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Abstract
The direct estimation of biomass using remote sensing technologies, such as LiDAR, RaDAR and Stereo 
Data is limited in utility, since it does not allow for historical analysis of biomass dynamics far back in time 
due to their recency in development.   This study links Unmanned Aerial Vehicle (UAV)-measured tree 
height and optical SPOT image reflectance in a mathematical model for a quick and less expensive indirect 
biomass estimation, and the possibility of historical analysis using the earliest captured optical data.  SPOT 
6/7 images were used to map land-use/cover patterns. A Phantom 4 drone images were used for height and 
crown width estimation. A stepwise regression analysis was conducted to establish a relationship between 
SPOT 6/7 channels and the UAV-generated tree heights. The linear model was used to convert the reflectance 
values of SPOT images into tree heights, and in turn used for crown width estimation. The estimated tree 
height and crown width images were used to estimate biomass using an allometric equation. There was no 
statistically significant difference between UAV and manual tree height measurements. UAV-estimated tree 
height predicted 88.0% of crown width. Regressing the tree height on the SPOT bands yielded an R2 of 
66.0%. It is recommended that further studies be conducted to improve on the accuracy of estimation. It is 
hoped this would facilitate a quick biomass estimation and long term historical dynamics. 

Introduction
Biomass estimation is an important element 
for biomass stock accounting, exploitation 
dynamics and conversion into carbon 
(Mate, Johansson, and Sitoe 2014, De-
Miguel, Mehtätalo, and Durkaya 2014). 
Above ground woody vegetation constitutes 
enormous proportion of global carbon sink, 
consequently important for global carbon 
sink management programmes (Dawson et 
al. 2011; Mi Sun and Yeo-Chang 2013). In 
the prevailing context of rapid dynamics 
in biomass stocks, it is essential to harness 
available innovative technologies for rapid 
and cheaper assessment for monitoring the 
trends in biomass stocks for management. 
Current use of remote sensing technologies, 
such as LiDAR, RaDAR and Stereo Data, for 
direct biomass estimation is limited in utility, 
since it does not allow historical analysis of 
biomass dynamics far back in time due to 
their recency in development.   This study 

links UAV and optical SPOT images in a 
mathematical model for a quick and less 
expensive indirect biomass estimation, and 
the possibility of historical analysis using 
other optical data archive captured close to the 
beginning of the emergence of satellite remote 
sensing technologies. 
One of the fundamental tools for a non-
destructive assessment of woody biomass 
is allometric equations (Mendoza-Ponce 
and Galicia 2010; Fernández-Landa, 
Navarro,Condes, Algeet-Abarquero, and 
Marchamalo 2017). Measurements on tree 
components are incorporated in allometric 
equations for biomass estimation (Brown, 
2002; Chave et al., 2005). Diameter at breast 
height and weight are identified to produce 
more accurate estimates (Bacciniet al., 2012; 
Rutishauser et al., 2013). However, they 
require field-based measurements, which is 
more time consuming, hence, less suitable for 
rapid and large-scale assessment. Height is a 
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critical component for many equations, and 
a key indicator of tree growth, and used to 
depicting life history of growth(King & Clark, 
2011; Banin et al., 2012). It has long been 
used to assess and estimate timber resources 
(Avery and Burkhart, 2011), and recently 
forest biomass and carbon stocks ( Feldpausch 
et al. 2012). Height-biomass models have also 
been used for mangrove biomass and carbon 
estimations (Fatoyinbo, Simard, Washington-
Allen, and Shugart 2008; Fatoyinbo and 
Simard 2013), and tropical forest (Fernández-
Landa, Navarro, Condes, Algeet-Abarquero, 
and Marchamalo 2017). However, manual 
methods for height measurements are limited 
in application to smaller areas (Korning and 
Thomsen 1994; Goodwind 2004). They 
are labour intensive, expensive and time-
consuming, hence, unsuitable for rapid 
assessment.
Remote sensing-based innovative applications 
in vegetation assessment have demonstrated 
improved success rates (Lagomasino, 
Fatoyinbo, Lee, Feliciano, Trettin, and Simard 
2016; Pargal et al., 2017). However, the earliest 
captured images are optical, which cannot be 
used for direct plant components measurements 
for biomass estimation. Thus, inference of 
plant biomass from optical satellite imagery 
has been through a proxy of vegetation cover 
which does not accurately represent biomass 
(Amanor and Pabi 2007; Pabi 2007; Meroni, 
Rembold, Verstraete, Gommes, Schucknecht, 
and Beye 2014). The emergence of stereo  
satellite remote sensing, LiDAR and RaDAR 
technologies have enabled direct height and 
biomass estimation(Ahmed, Siqueira, and 
Hensley, 2013; Allouis, Durrieu, Vega, and 
Couteron, 2013).  However, they are more 
expensive than optical images, and mostly 
targeted at limited areas of high commercial 
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value. Historically, these technologies of 
recent origin, with limited data accumulation, 
has a limitation for temporal studies. They are 
also expensive and operationally sophisticated 
(Angelo, Lehner, Krauss, Hoja, and De,2008). 
The use of UAV for peaceful applications in 
recent times has gained popularity (Colomina 
and Molina, 2014). These can be deployed 
to provide three dimensional (3D) images to 
estimate tree heights (Lim et al. 2015). Unlike 
satellite and other manned remote sensing 
platforms, these are very cheap and simple 
to operate. Drones have provided relatively 
inexpensive alternatives for capturing very 
high resolution ground data (Colomina, 
Blázquez, Molina, Parés, and Wis 2008; 
Eisenbeiss 2009). The use of UAV has also 
been used in the direct measurements of tree 
heights (Lim et al., 2015; Zarco-Tejada, Diaz-
Varela, Angileri, and Loudjani, 2014).
With the limitations of using the extensive 
historical accumulated optical data for 
direct biomass estimation, and the limited 
accumulated data capable of direct biomass 
estimation, the obvious question was how to 
leverage the synergy of these technologies for 
a rapid and indirect cost-effective estimation of 
biomass, and historical analysis? Specifically, 
is it possible to establish a mathematical 
relationship between optical image signals 
and direct measurements of tree parameters by 
UAV for biomass assessment on landscapes? It 
is posited that spectral signatures of trees vary 
with growth due to crown structural property 
and physiological changes (Brando, Goetz, 
Baccini, Nepstad, Beck, and Christman 2010; 
Bradley et al. 2011; Samanta et al. 2012). This 
study develops a predictive model for tree 
height using UAV-tree height measurements 
and the reflectance of SPOT optical image 
channels, and uses the established model for 



height prediction from optical channels as 
the predictor variables. It incorporates the 
predicted height and crown width images in an 
algometric equation for biomass estimation.
The study was conducted in the Kintampo area 
which is located within the forest-savanna 
transition of Ghana, which is a naturally 
unstable and heterogeneous ecosystem. The 
zone is subjected to a multiplicity of land 
uses, including charcoal production. The 
availability and dynamics of wood resources 
in the area has been a subject of debate. The 
search for evidence of aboveground (AG) 
biomass stocks dynamics to inform objective 
discourse and policy for management  has been 
based on inferences from vegetation cover and 
greening indicators using optical satellite data, 
which do not make accurate representation of 
biomass (Pabi 2007; Amanor and Pabi,2007).  
The study reports on a methodology that could 
be used for generating information on actual 
biomass, rather than rely on inferences from 
vegetation cover. It also has the potential to 
examine the historical dynamics in future, 
and to inform discourse and policy on rapidly 
changing landscapes. The rest of the paper 
presents the methodology through conclusion.

Materials and Methods

Study Area
Location and size
The study area is located in the Kintampo 
North and South districts (figure 1) in the 
Brong Ahafo Region of Ghana, and bound 
by longitudes 1˚20’W and 2˚1’E and latitude 
8˚45’ N and 7˚40’ N. The two districts together 
have a total land area of 6621.34 Km2(Ghana 
Statistical Service, 2014). It is within the Volta 
Basin and the Southern Voltaian Plateau. The 
Voltaian Basin consist of flat-bedded rocks 
and is extremely plain with rolling and rise 
and falls on the land surface with an altitude of 
between 60-150 metres above sea level. Many 
of the rivers in the area flow into the Black 
Volta, a major tributary of the Volta river. 
The annual rainfall ranges from 1,400mm-
1,800mm, and occurs in two seasons: from 
May to July and from September to October. 
Due to the transitional nature of the area, the 
two peaks are sometimes indistinguishable. 
The mean temperatures of the area range 
between 26.5 °C and 27.2 °C annually, with 
the dry season experiencing the relative 
humidity ranging from 75% - 80 % during the 
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area and the other in the more deciduous 
section. The images acquired were captured 
on November 09, 2016, and January 01, 2016 
for the south and north sites respectively. 
These dates were considered comparable since 
they were captured in the same anniversary 
period (dry season), and also for the fact that 
temporal change analysis was not intended. 
All the images acquired were composed of 
four bands; red, blue, green and NIR, and 
came in a UTM Zone 30N coordinate system 
and WGS 84 datum.

Image processing and classification
Radiometric corrections were performed on 
the satellite images to remove distortions 
from the images. Image enhancement was 
performed using the interactive stretching tool 
in ENVI 5.0 on bands 1, 4, 2. Both supervised 
and unsupervised classification were 
conducted. The unsupervised classification 
was carried out using the Iterative Self 
Organizing Data Analysis (ISODATA 
classification). A minimum of 7 and a 
maximum of 15 class thresholds were defined. 
After the initial unsupervised classification, 
and reclassification to eight (8) classes, it 
was imported to ArcMap. Polygons shapes 
for the classes were created in ArcMap, and 

dry season, and from 90% - 95% in the rainy 
season.

Vegetation and land use
The vegetation consists of woodland, guinea 
savanna and dry semi-deciduous mosaics 
(Forestry Commission, 2012), with these 
patches significantly affected by land uses. 
Land use activities include logging, hunting, 
agriculture of both traditional and mechanized 
practices, livestock rearing, and charcoal 
production. These activities coupled with bush 
burning are perceived to be the main drivers 
of vegetation change (Asante, 2014). The 
main crops are cowpea, maize, groundnut, 
and bambara bean. Yam dominates in the 
savanna areas, with maize dominating the 
areas bordering the semi-deciduous forest. 
Recently, tree cash crops such as mango and 
cashew are becoming more common, and key 
sources of income.

Methods

Satellite imagery acquisition
A six (6) meter resolution SPOT 6/7 images 
were acquired from GeoAirbus Defense and 
Space in France. These images were acquired 
for two sites: one situated in the more savanna 

TABLE 1
Classification scheme used for the study

Cover Type Description

Cropped farmlands Lands with annual crops such as cassava, maize, yam on isolated or treeless land 
and cowpea

Bareland/ Cleared Farms These are non-vegetated lands which are bare due to thin topsoil or cleared for 
farming. Others had mounds for yam cultivation.

Built up These were physically built areas such as buildings, roads, etc.

Short Fallow Abandoned farmed lands harvested of crops, left uncultivated for about 2-5 
years. There were saplings of trees shrubs with an average height of 3 meters. 
Isolated tree canopy cover is mostly less than 20%.

Long Fallow These mature fallows left uncultivated for  more than six years. The trees are 
relatively taller than those on short fallows, with an average tree height of 8 
meters. Where thickets are present, they are difficult to penetrate. Their canopy 
cover is usually between 60-80%, with wider openings having thicker bushes 
and grass cover. 
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converted to kml files. These were then 
imported to Google earth pro to assist with 
field verification in ground truthing for field 
measurements and identify training areas 
for the supervised classification. A Global 
Positioning System (GPS) (Garmin) was 
used to record the coordinates of the training 
samples of the land cover types. The spectral 
signatures of these training data were used to 
compute training statistics for each land cover 
class, and supervised classification conducted 
using the Maximum likelihood algorithm. The   
classification scheme adopted the classes in 
table 1.
Samples of vegetation cover types were 
studied for tree heights, photographed and 
geolocated with GPS during ground truthing 
for detailed characterization and assessing the 
accuracy of the classification. These points 
were different from those used as training data 

during the supervised classification process. 
These points were used to create region of 
interests (ROIs). A confusion matrix was then 
performed in ENVI 5.0.

Tree Height Measurement

Unmanned Aerial Vehicle and pre-flight 
operations
Phantom 4 propeller UAV was used.  It has 
a vertical flight limit of 6000m, and could be 
controlled remotely within a 5 km radius. The 
drone is equipped with a 12-megapixel digital 
camera and produces images in the green, red, 
and blue spectral bands. The field of view of 
the camera is 94º and an electronic shutter 
speed of 1/8000 s. The camera is being held 
by a gimbal which has a controllable range of 
-90 º to 30º. The Phantom 4 is also equipped 
with an onboard Global Navigation Satellite 

Cover Type Description

Grassland These are lands with predominant grass cover and herbs, with widely opened 
trees and shrubs. These are found on permanent cropped lands, savanna mosaics 
with thin top soils underlain with gravels and rocks or slopes. 

Dense woodland/Forest This is very matured vegetation cover type dominated by trees, and left 
uncultivated for about 10 or more years. They may form part of forest mosaics or 
woodland vegetation, usually located on low lying areas, along water bodies or 
on good soils with good supply of water. The canopy cover is mostly greater than 
70%. The trees heights are mostly greater than 15 meters with some reaching as 
high as 24 m or more

TABLE 1 cont
Classification scheme used for the study

TABLE 2
Flight Summary

Flight No of Images Duration Cover Type Location

1st 22 2mins Dense woodland Mansie

2nd 58 3mins Short Fallow Yabraso

3rd 462 24mins Long Fallow Sronuase

4th 146 5mins Dense woodland Naabia

5th 401 14mins Long Fallow/short fallow Tandene
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Systems (GNSS) to regulate and manipulate 
the flight and to provide positions.
Pre-flying sessions were conducted before 
each flight to identify safe areas for takeoff and 
landing in order to avoid or reduce damages to 
the UAV. Areas of interest were identified with 
suitable flying conditions to avoid significant 
shifts of the UAV from its flying path. Vertical 
and horizontal calibration of the UAV was also 
performed at this stage to correct instrumental 
errors. Image capturing process was operated 
from an android tablet with a mission control 
software named pix4DCapture. All the flight 
paths were planned in the mission control 
software prior to flying. The double grid flight 
path was used to enable a stereo data capture 
for the generation of 3D models. An end 
overlap of 70% and a side overlap of 80% was 
applied, and flight altitude of 60-80 meters 
since more close-up images were required 
for high resolution 3D models. The camera 
was tilted vertically downwards to enable 3D 
construction. The images were captured in 
WGS 84 30N coordinate system. Flight and 
summary of images captured from the various 
land use land cover types with the duration 
taken by the UAV to cover the cover type is 
shown in table 2.

UAV image processing for DSM, DEM and 
CHM generation
Images from UAV were processed using 
Agisoft Photoscan software. The images 
were imported into the software and used to 
produce a mesh, followed by a dense point 
cloud production. PhotoScan calculates the 
depth information for each camera which is 
put together into a single dense point cloud, 
making it almost as dense as the LiDAR point 
cloud. The dense point clouds were classified 
into ground point clouds and above ground 

point clouds.  
This was exported as a LAS file into ArcGIS 
10.4.1. The point clouds were then converted 
into a multipoint file to make processing 
and manipulation faster. A Digital Elevation 
Model (DEM), which is height of the bare 
ground was generated from the ground point 
cloud. A Digital Surface Model (DSM) which 
is made up of heights of trees and the bare 
ground was also generated from the above 
ground point clouds. The generation of the 
DEM and the DSM allowed the generation of 
Canopy Height Model (CHM), which is the 
height of trees on the surface of the earth. This 
was achieved by subtracting the DEM from 
the DSM.
Ground measurements of tree heights and 

UAV accuracy assessment
A comprehensive field measurement was 
undertaken to evaluate the accuracy of tree 
height measurement with the UAV. Tree heights 
of different height categories were measured 
on the field with the use of a well-calibrated 
stick and a clinometer. A total of forty-two 
(42) trees were measured manually. The actual 
heights of trees were measured three times and 
the averages calculated. The corresponding 
geographic coordinates of the measured trees 
were also recorded with GPS with an accuracy 
of between ±2-2.30m. These points were then 
overlaid on the tree heights generated from the 
UAV, and the points extracted in ArcGIS. A 
t-testwas performed to confirm if there was a 
statistically significant difference between the 
means of tree heights measured on the field 
and tree heights generated from the UAV.

Relationship between UAV heights and SPOT 
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Image reflectance values
The CHM generated was geometrically 
corrected using image to image registration to 
ensure that the pixels in both the tree heights 
generated and the various bands within the 
satellite images were all at the same place 
using the georeferencing tool in ArcGIS 
10.4.1. Points were randomly placed on the 
tree heights images. A total of 699 pixel points 
were selected. Height values were extracted 
as point shapes. These were overlaid on all 
the four bands of the SPOT images, and the 
corresponding reflectance values extracted. 
The attribute table was exported as a STATA 
readable format for further analysis. 
A multicollinearity test was carried out to 
determine the level of association between the 
SPOT bands. Shapiro-Wilk test of normality 
was used to test for goodness of fit of the 
variables used. A stepwise regression was 
conducted to determine the most statistically 
significant predictors which are necessary 
for the establishing the relationship (model) 
and how each of predicting variable was 
contributing to the model (Lopez-Serrano et 
al. 2015). The UAV-generated height (actual) 
was regressed on the SPOT channel reflectance 
values.

Tree Crown Diameter and Height Relationship
Tree crown diameter was estimated from the 
UAV generated images. The images were 
converted into dense point clouds which 

depicted the shape of trees on the field. This 
made it easy for depiction of distinct tree crown 
samples for width measurement using Agisoft 
Photoscan software. The corresponding 
tree heights were also measured to allow an 
establishment of association between tree 
height and crown diameter, using crown width 
as a response variable and height as a predictor 
variable. The predictive model was used to 
derive tree crown width from the tree heights 
derived from the SPOT satellite images.

Biomass Estimation Modelling
The multiple regression model developed 
was used to predict height (response variable) 
values from the optical SPOT channels 
(independent variables). The height raster 
data was used for biomass estimation. The 
Allometric equation adopted was developed 
by Jucker et al (2017), as shown in equation 
(1). The equation was chosen because it makes 
use of the tree height and crown diameter 
parameter for estimating aboveground 
biomass of a tree. The equation was used to 
convert the heights values generated from the 
SPOT channels into biomass using the raster 
calculator in ArcGIS 10.4.1
Where, AGB represents Above Ground 

TABLE 3
Summary statistics of predictor variables (bands) used for regression analysis

Variables No. Minimum Maximum Mean Std. Deviation

Tree Heights 699 2.12m 26.08m 9.27 5.20487

Band 1 699 697 1129 837.28 56.0978

Band2 699 857 1081 977.14 41.18936

Band 3 699 758 917 842.87 29.22098

Band 4 699 2477 3249 2872.29 139.88993

Biomass, H represents tree heights, CD is 
Crown Diameter.
In order to quantify the amount of biomass 
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available for each class on which charcoal is 
being exploited, the land use land cover classes 
were vectorised in ENVI 5.0. the vector file 
was then overlaid on the biomass derived from 
the satellite images and the biomass extracted 
using ArcGIS 10.4.1. 

Results
The overall accuracy of the classification 
is 90.05% with a corresponding Kappa 
coefficient of 0.8820. Table 4 shows the 

on the landscape, with other wood extractive 
activities less obvious. The classified SPOT 
images (figure 2), with the amount of different 
classes presented in table 4.

UAV tree height measurement and accuracy 
asessment
The t-test indicated statistically no significant 
difference (p>0.05)between tree heights 
measured from by the UAV and actual tree 
heights by the manual method. The mean 

TABLE 4
Land area covered by the various land use cover types

Cover Types Area (m2) Area (Km2) Area (Ha) Percentage (%)

Grassland 116410000 116.41 11641 10.38

Short Fallow 456580000 456.58 45658 40.70

Water 2400000 2.40 240 0.21

Cropland 24880000 24.88 2488 2.22

Bareland/cleared Farmed land 205370000 205.37 20537 18.31

Dense woodland 113810000 113.81 11381 10.15

Long fallow 167300000 167.30 16730 14.91

Built up 34980000 34.98 3498 3.12

Total 1121730000 1,121.73 112173 100.00

amount of different categories of the different 
land use and land cover types. The fallows 
constituted a major portion of the vegetation 
cover, with the dense woodland forming a 
smaller percentage of the total land cover. 
Farming appeared widespread human activity 

tree heights by the UAV and one by the stick 
and clinometer measurementwere 7.84m and 
8.48m respectively. Sample of vegetation 
point clouds, DSM and DEM are displayed in 
figures 3, 4 and 5 respectively.
SPOT reflectance and UAV-Generated Tree 

Fig 2 Land use land cover for south (Left) and north (Right) images
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Fig 3 Sample of Point Clouds generated from the UAV

Fig 4  DSM and DEM samples from UAV data

  Fig 5 Tree Height from UAV data
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Heights relationship
The relationship between the tree heights and 
the reflectance of SPOT channels are displayed 
in figure 6. All the channels of the satellite 
data displayed negative relationship but 
strong association, with the exception of band 
4 that showed no association. They also had 
moderate coefficient  of determination.  The 
test of normality indicated that the samples 
used for establishing the relationship (model) 
were of good fit. The Variance Inflation Factor 

(VIF) for all the predictor variables (SPOT 
bands) were under 10. This suggests that 
there was no existence of multicollinearity.  
The equations derived from the relationship 
is shown in table 5 and 6. The model fit 
between the preditor variables and the respose 
(tree height) were significant (p<0.05).   The 
changes in R2 for the stepwise regression were 
very low (table 6).

Fig 6 Relationship between tree heights and bands reflectance values of SPOT satellite image

TABLE 5
Coefficients of UAV tree heights and SPOT reflectance values model

Model Coefficients Std. Error F P-value

1 (Constant) 107.940 2.814

Band2 -0.101 0.003 1231.147 0.000

2 (Constant) 117.892 3.359

Band2 -0.079 0.005

Band3 -0.037 0.007 652.254 0.000

3 (Constant) 110.278 4.293

Band2 -0.083 0.005

Band3 -0.032 0.007 441.864 0.000

Band4 0.002 0.001

 Durbin-Watson= 1.369
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Relationship between Tree Heights and Crown 
Diameter
Crown diameter of trees are presented in 
figure 7. The result indicated that there is a 
strong linear relationship between tree heights 
and crown diameter as depicted by a high R2 
value based on 51 tree samples. The predictive 
model developed from this association was 
used to convert the tree heights derived from 
the satellite images to tree crown diameter.

Biomass Estimation
Figures 8 and 9 present tree heights generated 
from the SPOT images. The heights ranged 
between 3-24m for the southern site, and 
3-22m for the northern image. Figures 10 

and 11 presents the crown diameter for the 
SPOT images. Tree crown diameter ranged 
2-9m for southern site, and 2-8m for northern 
site. Biomass derived from the SPOT satellite 
images based on the allometric equation are 
shown in figures12 and 13. The total amount 
of biomass and their distribution among dense 
woodlands, short fallows and long fallows are 
shown in table 7. The results indicated that the 
highest concentration of biomass was found 
in the dense woodlands, that is, 13.66 Mg/ha. 
This was followed by long and short fallow 
respectively. However, the total amount of 
biomass for each category of land cover was 
highest in short fallows, followed by long 
fallow (table 7).

TABLE 6
Regression models between UAV tree heights and SPOT reflectance values

Model Regression Model R R Square R Square Change

1 H= 107.94-0.101(Band 2) .799 0.64 0.639

2 H= 117.892-0.079(Band 2)-0.037(Band 3) .808 0.65 0.014

3 H= 110.278-0.083(Band 2)-0.032(Band 3)+0.002(Band 4) .810 0.66 0.004

  Fig 7 Relationship between tree heights and crown diameter
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  Fig 8 Tree height for the southern site

 Fig 9 Tree height for the Northern Site

Fig 10 Tree crown width derived from south satellite image
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Fig 11 Crown Diameter from north satellite image

Fig 12 Biomass derived from south satellite image

Fig 13 Biomass distribution derived from north image
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Discussion

Land Use, Land Cover and Biomass
The SPOT 6/7 images used for this study 
enabled a good distinction between the various 
land cover types. For instance, the separation of 
long fallow, short fallow, and dense woodland 
with an overall accuracy of 90 percent and a 
kappa coefficient of 0.88 respectively gives 
an indication of the high capacity of the 
SPOT image to separate different objects. 
This conforms with other studies conducted 
using SPOT images (Conrad, Fritsch, Zeidler, 
Rücker, and Dech 2010; Zhang, Zhou, Chen, 
and Ma 2011). 
The land use land cover types identified in the 
study reflect the dominant land uses, and the 
inherent nature of the vegetation in the area, 
that is mosaics of both savanna and forest (Pabi, 
2007). The presence of farms, long fallows, 
short fallows and grassland indicate the level 
of exploitation of the natural landscape. The 
high proportion of fallows shows a practice of 
both shifting cultivation, with a high level of 
intensification and intensification (permanent) 
cultivation, and extractive exploitation of 
wood resources for charcoal production and 
other uses (DEAR, 2005). The presence of low 
amounts of dense woodlands could be due to the 
increasing demand for fertile land for farming 
and wood extraction. Continuous use of land 
with attendant fertility loss pushes farmers 
into matured fertile lands Yelsang(2013). The 

area covered by bare land and grassland is, 
especially, towards the northern part of the 
study area is due to the savannah nature of the 
area: characterised by slender trees and large 
grass that whither during the dry season, and 
the dominantly mechanized farming practice 
in the area. 

UAV tree-height measurement accuracy and 
relationship with SPOT reflectance 
From the results, it is obvious that tree heights 
generated from the UAV provided a fair 
representation of actual tree heights. The t-test 
result indicates no statistically significant 
difference between the tree heights generated 
from the UAV and the actual tree heights taken 
from the ground (p<0.05). The coefficient 
of determination, R2 of 86.5% indicates that 
practically no other factors influence the 
variations in the actual values except some 
random errors. Thus, drone height is a very 
good determinant of actual tree height.   A 
study conducted by Zarco-Tejada et al. (2014) 
who estimated tree heights with UAV recorded 
R2 of 83.0% and a root mean square error of 
35cm. Previous studies also obtained similar 
results (Bendig et al., 2014; Lisein, Pierrot-
Deseilligny, Bonnet, and Lejeune, 2013). A 
research conducted by Karpina, Jarząbek-
Rychard,Tymków, and Borkowski (2016) 
generated an extremely low error of 5cm. 
These limited variations could be attributed to 
the altitude of flight, human errors, specificity 

TABLE 7
Biomass Distribution among cover types

Cover Type Sum (Mg) Biomass Density (Mg/ha) Mean

Long Fallow 158449.175 9.470960849 41.92994

Short Fallow 98934.37647 2.166857428 21.97795

Dense Woodland 155572.4905 13.66949218 87.30605
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of in-built accuracy of UAV. These results 
suggest height measurements by the drone is 
highly accurate. 
From the tree height model, it could be seen 
that the bands used for the model have strong 
association with the tree heights generated 
from the UAV. The strength of the relationship 
between the reflectance values of the SPOT 
bands and the tree heights generated from 
the UAV vary. The stepwise regression 
method used for the generation of model 
eliminated band 1 from the model as it may 
have contributed insignificantly to the model 
variation.  Theoretically, band 1 is heavily 
absorbed by vegetation, hence limiting in 
reflective vegetative signals relevant for 
vegetation studies. The inverse relation between 
bands two and three, on the one hand and tree 
height on the other could be attributed to the 
high level of reflective vegetative information 
content in band 2. Also, band 3has been used 
for vegetation water stress studies (Zhao and 
Running, 2010; Forzieri, Feyen, Cescatti, and 
Vivoni, 2014). Band 4 acquires information 
in the NIR portion of the electromagnetic 
spectrum. This is usually used to study and 
analyse vegetation vigor and structure. Some 
studies have used this band in combination 
with band 1 to generate normaliseddifferential 
vegetation index (NDVI) (Foody, Boyd, and 
Cutler, 2003; Gonzalez-Alonso, Merino-De-
Miguel, Roldan-Zamarron, Garcia-Gigorro, 
and Cuevas, 2006).
The rule of thumb for checking the non-
existence of multicollinearity among the 
predictor variables suggest that the variance 
inflation factor should not be more than 10 
(Kleinbaum, Kupper, and Muller,1988). The 
predictor variables passed this test as the VIF 
values were below 10. The model also passed 
for autocorrelation test as the Durbin-Watson 

value of 1.369 is within the rule of thumb 
range of 1 to 2. The height model R2 of 0.66 
based on the three bands suggests that 66% 
of the total variation in tree heights can be 
explained by the model. It implies that other 
factors influence tree heights measurements. 
Sampling errors and those due to remote 
sensing imagery may partly contribute to this 
unexplained portion of height variation. 

Biomass Estimation
The result of the biomass estimation obtained 
(figures 9 and 10) is expected, as it logically 
follows from the range of values recorded from 
the DSM and the DEM. The biomass estimated 
is about 66% (R2=66%) of the total expected 
amount of actual biomass, which is consistent 
with a study where UAV measurements were 
used to predict biomass (Dandois and Ellis, 
2013). It must be noted, however, that biomass 
estimation in this study is indirectly derived 
from UAV values. The order of the density 
of biomass distribution follows an expected 
natural order, that is, woodland through 
short fallows (table 7).  Of the total amount 
of estimated biomass, fallows constituted the 
highest source of biomass followed by the 
woodland. Among these cover types, short 
fallow had most of the biomass followed by 
long fallow and then dense woodland. This 
could be attributed to the large area covered by 
short and long fallows, though the tree heights 
on this cover types are relatively shorter than 
dense woodland.

Conclusion

The use of UAV imagery provides an effective 
assessment of tree height and crown width, as 
indicated in this and previous studies (Zarco-
Tejada et al.2014, Karpina et al.2016). The 
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main purpose of the study was to explore the 
possibility of establishing a linkage between 
long historically accumulated optical satellite 
image and UAV data could for applications 
in temporal biomass change analysis. This 
study has demonstrated a significant relation 
between data captured from UAV and SPOT 
satellite platform. Theoretically, this should be 
anticipated since they capture some common 
spectral information from the electromagnetic 
spectrum. The limitation in the use of UAV 
sensor in this study is that they do not capture 
data from all channels of satellite sensors, 
hence relevant information content may 
not be available for analysis. There could 
be improvement if UAV sensors with high 
spectral resolutions are used. 
The use of satellites sensors with high spatial 
resolution could improve the estimation of 
biomass since it will improve selection of 
distinct homogenous samples, whilst reducing 
mixed pixels. This will be very relevant in 
the applications of large-scale rapid biomass 
assessment of woody resources for monitoring 
on landscapes of high heterogeneity due to a 
diversity of land uses and vegetation cover of 
different plant types and sizes, as was the case 
of the Kintampo area. Intensive farming and 
charcoal burning result in rapid and complex 
vegetation dynamics.  Different cover types 
have different biomass: the total amount partly 
depends on the coverage of available cover. 
Further studies with the use of other optical 
satellite data with high spatial and spectral 
resolutions, with long historical achieved 
data should be explored. It is hoped that the 
proportion of biomass explained by the model 
equation would significantly increased to a 
higher proportion if the above suggestions are 
duly considered in future studies. 
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