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Abstract
Climate change and variability pose a serious threat to food production in sub-Saharan Africa. The projected 
changes in local spatio-temporal patterns of rainfall and temperature will likely affect the availability of water and 
nutrients, crop growth, and yield formation. This paper presents the simulated effects of climate change on maize 
(Zea mays L.) in Ejura in the Sekyedumase district of Ghana, one of the important food baskets of the country. 
Experimental data from maize grown under various nitrogen (N) and phosphorus (P) conditions in the 2008 major 
and minor rainy seasons at two sites in Ejura were used to parameterize and evaluate the cropping systems model 
APSIM. Daily climatic data for the period 2030-2050 under the scenarios A1B and B1 were obtained from the 
regional climate projections obtained by the mesoscale model MM5. The assessment of climate change impact on 
grain yield suggested a likely 6-week shift in the planting dates of the rainy season from the current (1980-2000) 
3rd week of March to the 2nd week of May for the simulated period. Climate change also resulted in projected 
yield reduction of, on average, 19% and 14% for the Obatanpa maize variety under A1B and B1, respectively, for 
maize-maize continuous cropping. Likewise, the Dorke maize yield is expected to reduce by 20% and 18% for 
A1B and B1, respectively, with increased yield variability under both scenarios. Potential adaptation measures to 
climate change in the area include cropping of cowpea during the minor season or fallow rotation with other crops.

Introduction
Climate change is a threat to food security 
and livelihoods of the rural poor. Reported 
projections on climate change indicate that 
Africa will be the hardest hit because many 
smallholder farmers largely or totally rely 
on rain-fed agriculture and have fewer 
alternatives ((IPCC) 2001; Boko et al. 2007; 
Tesfaye et al., 2015; Abera et al., 2018), due 
to high levels of poverty, low levels of human 
and physical capital, and poor infrastructure 
( (IFPRI) 2009). In Sub-Saharan Africa, the 
agriculture sector is one of the most important 
sectors providing employment for about 70 % 
of the population of the region (World Bank 
2017). Rainfed agriculture is very important 
in this part of the world (Ringler et al. 2010; 
Webber et al. 2014). The spatial and temporal 

variability of rainfall, which is reflected by 
recurrent dry spells and floods, is the most 
important factor affecting crop productivity, 
hence reducing food security (Laux et al. 2010; 
IPCC 2014). In addition, rainfed agriculture is 
dominated by smallholder farming that have 
limited options for investment (i.e. fertilizers, 
pesticides, machines) and irrigation, making 
it a highly vulnerable agricultural system 
(Roudier et al. 2011; Calzadilla et al. 2013). 
It is well accepted in literature that inter- 
and intra-seasonal rainfall variability are the 
major causes for crop failure (e.g. Usman et 
al. 2005; Mishra et al. 2008; Laux et al. 2008, 
Laux et al. 2009; Waongo et al. 2014; Kyei-
Mensah et al., 2019). Thus, the amount and 
distribution of rainfall within the cropping 
season is very important for crop growth, crop 
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development and yield formation. In the semi-
arid regions of Africa, Agricultural systems 
reliant on rainfall as a sole source of moisture 
for crop production inevitably experience 
highly variable production levels and risks 
due to seasonal rainfall variability. This 
phenomenon is gradually shifting to the sub-
humid regions, where increasing variability 
in seasonal rainfall totals and distribution 
is occurring more frequently (Cooper et al. 
2006). While total seasonal rainfall and the 
season-to-season variability are themselves 
important (Siegmund et al. 2015), the nature 
of the within-season variability can also have 
a major effect on crop productivity, especially 
at certain critical stages (flowering and grain 
filling stage) of the crop. The onset of the 
season is another important variable that 
affects crop production (Ingram et al. 2002; 
Ziervogel and Calder 2003), particularly if the 
end of this season does not shift concomitantly 
as plant available water depends on the onset 
and the length of the season.
Thus, climate change and variability are 
expected to have significant negative impacts 
on crop growth and developmental processes 
although the extent of these effects are known 
to be dependent on the nutrient status of the 
soil. Kimball (1983) stated that photosynthetic 
rate of plants can be affected by an increase 
in carbon dioxide (CO2) which will in some 
cases lead to higher yield. Similarly, changes 
in temperature and precipitation will affect 
crop photosynthesis, crop development rates, 
as well as water and nutrient availability to 
crops (Long 1991). IPCC (2014) indicates that 
an increase in temperature of 2º C or more in 
the late 20th century is expected to negatively 
affect major crops (i.e. wheat, rice, and maize) 
in both temperate and tropical regions.
Climate impacts, however, are expected to 
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differ depending on the geographical location. 
For example, in the temperate regions where 
temperatures affect the length of the growing 
season, crops may benefit from warmer 
conditions resulting in longer seasons and 
higher yields. On the other hand, tropical 
regions like West Africa which already 
have a warm climate, are likely to have 
yield reduction and or crop failure with the 
increase in temperature, evapotranspiration 
and reduction in precipitation (Challinor 
et al. 2007; Barimah, et al., 2014). Lobell 
et al. (2011) reported that each degree-day 
temperature above 30º C reduces crop yield 
by 1% under optimal rainfed conditions and 
by 1.7% under drought conditions in Africa. In 
Southern Africa and across SSA, respectively, 
crop yields are expected to decrease averagely 
by 18% and 22% by mid-21st century (IPCC 
2014).  Similarly, simulation results of 
climate change scenarios by Thornton et al. 
(2010) indicate that maize yield is expected 
to decrease by more than 5% by 2050 in the 
northern part of East Africa. For the 2020s, 
however, yields are likely to benefit from the 
CO2 fertilization effect. An algorithm to adapt 
the planting dates in order to increase the 
attainable yields and reduce its variability at 
the same time was introduced as a potential 
adaptation measure to reduce the negative 
impacts on crop productivity. A similar 
algorithm on a larger scale (grid scale) was 
applied for maize production in Burkina Faso 
(Waongo et al. 2014), and was evaluated for 
the same region using an ensemble of regional 
climate projections (Waongo et al. 2015). 
The sub-humid region of Ghana is one of 
the most productive areas of the country, 
with maize being the dominant cereal crop. 
Over the years there has been a decreasing 
trend of yield due to a decline in soil fertility, 
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due especially to lack in nitrogen (N) and 
phosphorus (P) (Wopereis et al., 2006). As 
farmers try to increase their productivity 
under low soil fertility conditions, climate 
change and variability is compounding the 
existing challenges greatly affecting maize 
yield, and hence the livelihoods of the rural 
poor population. 
As there are little climate change impact 
assessments for maize yield estimations in 
the area, this paper seeks to investigate the 
impacts of climate change on maize yield 
under rainfed conditions in Ejura in the 
Sekyedumase district which falls within sub-
humid Ghana. Ejura is known to be one of the 
highest maize producing areas in Ghana. The 
objectives of the paper is to access the impact 
of climate change and variability on maize 
production and effects of agricultural options 
such as fertilization management and the use 
of different varieties. To account for spatially 
explicit management information, the field 
scale crop model Agriculture System Simulator 
Model (APSIM) is a particularly suitable tool 
because it has the ability to simulate long-
term dynamics of soil resources (soil nutrients 
especially phosphorus) while recognizing the 

limited sensitivity of their generic crop models 
to weather input.  It is effective in analyzing 
the complex relationship between climate, 
management options, and crop productivity 
(e.g., Fosu-Mensah et al. 2012; Andrea et al., 
2016;  Chisanga et al., 2017;  Gaydon, et al, 
2017; Peng et al., 2018). The capability for 
simulating crop growth in response to soil 
phosphorus makes it suitable for analyzing 
crop production in West Africa, where crop 
yield and N use efficiency of applied mineral 
fertilizers are greatly affected by low soil P 
(Fosu-Mensah et al. 2012; Chisanga et al., 
2017). 

Material and methods

Study area
The study was conducted in Ejura, in the 
Sekyedumase District of the Ashanti Region 
of Ghana. Ejura is located in the southern 
fringes of the Volta Basin in a slightly hilly 
terrain (150 – 250 meters above sea level). It 
lies in the sub-humid agro ecological zone, 
with the moist forest zone in the south and the 
Guinea savannah zone to the north at a latitude 
of 7°22’ N and a longitude of 1°21’ W as 

Figure 1: Map of the study area



shown in figure 1. This zone is characterized 
by a bimodal rainfall regime (major and minor 
seasonal rainfall) with mean annual rainfall 
of about 1400 mm. The soils in the study 
area are Haplic Lexisol and Plinthosol (FAO 
classification). These soil types have high 
sand content, are acidic and generally low in 
nitrogen and organic carbon. 

APSIM crop simulation model overview
Crop simulation models are state-of the-art 
technology that enable users or researchers to 
estimate the growth, development and yield 
of crops using management strategies and 
environmental factors as input parameters 
(Mavromatis et al. 2001). A framework is 
provided by the model that uses a range of 
component modules. These modules, which 
are plugged into one main model (e.g., APSIM, 
CropSyst, CERES and DSSAT) engine, can 
be managerial or biological, environmental 
and economic (Jones et al. 2001; Keating 
et al. 2003). The models are developed 
such that they use in-built algorithms that 
express the correlation between plant growth 
processes (transpiration, photosynthesis, 
physiological development, biomass growth 
and partitioning, and nutrient and water 
uptake) and environmental driving forces 
(e.g., daily temperature, photoperiod and 
available soil water). In the APSIM model, 
there is integration of cultivar-specific genetic 
coefficients which estimate growth and 
development on a daily basis and response 
of plants to environmental factors such as 
weather, soil and management practices 
(Boote et al. 1998). The Maize module has 
11 crop stages and nine phases (time between 
stages). The commencement of each stage is 
determined by accumulation of thermal time 
except during the sowing to germination 

period which is driven by soil moisture. The 
phase between emergence and floral initiation 
is composed of a cultivar-specific period of 
fixed thermal time, commonly called the basic 
vegetative or juvenile phase. Between the end 
of the juvenile phase and floral initiation, the 
thermal development rate is sensitive if the 
cultivar is photoperiod sensitive. 
Crop simulation models have the ability to 
simulate yields of a range of crops in response 
to nutrients and crop rotation sequence. For 
example, they have been used in Zimbabwe 
and Kenya to simulate the effect of P on maize 
and bean production and N use efficiency 
(Whitbread et al. 2004; Delve et al. 2009), 
climate forecast applications (Meinke et al. 
1996; Chen et al. 2010; Andrea et al., 2016;  
Chisanga et al., 2017;  Peng et al., 2018), 
simulate water and nutrient dynamics in 
fallows systems (Probert et al. 1998; Asseng 
et al. 2000) on a short- and long-term basis, 
thereby providing insights into the impact of 
management strategies on the productivity 
due to soil fertility losses and erosion (Malone 
et al. 2007).
A flexible working environment is provided 
by the APSIM model which enables users to 
choose from a set of modules from a suite 
of crop, soil and utility modules to configure 
specific model (Table 1).  Thus the APSIM 
model has the ability to capture intricate detail 
and subtleties of management practices of 
farmers through a highly flexible ‘Manager’ 
Module allowing the user to specify detailed 
farmer decision making in a simple ‘if-then-
else’ logic (Holzworth et al., 2014).
The strengths (crop yield in relation to 
management factors) and weaknesses (system 
aspect of cropping) of earlier models such 
as Crop Estimation through Resource and 
Environment Synthesis (CERES, (Godwin and 
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Singh 1998; Ritchie et al. 1998)) and Decision 
Support System for Agro-technology Transfer 
(DSSAT) were considered in the building of 
the APSIM model. The model relied on other 
models such as; Erosion Productivity Impact 
Calculator ((EPIC) (Williams 1983) and 
NTRM (Shaffer et al. 1983), for long-term 
dynamics of soil resources while recognizing 
the limited sensitivity of their generic crop 
models to weather input (Steiner et al. 1987). 
The important modules in APSIM are the 
soilP, soilN, and soilWAT modules. The SoilP 
module describes the availability of P in the 
soil in terms of labile P pool and fluxes into 
and out of this pool.  SoilN deals with the 
dynamics and transformation of both carbon 
(C) and N on layer basis in the soil. Soil organic 
C is differentiated in two pools, “biom” the 
more labile and “hum” the less labile form. 
Flows between pools are calculated in terms 
of C, while the corresponding N is determined 
by the CN ratio of the receiving pool. The 
water balance and solute movements within 
APSIM model is handled by the soil WAT. It is 

a cascading layer model, which owes much of 
its precursors to CERES (Littleboy et al. 1992) 
as well as to the algorithms for redistributing 
water within the soil profile. It simulates on 
a daily time basis and water characteristics 
specified in terms of wilting point (LL), 
drained upper limit (DUL) and saturated 
(SAT) volumetric water contents of each soil 
layer. Processes adopted from PERFECT 
include the influence of crop residues and crop 
cover on runoff and potential evaporation. The 
motivating factor for the incorporation of a 
P routine in crop modules was as a result of 
many soils on which subsistence crops grown 
are deficient in both N and P, with potential 
sources of N and P being manure and compost. 
For models to be useful in these environments, 
the supply of both N and P is crucial. A routine 
was therefore incorporated into the crop 
modules that limit growth and development 
of crop under P-limiting conditions with a soil 
P module specifying P supply from the soil. 
Details of the module is reported in Keating 
et al. (2003).
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TABLE 1
Soil properties used for modelling maize yield in the study area

Soil layer 1 2 3 4 5 6 7 8 9
Layer thickness (mm) 150 150 150 150 150 150 150 150 150
Soil parameters
Haplic Lixisol (Expt. 1 and 3)
BD (g cm-3) 1.50 1.55 1.54 1.54 1.44 1.50 1.40 1.40 1.40
SAT (cm cm-1) 0.401 0.388 0.387 0.394 0.398 0.409 0.457 0.457 0.461
DUL (cm cm-1) 0.310 0.318 0.311 0.308 0.344 0.359 0.407 0.407 0.407
LL (cm cm-1) 0.106 0.167 0.228 0.280 0.281 0.283 0.283 0.283 0.283
Soil C parameters
Organic C (%) 1.10 0.68 0.51 0.46 0.42 0.38 0.28 0.28 0.28
finerta 0.30 0.50 0.60 0.75 0.90 0.99 0.99 0.99 0.99
fbiomb 0.035 0.025 0.015 0.01 0.01 0.01 0.01 0.01 0.01
Soil P parameters
Labile P (mg/kg) 12.7 6.5 3.4 2.0 1.7 1.5 0.9 0.9 0.9
P sorptionc (mg/kg) 50 125 150 200 200 200 200 200 200

BD: Bulk density, SAT: volumetric water content at saturation, DUL: drained upper limit, aFinert defines the proportion of the 
soil organic matter that is not susceptible to decomposition; bFbiom is the proportion of the decomposable soil organic matter 
that is initially present in the more rapidly decomposing pool. cSorption is the P sorbed at a concentration in solution of 0.2 mg 
l-1



Parameterisation and evaluation of APSIM
Four modules – maize crop module (APSIM-
maize 6.1), a soil water module (Soilwat2), the 
soil nitrogen (Soiln2), and soil P modules – 
were linked within the APSIM crop simulation 
model to simulate cases described in this paper. 
Input data required by the APSIM model 
are related to the soil chemical and physical 
properties, crop genetic characteristics, crop 
management (sowing, soil amendments, etc.) 
and climate data (Table 2).
The SOILWAT2 module is a cascading soil 
water balance model which works on a daily 

resolution to simulate the soil water balance. 
This is specified by the drained upper limit 
(DUL), lower limit of plant extractable water 
(LL15) and saturated water content (SAT). 
The measurement of soil water content before 
sowing defined the initial soil water content 
of the soil. All soil water characteristics were 
measured from the study site using neutron 
probes. Data on soil water dynamics were 
used to parameterize the model. The detailed 
description of the model parameterization and 
evaluation are given in Fosu-Mensah et al. 
(2012).
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TABLE 2
Genetic parameters for the maize cultivars Obatanpa and Dorke used in APSIM

Parameters Value Units

Obatanpa cultivar
Thermal time accumulation
Duration from emergence to end of juvenile 300 oC day
Duration – end of juvenile to flowering initiation 20 oC day
Duration – flag leaf to flowering stage 10 oC day
Duration - flowering to start of grain filling 170 oC day
Duration, flowering to maturity 830 oC day
Duration – maturity to seed ripening 1 oC day
Photoperiod
Day length photoperiod to inhibit flowering 12.5 H
Day length photoperiod for insensitivity 24.0 H
Photoperiod slope 23.0 oC /H
Grain maximum number per head 520
Grain growth rate 8 mg/day
Base temperature 8 oC day

Dorke cultivar
Duration from emergence to end of juvenile 285 oC day
Duration – end of juvenile to flowering initiation 20 oC day
Duration – flag leaf to flowering stage 10 oC day
Duration - flowering to start of grain filling 170 oC day
Duration, flowering to maturity 700 oC day
Duration – maturity to seed ripening 1 oC day
Photoperiod
Day length photoperiod to inhibit flowering 12.5 H
Day length photoperiod for insensitivity 24.0 H
Photoperiod slope 10.0 oC /H
Grain maximum number per head 420
Grain growth rate 8 mg/day
Base temperature 8 oC day
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The crop genetic characteristics used in this 
study are the Obatanpa and Dorke varieties 
(Fosu-Mensah et al. 2012), that are common in 
the region. To evaluate the APSIM model, data 
from four experiments conducted during the 
major and minor rainy seasons of 2008 (from 
Ejura farms and Ejura Agricultural College 
in Ejura) were used. Four concentrations of 
N (0, 40, 80, and 120 kg ha-1) in the form of 
ammonium sulphate and three concentrations 
of P (0, 30, 60 kg ha-1) in the form of triple 
super phosphate were applied in a factorial 
combination. Treatments were replicated 
three times in each experiment. Details of 
the experiment and types of soil used are 
described in Fosu-Mensah et al. (2012). Initial 
soil chemical and physical parameterization 
were obtained from previous soil samples 
(Fosu-Mensah et al. 2012).

Regional climate scenarios for assessing the 
impacts of climate change on maize
The daily climatic data for the period 2030-
2050 under the emission scenarios A1B and B1 
(IPCC 2007) were obtained from the regional 
fifth generation mesoscale model ((MM5) 
(Penn State/NCAR Mesoscale Model, Dudhia 
(2000)as applied in the Adaptation of Landuse 
to Climate Change in Sub-Saharan Africa 
(ALUCCSA) project (Knoche 2015). 
The A1B scenario foresees a future world of 
very rapid economic growth, with a global 
population that peaks in mid-century and 
declines thereafter, with a rapid introduction of 
new and more efficient technologies without 
relying too heavily on one particular source 
of energy. The B1 storyline sees a convergent 
world with the same global population that 
peaks in mid-century and declines thereafter, 
as in the A1 scenario, but with a rapid change 
in economic structures toward a service and 

information economy, with reductions in 
material intensity and the introduction of clean 
and resource-efficient technologies. 
Compared to observed historical precipitation 
data (L’Hote and Mahé 1995), the seasonal 
characteristics of precipitation, as well as the 
spatial patterns, are accurately represented by 
the MM5 simulations for the West African 
domain during the baseline period 1980-
2000, providing credibility to the use of the 
downscaled future climate projections for 
subsequent impact modeling (e.g. Wood et 
al. 1997), i.e. the crop yields projections. The 
regional climate projections for the period 
2030-2050 in general showed an increase in 
temperature and decrease in precipitation 
with relatively small differences between the 
emission scenarios. For the selected locations 
in Ghana (Ejura), both A1B and B1 scenarios 
show an increase in mean temperatures of 
1.6ºC and 1.3ºC, respectively, compared to the 
1980-2000 period. Precipitation was projected 
to decrease by about 20% and 21% under A1B 
and B1 scenarios, respectively. 
The impact of climate change on maize yield 
was simulated by considering (i) continuous 
maize cultivation (only maize during both the 
major and  minor seasons), (ii) Maize-cowpea 
simulation (simulation of maize during major 
season and cowpea during minor season) for 
21 years, (iii) Maize-fallow rotation (maize 
during major season and fallow during minor 
season). The sowing window of 15 March to 
10 May was used, planting was done when 
a cumulative rainfall amount of 20 mm was 
attained within five days and sowing was at 
soil depth of 50 mm. Two maize varieties 
(Obatanpa and Dorke) were used in the 
experiment and for the simulation with the 
application of 40 and 80 kg N ha-1 with 30 kg P 
ha-1. Only results of the major season (maize) 
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are presented.

Statistical analysis
The performance of the model in predicting 
the grain yield, total biomass, N and P uptake 
of maize were evaluated using the coefficient 
of determination (R2) as well as the root mean 
square error (RMSE):

compared to the 15-30 cm. 
The RMSE values for grain yield ranged 
from 261 kg ha-1 to 671 kg ha-1 with modified 
coefficient of efficiency (E1) of 0.63 and 0.62 
for Obatanpa and Dorke, respectively. Other 
studies, including, Fosu-Mensah et al. (2012); 
Whiebread et al., 2010; Hochman et al., 
2014; and Waha, et al., 2015; have reported 
that the response of grain yield to different 
applications of inorganic N and P fertilizer 
were well simulated by the model. 

Impact of climate change on onset of the rainy 
season 
Outputs from the regional climate simulations 
indicate that climate change is expected to 
result in a shift in the onset of the rainy season 
and thus the planting dates. Under both climate 
change scenarios considered in this study, about 
60% of the years under simulation will receive 
an agronomic relevant amount of rainfall for 
planting (Sivakumar 1988) i.e., 20 mm in 
five consecutive days in the 2nd week of May 
(Figure 3) as compared to historical planting 
in the 3rd week of March; thus a 6-week delay 
in planting or sowing due to climate change 
by the year 2050. The predicted delay in the 
onset of the rainy season as a result of climate 
change delays the planting period and narrows 
the planting window, hence, planting long 
duration cultivars will result in harvesting 
operations entering the minor season and 
interfering with planting in the minor season. 
Simulations for the minor season indicate that 
climate change will possibly result in a shift 
in the planting date to the 3rd and 4th week 
of September (Fig. 4b and 4c) under A1B and 
B1 scenario compared to the 4th  week of July 
and 3rd week of August based on historical 
data (4a).
The response to increased application of 

Where n is the number of replications, sim 
and meas denote simulated and measured total 
biomass, grain yield, N and P uptake for each 
replicate.

Results 

Evaluation of model performance
Statistical analysis indicated that the APSIM 
simulated number of days to tasseling of both 
cultivars, in response to inorganic fertilization, 
was well comparable to the measured number 
of days to tasselling, with an overall RMSE 
of 1.5 and 1.4 days for Obatanpa and Dorke, 
respectively. In general, the model simulated 
crop duration adequately, with RMSE values 
of 4.7 and 2.9 days for Obatanpa and Dorke, 
respectively. Fosu-Mensah et al. (2012) 
reported that the APSIM-maize model 
captured leaf area index response to N and P 
application, with coefficient of determinations 
(R2) of 0.91 (Obatanpa) and 0.94 (Dorke). 
Simulated in-season biomass accumulations 
were also in good agreement (R2 of 0.89 for 
Obatanpa and 0.91 for Dorke) with measured 
data. The dynamics of soil moisture were 
reasonably predicted by the model (Figure 
2). Fluctuations in soil moisture content were 
well represented. The model also captured the 
higher fluctuations in the 0-15 cm soil layer as 
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fertilizer by crops was reduced under both 
A1B and B1 climate change scenarios. As 
seen in Figures 4 - 6, the application of 80 kg 
N ha-1 gave vary similar yields as those of 40 
kg N ha-1 under both scenarios. Substantial 
increases in yields were, however, obtained 
with an increase in N level from 40 to 80 kg 
ha-1 in historical weather.

Discussion

Impact of climate change on the onset of the 
rainy season
Using the process-based crop model, ASPSIM 
in combination with regional climate change 
scenarios derived from MM5 downscaling 
revealed that a 6-week delay and contraction 

Figure 2: Comparison of observed (symbol) and simulated (line) time series soil moisture on Haplic Lixisol at 
the Ejura farm in 120 kg N ha-1 and 60 kg P ha-1 plots from sowing to maturity
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Figure 3: Relative frequency (%) of simulated maize sowing dates during the major season on Haplic Lixisol at Ejura, Ghana, 
from historical weather data (1980-2000). (a) projected climate change (2030-2050) for scenario A1B (b) and B1 (c)

Figure 4: Relative frequency (%) of simulated maize sowing dates during the minor season on Haplic Lixisol at Ejura, Ghana, 
from historical weather data (1980-2000) (a), projected climate change (2030-2050) for scenarios A1B (b) and B1(c)
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Figure 5: Simulated maize (var Obatanpa) – maize (var Obatanpa) grain yield (kg/ha-1) rotation on Haplic Lixisol 
at Ejura, Ghana, from historical weather data (1980-2000) (a), projected climate change (2030-2050) for scenarios 
A1B (b) and B1(c)  with 40 and 80 kg N ha-1 and 30 kg P ha-1

Figure 6: Simulated maize (var Obatanpa) – cowpea (Malam yaya) grain yield (kg/ha-1) rotation on Haplic Lixisol 
at Ejura, Ghana, from historical weather data (1980-2000) (a), projected climate change (2030-2050) for scenarios 
A1B (b) and B1(c) with 40 and 80 kg N ha-1 and 30 kg P ha-1
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Figure 7: Simulated maize (var Obatanpa) grain yield (kg/ha-1) – fallow rotation on Haplic Lixisol at Ejura, Gha-
na, from historical weather data (1980-2000) (a), projected climate change (2030-2050) for scenarios A1B (b) and 
B1(c)  with 40 and 80 kg N ha-1 and 30 kg P ha-1

of the rainy season will negatively affect 
attainable maize yield in the later part of this 
century. This delay will narrow the window 
for planting and, hence planting long season 
varieties will interfere with planting in the 
minor season with harvesting operations of 
the major season crops. Similar findings on 
the impacts of climate change on rice were 
reported by Lansigan et al. (2000) in the 
Philippines, where sowing in normal years is 
commonly done on the 173rd day of the year 
(DOY), but in El Niño years sowing may 
have to be delayed until 229 DOY. Similarly, 
Fiwa et al., 2014 reported a shorter growing 
period, as a result of delayed onset and early 
cessation of the growing period in Cameroon. 
In addition, Myoung et al. (2015) reported that 
the change in planting date affected the yield 
of maize in mountainous areas with higher 
yields observed in early planting of maize.
The onset of the rainy season is an important 
variable for agricultural management practices 

(Ingram et al. 2002; Ziervogel and Calder 
2003; Laux et al. 2010; Fiwa et al., 2014). 
Similarly, Waongo et al. (2014) indicated that 
the effective optimization of planting dates 
has the potential to increase crop production 
in SSA. Time of sowing affects crop growth, 
development and hence yields especially 
in rain-fed systems in sub-Saharan Africa 
(Kumar 1998).

Impact of climate change on maize yield 
There were clear differences in terms of grain 
yield between historical yields and yields as 
a result of impact of climate change (Special 
Report on Emission Scenario (SRES) A1B 
and B1). The higher impact of A1B can be 
attributed to higher projected increase in 
temperature (1.6°C) compared to the 1.3°C 
for the B1 scenario. The study region already 
experiences high temperatures; hence, a 
further increase in temperature is expected 
to have a negative impact on yield. Boote 



and Sinclair (2006) indicated that moderately 
cool temperatures favour high yields, as they 
allow the crop to progress slowly through the 
season so as to maximize the time for light 
capturing and carbon assimilation, as well as 
for partitioning assimilates to reproductive 
structures. A region like sub-humid Ghana, 
which has relatively high temperatures 
(mean temperature ranging from 26-30ºC), 
is expected to experience decreased yield 
with further increase in temperature. Lobell 
et al. (2011) found that for each degree-day 
above 30ºC, crop yields reduced by 1% under 
optimal rainfed conditions and by 1.7% under 
drought conditions in Africa.
The increase in temperature will result in a 
reduction in grain yield by 19 and 14 % under 
A1B and B1 scenarios, respectively. Waongo 
et al. (2015), for example, used different 
RCMs and found evidence for decrease in 
maize yield across Burkina Faso of −3.4% on 
average for the RCP4.5 and −8.3% on average 
for RCP8.5. Mati (2000) used two different 
GCMs, i.e. the GFDL and the CCCM model, 
and projected a temperature increase of 2.9 and 
2.3°C, respectively for the semi-humid and 
semi-arid areas of Kenya. She concluded that 
the planting date has a profound influence on 
maize yields and that early maturing cultivars 
and early planting practice were necessary to 
counter the adverse effects of climate change 
in maize production in these agro-ecologies. 
In this study, lower yield reductions were 
projected for crops planted earlier compared 
to those planted late. This could be attributed 
to higher moisture levels in the soil during the 
grain filling stage of the crop. Fosu-Mensah et 
al. (2012) reported that water stress during the 
flowering and grain filling stage of maize crop 
in both major and minor seasons resulted in low 
yields. Results of a simulation by Travasso et 

al. (2008) using HadCM3 climatic projections 
for the year 2080 under A2 scenario showed 
that increases in temperatures reduced the 
growing season of maize crops in southeastern 
South America by 27 days and consequently 
reduced yields. Even with non-limiting water 
supply and considering CO2 fertilization, 
maize crops could still experience reduced 
grain yields with temperature increases 
greater than 1°C (Magrin and Travasso 2002). 
Similarly, Waha, et al., 2015 reported the well 
response of APSIM to farmers management 
practices and uncertainty in West Africa. 
Additionally, Meza et al. (2008) reported 
that under climate change, a high yielding 
maize cultivar DK 647 in Chile showed a 
yield reduction of between 15 and 28%. 
The reduction in yield was attributed to the 
shortening of the growth period of maize by up 
to as much as 40 and 28 days for the A1F1 and 
B2B scenario, respectively. Similarly, Kim et 
al. 2015 reported a change in maize yield as a 
results of change in minimum and maximum 
temperature in Southern United State of 
America. Early sowing and the reduction 
of fertilizer use were recommended as an 
adaptation measure under the B2B scenario. 
Increased variability in rainfall distribution, 
which usually reflects in the high variability 
in grain yield, is another factor leading to 
the reduction of yields (Fosu-Mensah et al. 
2012). Wheeler et al. (2007) simulated the 
effect of even and uneven intra-annual rainfall 
distribution on crop yield, independently of 
the total annual amount. Soil moisture stress 
at an important developmental stage (grain 
filling) of the plant development had a serious 
effect on grain size and weight and hence on 
yields (Fosu-Mensah et al. 2012). Similar 
findings were reported by Usman et al. (2005); 
Mishra et al. (2008) and Myoung et al. (2015) 
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who stated that the within and between season 
variability of rainfall is one of the major 
causes of yield reduction and or crop failure in 
sub-Sahara Africa. From the results obtained, 
the application 80 kg N ha-1 did not result in 
substantial increase in yield under either of 
the climate change scenarios. This may be 
attributed to water stress condition within 
the season as plant nutrient are transported 
through soil moisture. Moisture stress will 
result indirectly in nitrogen stress as water is 
needed for nutrient uptake. 
The introduction of cowpea into the cropping 
system saw an increase in yield compared to 
maize-maize under climate change.

Conclusion
Simulation results of the climate change 
scenarios indicated a 6 week delay in sowing 
as a result of the delay in the onset of the 
rains. This will result in delayed planting and 
hence reduced maize yields. The increase 
in temperatures in the region by 1.6 °C and 
1.3°C by 2050 under scenario A1B and B1, 
respectively, will have an effect on soil 
moisture and hence crop water availability. 
Using historical yield data as a baseline, the 
average yield of maize by 2050 is likely to 
decrease by 19 and 14% in continuous maize-
maize cropping system under A1B and B1 
scenarios respectively. Furthermore, the inter-
seasonal variability in maize yields is likely 
to increase significantly. The introduction of 
some adaptive measures, such as cropping of 
cowpea or fallowing the land during the minor 
season would likely increase yield by 3.4 and 
0.5% under A1B and B1 scenario, respectively 
compared with maize-maize under climate 
change. Early sowing as soon as the season 
start will, however, reduce the adverse effect 

of climate change on yield. Depending on 
the onset of the rainy season, farmers would 
need to have access to suitable maize varieties 
in order to avoid significant yield losses in 
case of delayed planting, and capitalize on 
favorable conditions in good seasons. This 
will require development and availability of 
locally-adapted maize varieties with different 
maturity periods. Under both scenarios, the 
most effective adaptation measure would be 
early planting as soon as the season starts or 
conditions are favorable and cultivation of 
cowpea in the minor season. This requires 
climate or weather forecast information on the 
onset of the season. The government may need 
to do feasibility studies on irrigation systems 
as a means to extend the growing season for 
maize in the future.
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