabba town, Alape road along Kabba-Ilorin road, Kabba, Kogi state (Fig 1.), Nigeria. Kogi state is characterized as a sub humid zone with derived savannah vegetation, patches of rainforest and harsh tolerance plant species alongside with economic trees and agricultural crops. Kabba/Bunu Local government part of the study site is described as Southern Guinea Savanna zone of secondary forest with dominant type being savanna woodland consisting of trees of varying species and scanty grass cover with a number of small sized farms growing a mix of cassava, yams, maize and cowpeas. Riparian vegetation along the study sites consist of Raphia hookeri G. Mann and H.Wendl, Pterocarpus erinaceus Poir, Anchomanes difformis (Blume) Engl, Anogeissus leiocarpus (DC.) Guill. And Perr., Detarium macrocarpum Harms. Eriosema psoralioides (Lam) G. Don,

P. Sporobolus pyramidalis Beauv., Tephrosia linearis (Willd.) Pers., Urena lobata L., Vitex doniana Sw., Holarrhena floribunda (G.Don.) Dur. & Schinz, Mimosa pudica L., Margaritaria discoidea (Baill.) Webster, Hyptissua veolens (L.) Poit, Byrsocarpus coccineus Thonn... And Schum. Canavalia ensiformis (L.) DC.), Waltheria indica L. The rivers are seasonal and partly dry up during the dry season but are very deep and wide during the wet season. These rivers serve as the main source of water for the inhabitants of the environment especially during wet season. During the wet season, the inhabitants carry out fishing activities in the river. Farming and Lumbering is the major activity at the study sites.

Oinvi River: Is a protected area, is in Oinyi Forestry Reserve and after Okpa area. The River is said to reach a depth of about 34m if traced further down. However, this particular location was more of a stream measuring 0.23m depth. The stream was covered by high forest vegetation (Plate 1 (A and B)). It was difficult to navigate further down because of the roughness of the terrain. The vegetation around this water body is dominated by Tectona grandis, Gmelina arborea and Mimosa pudica was seen growing abundantly at this site. Seven stations with GPS readings of N08° 00.322' E006° 17.231' (Station 1); N07° 58.005' E006^o 15.811' (Station 2); N08^o 00. 213' E006º 16.989' (Station3): N08º 00. 253' E006° 17.419' (Station 4); N08° 00. 262' E006^o 16.911' (Station 5); N08^o 00. 538' E006^o16.690' (Station 6) and N07° 57. 296' E006° 14. 419' (Station 7) were created. The sediment is sandy.

Other Rivers: Some of the location shows evidence of erosion. The water was cloudy as a result of leaching of clay soil into the stream. The sediment was sandy with lot of stones for most of the water bodies around the study area. The vegetation around this area is similar to that describe above. Most rivers at the study site especially Odogu and Orioyo water are gravel bed river (Plate 1 (C and D)). Odonkolo River bank is densely populated with high forest plant species, the water looks clear; the depth and transparency measurements were the same (0.27m). Three stations with GPS readings of N07^o 57. 260' E006^o 14.593' (Station 8); (N07^o 57. 454' E006^o 15.250' (Station9); N07^o 56. 578' E006^o 14. 966' (Station 10) for Odogu and Orioyo River while Odonkolo has one station N07^o 58. 956' E006^o 20. 769' (Station 11).

Plate 1: Some of the sampling sites at the location

Collection of Samples Phytobenthos Sampling

Three replicate water samples were collected twice (March and June) to denotes the season (Dry and Wet). Due to the shallowness of the study site, water sampler was used directly to collect the water samples which were transferred into well labeled 500ml plastic containers with screw caps and preserved with 4%unbuffered formalin (Adesalu *et al.*, 2015). Surface water samples for physico-chemical analysis were collected in 2litre container. Some analyses were done *in-situ* before taken the water samples for further analysis (Adesalu *et* *al.*, 2015) Biological samples were analysed using relevant texts (Hustedt (1930–1937; 1954) Whitford and Schumacher (1973); Hendey (1964); Patrick and Reimer (1966, 1975), Krammer and Large-Bertalot (1986). Bukhtiyarova and Pomazkina, 2013.

Macrobenthos Sampling

As explained in Adesalu et al. (2016), at each station, soil samples were scooped directly at the sampling points due to shallowness of these sites. The sediments were sieved through a 0.5mm mesh size stainless sieve. The sieve and its contents were immersed in the native water and gently agitated until organisms debris matrix removed and sieve contents transferred into properly labeled, wide mounted glass jars containing 4% unbufferred formalin solution for preservation. The macrobenthos was observed under the Olympus microscope at different magnifications and biological species documented. Identifications were made using appropriate keys (Needham and Needham, 1962; Quigley, 1977; Atobatele, et al., 2005; Ibemenuga and Inyang, 2006).

Scanning Electron Microscopy

Phytobenthos collections were prepared for light and scanning electron microscope observations. A portion of the cleaned sample was added to distilled water. This slurry was filtered onto a 0.45 um Millipore type HA filter. The filters were allowed to dry. A portion of the filter was cut and mounted to an aluminum stub using adhesive carbon tape. The aluminum stub was sputter coated with 20nm of gold or goldscanning palladium. All electron microscope observations were performed

with a JOEL JSM 6060LV using a 10 kV accelerating voltage at St. Cloud State University, U.S.A.

Physico-chemical Analysis

Measurement of the surface water temperature was made *in-situ* with the aid of mercury-in-glass thermometer while water depth was measured using a pole and measuring tape. Surface water determined salinity was bv using handheld refractometer; conductivity was determined by the use of Philips PW9505 Conductivity Meter (Range: 3- $100,000 \mu$ S/cm and Automatic Temperature Compensation Unit) and the hydrogen ion concentration (pH) was analyzed using the Cole Parmer Tester3 electronic pН meter). Total (an suspended solid and total dissolved solids were determined using the Gravimetric method (2540D APHA, 1998). Dissolved oxygen was determined using Titrimetric (Iodometric) method (Azide modification procedure (APHA, 1988).

Community Structure Analysis

To obtain the estimate of species diversity, three community structure indices were used: Margalef's diversity index (d), Shannon-Weaner Index (H^1) (Shannon and Weaner 1963) and Species Equitability (j) or Evenness (Pielou, 1975).

Results

Physico-chemical Analysis

Surface water samples recorded an average of 28°C and 32°C for both season (wet and dry) while the salinity (0.03‰ - 0.07‰) of the water showed a freshwater environment the pH ranged between 6.50 and 7.61 for both season Table 1.

						Statio	ns				
		Parts of Odogo									
			Parts o	f Oinyi F	River			River		River	
	1	2	3	4	5	6	7	8	9	10	11
Air temperature (^o c)	32	30.5	34.5	30	31	33	34.8	30.5	35	33	32.8
Water temperature (^o c)	32	32	33	28.5	31.8	34	31	27.5	30.8	32	32.2
pH	7.53	7.12	7.46	7.24	7.33	7.61	7.49	6.50	7.26	6.52	7.56
Salinity (%)	0.05	0.04	0.05	0.06	0.05	0.05	0.07	0.03	0.06	0.04	0.06
Depth (m)	0.76	0.67	0.67	0.43	0.34	0.46	0.53	0.41	0.52	0.46	0.40
Conductivity (µS/cm)	102.4	131.7	101.8	113.4	103	96.9	127.8	61.8	110	88.1	113
Total Dissolved Solids (mg/L)	75.7	53.9	74.8	84.8	76.3	69.1	98.1	45.2	80.6	65.7	83.7
Dissolved Oxygen (mg/L)	4.5	4.08	3.83	3.15	4.42	4.78	1.94	0.08	3.92	3.4	5.12

Table 1: Physico-chemical parameters results obtained at the different stations (Average)

Phytobenthos

The phytobenthos community of the Kaaba/Bunu locations of the sampling sites recorded 85 taxa distributed among five divisions Bacillariophyta, Chlorophyta, Charophyta, Euglenophyta and Cyanobacteria (Table 2). The composition of different groups among the eleven stations sampled is shown in Figure 1. Most species belong to the division, Bacillariophyta which is a diverse group with 78.28% of the identified followed species, by Euglenophytes (7.43%) and Charophyta (6.99.0%) and The Chlorophytes and Cyanobacteria recorded 5.61% and 1.69% respectively, (Figure2). Among

the diatoms, *Pinnularia* (10 species), Nitzschia (9 species), Navicula (7 species), Amphora (6 species) and Gomphonema (5 species) were the dominant genera. The Chlorophytes and Euglenophytes recorded 8 species each with six and three genera respectively. The blue green (Cyanobacteria) had three species with two genera, Chroococcus and Oscillatoria. Community structure analysis as shown in Figure 3 revealed the relationship between the Shannon Weaner index and Margalef (diversity) following almost same pattern. Scanning electron microscopy images of some species especially diatoms are presented on Plate 2.

				Parts of	Oinyi River				Odonkolo River			
		1	2	3	4	5	6	7	8	9	10	11
		(N08º 00. 322' E006º 17. 231')	(N07º 58. 005' E006º 15. 811')	(N08° 00. 213' E006° 16. 989')	(N08° 00. 253' E006° 17. 419')	(N08° 00. 262' E006° 16. 911')	(N08° 00. 538' E006° 16. 690')	(N07º 57. 296' E006º 14. 419')	(N07º 57. 260' E006º 14. 593')	(N07º 57. 454' E006º 15. 250')	(N07° 56. 578' E006° 14 966')	(N07º 58. 956' E006º 20. 769')
	Division: Bacillarionhyta	231)	011)	,,,,	117)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,0,	117)	575)	250)	11.9009	(0))
	Class:Bacillarionhyceae											
	Order: Aulacoseirales											
	Family: Aulacoseiraceae											
	Aulacoseira. granulata var.											
1	angustissima (O.Müll.) Simonsen	_	30	_	_	_	_	_	_	_	_	_
	Order: Bacillariales											
	Family Bacillariaceae											
2	Nitzschia fasciculate (Grunow) Grunow	40	_	_	40	_	_	10	_	_	_	_
3	N. flexoides Geitler	30	_	20	_	_	10	_	_	_	_	10
	Nitzschia filiformis var. ignorata											
4	(Krasske) Cleve	40		10	20	_	-	-	_	_	_	_
5	N. flexoides Geitler	_	40	_	_	20	_	_	_	_	_	_
6	N. ignorata Krasske	_	10	_	30	10	_	_	_	_	_	_
7	N. linearis W. Smith	10	_	_	_	_	_	_	_	_	_	_
8	N. palea (Kutz) W.Sm	10	_	20	_	_	30	_	_	_	_	30
9	N. sigmoidea (Nitzsch) W.Smith	_	_	_	_	_	_	_	_	_	_	10
10	N. sublinearis Hustedt	30	_	_	_	_	_	_	_	_	_	_
11	Nitzschia sp.	10	_	10	40	_	_	_	_	_	_	_
	Order: Cocconeidales											
	Family: Cocconeidaceae											
12	Cocconeis disculus (Schumann) Cleve	20		_	_		_	_		_	_	_
13	Cocconeis placentulaEhrenberg			10	_	10	20	_		_	_	80
	Family: Achnanthidiaceae											
14	Achnanthidium sp.	60		_	_		_	_		_	_	_
	Planothidium lanceolatum (Brébisson	10										
15	ex Kützing) Lange-Bertalot	10	-	-	-	-	-	-	-	-	-	_
	Order: Coscinodiscales											
	Family: Coscinodiscaceae									100		
16	Coscinodiscus sp.	_	-	-	-	-	-	-	-	100	-	_
	Order: Cymbellales											
17	Family: Cymbellaceae	 	10						l			
17	Cymbella silesiaca Bleisch		10		_	-		_		_	_	-
18	Cymbella sp.	-	-	20	-	10	20	-	-	-	-	10
	Family: Gomphonemataceae											

Table 2: Phytobenthos composition at the different locations in Kogi during dry and wet seasons at (cells/ml)

19	Gomphonema angustatum Agardh	_	10	_	_	_	_	_	_	_	_	_
20	G. clavatum Ehrenberg	10	10	_	_	10	_	_	_	_	_	_
21	G. subclavatum (Grunow) Grunow	_	_	10	_	-	10	_	_	_	_	_
22	G. minutum C. Agardh) C. Agardh	10	_	_	_	_	_	_	_	_	_	_
23	G. parvulum (Kützing) Kützing	10	_	_	_	_	_	_	_	_	_	_
	Order: Eunotiales											
	Family: Eunotiaceae											
	Eunotia subarcuatoides Alles, Nörpel &											
24	Lange-Bertalot	_	_	10	_	_	_	_	_	_	10	_
	Order: Fragilariales									_		
	Family: Fragilariaceae											
25	Fragilaria sp.	70	20	_	_	10	_	_	_	_	10	_
26	Synedra sp.	50	50		10	_	70	_			_	10
	Order: Licmophorales			_						_	_	
	Family: Ulnariaceae											
27	Ulnaria ulna (Nitzsch) Compère	_	_	30	10	30	60	_	_	_	_	10
28	U. ulna var. contracta (Østrup) Morales	60	_	_	_	-	_	_	_	_	_	_
	Ulnaria danica (Kützing) Compère &			_						_	_	_
29	Bukhtiyarova	_	10	_	10	_	_	_	_	_	_	_
	U. ulna var. oxyrynchus (Kützing)			_						_	_	_
30	Aboal	10	10	_	30	10	_	_	_	_	_	10
31	Ulnaria sp.	_	20	10	_	10	10	_	_	_	_	20
	Order: Naviculales											
	Family: Amphipleuraceae											
32	Frustulia rhomboids (Ehr.) de Toni	_	10	_	_	-	_	_	_	_	_	_
	F. rhomboids var. crassinervia											
33	((Brébisson ex W.Smith)) Ross	_	10	_	_	_	_	_	_	_	_	_
34	F. vulgaris (Thwaites) De Toni	_	10	_	_	_	_	_	_	_	_	_
	Family: Naviculaceae											
	Gyrosigma scalproides (Rabenhorst)											
35	Cleve	_	30	_	_	_	_	_	_	_	_	10
	Navigeia decussis (Østrup)											
36	Bukhtiyarova	20	10	_	_		_	_	_	_	_	_
37	Navicula exigua (Greg.) O. Muller	30	70	30	_	20	20	_	_	_	_	30
38	N. mutica Kutzing	20	180	110	60	40	20	_	_	_	_	10
39	N. placenta Ehr.	_	10	30		10		I	I	_	_	I
40	N. pupila Kutz.	40	390	190	120	30	20	10	10	_	_	100
41	N. radiosa (Kutz.)	110	I	50	10	10		I	10	_	_	10
	Family: Neidiaceae											
42	Neidiumsp.	_	_	10	_	_	_			_	_	_
	Family: Pinnulariaceae											
43	Pinnularia abaujensis (Plant.) Ross	_	_	_	10	_	_	_	_	_	_	_
44	P. acrosphaeria Smith	_	_		_	20	_	10		_	_	_
45	<i>P. legumen</i> Ehr.	_	_	_	_	_	_	_	10	_	_	_
46	P. lundii Hustedt	70	_	_	_	_	_	_	_	_	_	_

47	P. macilenta Ehr.	160	460	130	270	130	30	10	_	10	30	110
48	P. maior (Kutzing) Rabenhorst	_	_	10	10	_	_	_	_	_	_	_
49	P. microstauron (Ehrenberg) Cleve	20	_	_	_	_	_	_	_	_	_	_
50	P. subcapitata Gregory	10	_	30	_	40	_	_	_	_	_	10
51	P. viridis (Nitz.) Ehrenberg	_	_	10	_	_	_	_	_	_	_	
52	Pinnularia sp.	30	40	_	_	_	_	_	_	_	_	20
	Family: Pleurosigmataceae											
53	Pleurosigma sp.	90	80	40	40	20	_	_	10	_	-	10
	Family: Stauroneidaceae											
	Stauroneis phoenicenteron (Nitzsch)											
54	Ehrenberg	_	10	80	_	_	_	10	_	_	_	_
55	Stauroneis sp.	_	20	_	_	_	_	_	_	_	_	10
	Order: Rhopalodiales											
	Family: Rhopalodiaceae											
56	Rhopalodia gibba(Ehr.) Muller	40	20	310	10	10	40	_	_	_	_	100
57	Rhopalodia sp.	_	40	170	_	_	20	_	_	_	_	130
	Order: Stephanodiscales											
	Family: Stephanodisceae											
58	<i>Cyclotella</i> sp.	10	20	_	_	_	_	10	_	_	_	_
	Order: Surirellales											
	Family: Surirellaceae											
59	Cymatopleura solea (Breb) W. Sm	30	270	10	120	50	_	_	_	_	_	10
60	Surirella elegans Ehrenberg	10	_	_	_	10		_				_
	Order: Thalassiophysales		—	_						_		
	Family: Catenulaceae											
	Amphora coffeaeformis (Agardh)											
61	Kützing	_	_	30	_	10	_	_	_	_	_	20
62	A. commutate Grunow	_	10	_	_	20	_	_	_	_	-	_
63	A. delicatissima Krasske	_	_	10	_	_	-	_	10	_	-	_
64	A. holsatica Hustedt	10	_	_	_	_	-	_	_	_	-	_
65	A. ovalis (Kutzing) Kutzing	10	_	_	_	_	_	_	_	_	_	_
66	Amphora sp.	_	30	10	_	10	20	_	_	_	_	20
	Division: Charophyta											
	Class: Zygnematophyceae											
	Order: Desmidiales											
	Family: Closteriaceae											
	Closterium acerosum Ehrenberg ex											
67	Ralfs	_	_	_	_	_	_	_	_	_	_	20
	C. closterioides (Ralfs) A. Louis &											
68	Peters	_	_	_	10	_	_		_	10		_
	Family: Desmidiaceae											
69	Cosmarium sp.	_		20	_	20			_	_	_	10
	Family: Gonatozygaceae											
70	Gonatozygon sp.	_	=	20	20	_		-	_	_	_	30
	Order: Zygnematales											

	Family: Zygnemataceae											
71	Spirogyra sp.	I	_	_	I	_	500	_	_	I	_	_
	Division: Chlorophyta											
	Class: Chlorophyceae											
	Order: Sphaeropleales											
	Family: Scenedesmaceae											
	Desmodesmus quadricauda (Turp.)											
72	Breb.	10	_	_	_	_	_	10	_	_	_	_
73	D. quaricaudavar. westiiG.M. Smith	_	10	_	_	_	_	_	_	_	_	_
	Family: Microsporaceae											
74	Microspora sp.	_	_	_	_	_	_	500	_	_	_	_
	Division: Euglenophyta											
	Class: Euglenophyceae											
	Order: Euglenales											
	Family: Euglenaceae											
75	Euglena acus var. rigida Huebner	_	_	_	_	_	_	_	_	10	_	_
76	E. intermedia (Klebs) Schmitz	-	_	_	I	_	I	_	_	10	_	_
77	E. proxima Dangeard	I	10	_	I	_	I	_	_	I	_	_
78	Euglena sp.	_	10	_	_	20	20	_	20	430	10	10
82	Trachelomonas sp.	10	_	_	I	_	I	_	_	I	_	_
	Family: Phacaceae											
79	Phacus curvicauda Svirenko	I	_	_	I	_	I	10	_	10	_	_
80	P. longicauda (Ehrenb.) Dujardin	I	_	_	I	_	I	_	_	30	_	_
81	Phacus sp.	_	_	_	10	40	_	1	_	40	_	_
	Division: Cyanobacteria											
	Class: Cyanophyceae											
	Order: Chroococcales											
	Family: Chroococcaceae											
83	Chroococcus sp.	I	10	_	I	_	I	_	_	I	_	_
	Order: Oscillatoriales											
	Family: Oscillatoriaceae											
84	Oscillatoria agardii Gomont	60	_	_	_	_	_	_	_	_	_	_
85	Oscillatoria sp.	I	_	_	10	_	I	80	_	I	_	_
	Total number of species	37	35	30	21	27	17	11	6	9	4	28
	Total number of individuals	1270	1980	1450	890	630	920	661	70	650	60	860
	Margalef (d)	5.04	4.48	3.98	2.94	4.03	2.34	1.54	1.18	1.24	0.73	4.00
	Shannon-Weiner (H1)	3.25	2.58	2.74	2.36	2.96	2.60	1.41	1.75	1.20	1.24	2.84
	Species evenness (j)	0.90	0.73	0.09	0.78	0.90	0.92	0.59	0.98	0.55	0.89	0.85

Diversity of Benthic Biota of Some Freshwater Habitats.....ADESALU et al.

Figure 1: Comparison of different phytobenthos group abundance at different locations in Kaaba/Bunu Kogi

Figure 2: Percentage composition of major groups of phytobenthos

Figure 3: Community structure analysis at Kaaba/Bunu, Kogi locations

Plate 2: Some of the diatoms observed, Discotella sp. (A and B); Cocconeis placentula Ehr. (C); Cocconeis disculus (Schumann) Cleve (D); Cocconeis sp. (E); Acknantkes lanceolata (Brébisson ex Kützing) Grunow (F); Acknantkidium sp. (G) and Gyrosigma scalproides (Rabenhorst.) Cleve (H). Bar -10um

Macrobenthos

The analysis for the benthic samples was presented on Table 3 .The macro benthic invertebrates were represented by 14 taxa, belonging to 3 groups (Table 3).The dominant groups were the Gastropoda and Oligochaeta with each accounting for 35.71% while the Insecta group accounted for 28.57% of the total individuals respectively (Figures 4 and

5). The dominant taxa were Potamopyrgus and Lumbriculus species accounting for 35.71% each of the total individuals recorded while Aeschna and Chironomus species were least represented with 14.29% each of the total individuals recorded (Figure 6). The Shannon-Wiener Index (Hs), Margalef Index (d) and Equitability Index (j) were highest at some stations (Table 3).

Table 3.The distribution, occurrence and diversity indices of macro-benthic invertebrate community at the study stations

											Odonkolo
	Parts	River									
	1	2	3	4	5	6	7	8	9	10	11
GASTROPODA											
Potamopyrgus spp.	1	-			1	3	-		-	-	-
INSECTA											
Aeschna spp.	-	-	-	-		1	-	1	-		
Chironomus spp.	-	-	-	-	1		-		-		1
OLIGOCHAETA											
Lumbriculus spp.	1	-	-	-	1	1	-		-	1	1
Total species diversity (S)	2	-	-	-	3	3	-	1	-	1	2
Total abundance (N)	2	-	-	-	3	5	-	1	-	1	2
Log of Species diversity (Log S)	0.30	-	-	-	0.45	0.45	-	0.00	-	0.00	0.30
Log of abundance (Log N)	0.30	-	-	-	0.45	0.7	-	0.00	-	0.00	0.30
Shannon-Wiener Index (Hs)	0.30	-	-	-	0.48	0.41	-	0.00	-	0.00	0.30
Margalef Index (d)	1.45	-	-	-	1.82	1.24	-	0.00	-	0.00	1.45
Equitability Index (j)	1.00	-	-	-	1.07	0.91	-	0.00	-	0.00	1.00

Figure 4: Percentage contribution of the major macro-benthic invertebrate groups at the study stations

Figure 5: Summary of the abundance (Number of individuals/m²) of macro-benthic invertebrate groups at the study stations

Discussion

The relative abundance of diatoms in these rivers may be as a result of the shallowness which paved way for deep light penetration which supports the rate of photosynthesis. The dominance of diatoms over other group confirms earlier reports made by Chindah and Pudo (1991) in Bonny River; Erondu and Chindah (1991) in the newCalabar River, Niger Delta; Adesalu (2008) in Lekki lagoon; Adesalu and Nwankwo (2005, 2008) in Olero and Abule Eledu creek respectively; Adesalu and Kunrunmi (2012) in the Lagoons of South-Western Nigeria, Adesalu and Kunrunmi (2016) for Majidun creek; Adesalu et al. (2008, 2014, 2015) in Ogbe and Ipa-Itako creeks and Majidun. However, the low number in the population of macro-benthic invertebrates recorded at the study stations could be due to the

developmental rate of small macroinvertebrates. since most aquatic invertebrates are benthic only at larval stages while their adult lives are spent outside aquatic environments (Ibemenuga and Invang, 2006). The total number of 14 taxa reported in this present study is far less than those reported for rivers elsewhere (Edema et al., 2002; Adakole and Anunne, 2003, Adesaluet al., 2016a and b) and these may be as a result of different environmental conditions such as water quality and movement, substrate instability and food availability (Esenowo and Ugwumba (2010). The water body as described previously, especially the Oinvi river is seasonal and this was observed in dry season as most of the river course was dry while in wet season, the water was not evenly distributed. Parts of the river were also dried while some parts were flooded in the wet season but no fish was caught.

Conclusion

The dominant of diatoms species in this study supported other reports from similar water bodies in Nigeria while the absence of Eunotia species conformed to the fact that they thrive very well in acidic water in this case the water is essentially neutral. However. the euglenoids, an indicator of organically polluted area which was observed in some of the stations especially Station 10 is probably due to the closeness of this station to settlements where domestic wastes get into the water body unabated. The paucity of benthic fauna in these rivers might be due to the nature of the river bed. The observation of desmids, an nutrient indicator of poor water (oligotrophic) also implies that the rivers still support life as depicted by high dissolved oxygen value..

Acknowledgements

Authors are most grateful to anonymous environmental firm for providing the logistics.

References

- Adeoye, N.O. (2012). Spatio-Temporal Analysis of Land Use/Cover Change of Lokoja – A Confluence Town. Journal of Geography and Geology; 4(4):40-51. DOI: http://dx.doi.org/10.5539/jgg.v4n4p 40
- Adesalu, T.A. (2008). *Phytoplankton dynamics in relation to water quality indices in Lekki lagoon*. Ph.D thesis, University of Lagos.
- Adesalu, T.A. and Nwankwo, D.I. (2005). Studies on the phytoplankton of Olero creek and parts of Benin River, Nigeria.*The Ekologia*, 3(2):21-30.
- Adesalu, T.A. and Nwankwo, D.I. (2008). Effect of water quality indices on phytoplankton of a sluggish tidal creek in Lagos, Nigeria. *Pakistan Journal of Biological Sciences*, 11: 836-844.DOI:

10.3923/pjbs.2008.836.844

Adesalu, T.A., Abiola, T.O. and Bofia, O.T. (2008). Studies on the epiphytic algae associated with two floating aquatic macrophytes in a sluggish non-tidal polluted creek in Lagos, Nigeria. *Asian Journal of Scientific Research* 1: 363-373.

DOI:10.3923/ajsr.2008.363.373

Adesalu, T.A., Adesanya, T. and Ugwuzor, C. (2014). Phytoplankton composition and water chemistry of a tidal creek (Ipa –Itako) part of Lagos Lagoon. *Journal of Ecology and Natural Environment*, 6 (11): 373-388. DOI: 10.5897/JENE2014. 0473

- Adesalu, T. A, Kunrunmi, O.A. and Lawal, M.O. (2015). Diversity of plankton and macrobenthos of freshwater habitats in Kogi State, Nigeria. *Centrepoint Journal* (Science Edition), 21(1):35-53.
- Adesalu, T.A and Kunrunmi, O.A. (2016). Diatom communities in riparian systems associated with Lagos lagoon, Nigeria 1. Seasonal and anthropogenic patterns in Majidun Creek. *Algological Studies*, 150: 39-52.DOI: 10.1127/algol_stud/2016/0249
- Adesalu, T.A., Kunrunmi, O.A. and Lawal, M.O. (2016a). Plankton and macrobiota communities of three tropical freshwater habitats in Ogun and Ondo States, South-west, Nigeria. Notulae Scientia Biologicae, 8(2): 246-255. DOI: 10.15835/nsb.8.2.9792
- Adesalu, T.A., Kunrunmi, O.A. and Lawal, M.O. (2016b). Water quality Assessment: A case study of plankton and macrobenthic invertebrates of Porto-Novo and parts of Gulf of Guinea, Journal of Aquatic Sciences,31(1A):39-66. <u>http://dx.doi.org/10.4314/jas.v31i1.</u> 4
- Atobatele, O.E., Morenikeji, O.A. and Ugwumba, O.A. (2005). Spatial Variation in Physical and Chemical Parameters and Benthic Macroinvertebrate Fauna of River Ogunpa, Ibadan. The Zoologist 3: 58-67.

- Adakole, J.A. and Anunne, P.A. (2003). Benthic macroinvertebrates as indicators of environmental quality of an urban stream in Zaria, Northern Nigeria. J. Aqua. Sci., 18:85-92. <u>http://dx.doi.org/10.4314/jas.v18i2.</u> 19948
- Biggs, B.J.F., Stevenson, .R.J. and Lowe, R.L. (1998). A habitat matrix conceptual model for stream periphyton. *Arch Hydrobiol.*, 143:21–56.
- Bukhtiyarova, L.N. and Pomazkina, G.V. (2013). Bacillariophyta of Lake Baikal.Volume 1. Genera Baikalia, Slavia, Navigeia, Placogeia, Grachevia, Goldfishia, Nadiya, Cymbelgeia. pp. [1]-184, 278 figs in 110 pls. Lviv: Lega-Pres.
- Chindah, A.C. and Pudo, J. (1991). A preliminary checklist of algae found in plankton of bonny River in Niger Delta, Nigeria. *Fragm. Flor. Geobat.* 36: 112-125.
- Edema, C.U., Ayeni, J.O and Aruoture, A. 2002.Some observations on the zooplankton and macrobenthos of the Okhuo River, Nigeria. Journal Aquatic Science 17: 145-149. http://hdl.handle.net/123456789/77 9
- Erondu, E.S. and Chindah, A.C. (1991). Physico-chemical and phytoplankton changes in a tidal freshwater station of the New Calabar River South Eastern Nigeria. *Environmental Ecology*, 9:561-570.
- Esenowo, I.K and Ugwumba, A.A.A. (2010). Composition and abundance of macrobenthos in Majidun River, Ikorodu, Lagos

State, Nigeria. *Research Journal of Biological Sciences*, 5(8): 556-560.DOI:

10.3923/rjbsci.2010.556.560

- Field, C.B., Behrenfeld, M.J., Randerson,
 J.T. and Falkowski, P.G. (1998).
 Primary production of the biosphere: Integrating terrestrial and oceanic components. *Science* 281, 237 240. DOI: 10.1126/science.281.5374.237
- George, A.D.I., Abowei, J.F.N. and Daka, E.R. (2009).Benthic macroinvertebrate fauna and physico-chemical parameters in Okpoka creek sediments, Niger Delta. Nigeria. International Journal of Animal and Veterinary Advances, 1: 59-65. ISSN: 2041-2908
- Hendey, N.I. (1964). An introductory account of algae of Bristish Coastal waters. Part V. Bacillariophyceae (diatoms) London, Fisheries investigations Series 4, 1-317pp.
- Hustedt, F. (1930-1937). Die. Kiselalgen 7. In Rabenhorst (Ed.) Kryptogemen-flora von DeutshlandÖsterreichsun derSchweiz. A Kademiscehe VergasellSchaft M.L.H. Leipzing. 466p.
- Hustedt, F. (1954). Die Diatomeenflora der Eifelmaare. Archiv für Hydrobiologie 48(4): 451-496.
- Ibemenuga, K.N. and Inyang, N. (2006). Macroinvertebrate Fauna of a Tropical Freshwater Stream in Nigeria. Animal Research International 3(3):553-561.<u>http://dx.doi.org/10.4314/ari.v3</u> i3.40791
- Krammer, H. and Large-Bertalot, H. (1986). Bacillariophyceae. 1. Teil:

Naviculaceae In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., (Hrsgb.), Süsswasserflora von Mitteleuropa. Bd. 2 Fischer Verlag, Stuttgart. 876pp.

- Marinković, N., Krizmanić, J., Karadžić, V., Karadžić,1.B., Vasiljević, B. and Paunović, M. (2016). Algal diversity along the Serbian stretch of the Sava River. Water Research and Management,6(2):27-33.http://www.wrmjournal.com/ind ex.php?option=com_content&view =article&id=352&Itemid=292
- Mulholland, P.J. (1996). Role in nutrient cycling in streams. In: Stevenson R.J., Bothwell, M.L, Lowe R.L (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, 605-639pp.
- Needham, J.G. and Needham, P.R. (1962). A guide to the study of freshwater biology. Holden-Day Inc. San Francisco. 108pp.ISBN-13:978-0070461376
- Patrick, R. and Reimer. C.W. (1966). The diatoms of the United States exclusive of Alaska and Hawaii.
 Vol. 1.Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae.
 Monographs of The Academy of Natural Sciences of Philadelphia. No. 13.688 pp.
- Patrick, R. M. and Reimer, C. W. (1975). The diatoms of the United States, exclusive of Alaska and Hawaii. Volume 2, Part 1 Academy of Natural Sciences of Philadelphia, Pennsylvania .213 pp.
- Pielou, E.C. (1975). Ecological diversity, New York, John Willey and Sons, 165pp. ISBN: 0471689254
- Quigley, M. (1977). Invertebrates of streams and rivers: A key to

identification. Edward Arnold (Publishers) Ltd, London. 81pp.ISBN-10: 0713100915

- Shannon, C.E. and Weaver, W. (1963). The mathematical theory of communication. University of Illinois, Press, Urbana, Illinois, 125pp.
- Water framework Directive (2000). Water framework directive-Directive of European Parliament

and of the council 2000/60/EC-Establishing a framework for community Action in the Field of Water Policy. European Union, the European Parliament and Council, Luxemburg.

Whitford, L.A. and Schumacher, G.J. (1973). A manual of fresh water algae. Sparks, North Carolina, USA, 324pp.ISBN-13:978-0916822019.