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Abstract
Artificial intelligence and machine learning methods can be used to automate the land suitability classification.
Multiple Classifier System (MCS) or ensemble methods are rapidly growing and receiving a lot of attention and
proved to be more accurate and robust than an excellent single classifier in many fields. In this study a dataset
based land suitability classification is addressed. It is done using a newly proposed ensemble classifier generation
technique referred to as RotBoost, which is constructed by combining Rotation Forest and AdaBoost, and it is
known to be the first time that RotBoost has been applied for suitability classification. The experiments conducted
with the study area, Shavur plain, lies in the northern of Khuzestan province, southwest of Iran. It should be noted
that suitability classes for the input data were calculated according to FAO method. This provides positive
evidence for the utility of machine learning methods in land suitability classification especially MCS methods. The
results demonstrate that RotBoost can generate ensemble classifiers with significantly higher prediction accuracy
than either Rotation Forest or AdaBoost, which is about 99% and 88.5%, using two different performance
evaluation measures.

Introduction
Agriculture is important as a source of food
and income, but how, where and when to
cultivate are the main issues that farmers and
land managers face every day. Land
suitability is carried out to estimate the
suitability of land for a specific use such as
arable farming or irrigated agriculture. Land
evaluation can be carried out on the basis of
biophysical parameters and, or socio-
economic conditions of an area (FAO, 1976).
In order to carry out land suitability
forecasting, a number of methods are used,
including system-dynamics modeling,
scenario analysis, input–output design and
land-transformation simulation (Pijanowski

et al., 2002; Tang et al., 2005; Yong et al.,
2007; Yu et al., 2003). However, the amount
of computations in common land suitability
methods is too over whelming. Due to this
excessive amount of calculations accurate
results require automatic computer controlled
calculations. Many computational tools have
been applied in this field up to now. One of
the main important techniques used is
Artificial intelligence and machine learning
based approaches. Artificial intelligence and
machine learning methods can be used to
automate the acquisition of ecological
knowledge, i.e. automate the construction of
ecological models. Classifiers and statistical
learning methods, Artificial Neural Networks
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(ANN), Fuzzy systems are examples of
Artificial intelligence tools.

One single classification system can not
always lead to high classification accuracy.
Instead, multiple classifier system (MCS) or
ensemble methods, for example (Banfield et
al., 2007; Breiman 1996; Breiman 2001;
Salkhordeh Haghighi et al., 2011; Rodríguez
et al., 2006; Skurichina & Duin, 2002) are
rapidly growing and enjoying a lot of attention
and proved to be more accurate and robust
than an excellent single classifier in many
fields. MCS is the method which uses a set
of individual classifiers. These techniques
generally work by means of firstly generating
an ensemble of base classifiers by applying
a given base learning algorithm to different
alternative training sets, and then the outputs
from each ensemble member are combined
in a suitable way to create the prediction of
the ensemble classifier. The combination is
often performed by voting for the most
popular class. Examples of these techniques
include Bagging, AdaBoost, Rotation Forest
and Random Forest (Rodríguez, 2006).

AdaBoost is a method which constructs
an ensemble of subsidiary classifiers by
applying a given base learning algorithm to
successive derived training sets that are
formed by either resampling from the original
training set (Breiman, 1998; Freund &
Schapire, 1996) or reweighing the original
training set according to a set of weights
maintained over the training set (Freund &
Schapire, 1997). Rodríguez et al. (Rodríguez,
2006) proposed a new ensemble classifier
generation technique, Rotation Forest. Its
main idea is to simultaneously encourage
diversity and individual accuracy within an
ensemble classifier. In view of the fact that

both Adaboost and Rotation Forest are
successful ensemble classifier generation
techniques and they apply a given base
learning algorithm to the permutated training
sets to construct their ensemble members,
with the only difference lying in the ways to
perturb the original training set, it is plausible
that a combination of the two may achieve
even lower prediction error than either of
them.

RotBoost is constructed by integrating the
ideas of Rotation Forest and AdaBoost
(Zhang, 2008). Some experimental studies
conducted with data consisting of
Topography, Wetness, Soil fertility, salinity
and alkalinity and soil physical characteristics
show that RotBoost can create ensemble
classifiers with significantly lower prediction
error than either Rotation Forest or AdaBoost
more often than the reverse. There has been
no study on the application of RotBoost to
the land suitability classification so far. This
study, therefore, was carried out to
investigate the ability of the RotBoost Method
to land suitability classification and
comparison of this method with other
methods such as Bagging, Rotation Forest
and Boosting techniques to find the best
method for land suitability classification.

Material and methods
The paper proposes an approach for the
construction of accurate and diverse
ensemble members by means of learning
from a land suitability dataset for which
suitability classes for the input data were
calculated according to FAO methodology
(FAO, 1976). The method in this paper is to
apply an ensemble classifier generation
method using a combination of Rotation
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Forest and AdaBoost algorithms and evaluate
the generalization ability of various ensemble
non-ensemble classifier systems. The details
are discussed in the following sections.

FAO framework method
The land suitability model was constructed

using GIS capabilities and modeling
functions. In order to classify the lands, Sys
et al. (Sys, 1991) parametric method was
used. In parametric method land and climate
characteristics are defined using different
ratings. In this method impressive feature in
land suitability is ranked between a minimum
and maximum value (usually between 0 and
100) according to Sys table. If a feature is
so effective, it is scored 100 and if it isn’t
effective zero will be assigned to that feature.
These rankings are shown with A, B, C …,
etc.

To determine different characteristics and
land indexes the following equation is used
(Sys, 1993):
    

....
100100100min 
CBA

RI    (1)

where I is the specified index, minR  is a
parameter with a minimum rank, and A, B,
C … are parameter ranks influencing the land
suitability. After determined index, land
suitability classes were calculated according
to Table 1.

Rotboost technique
RotBoost is an ensemble classifier

generation technique, which is constructed
by combining Rotation Forest and AdaBoost.
Before describing the RotBoost algorithm,
the ensemble methods AdaBoost and
Rotation Forest were briefly reviewed as
follows. AdaBoost (Freund & Schapire,
1996; Freund & Schapire, 1997) is a

sequential algorithm in which each new
classifier is built by taking into account the
performance of the previously generated
classifiers. In this ensemble method, a set of
weights D

t
(i) (i=1, 2,…,N) are maintained

over the original training set L, and initially
they are set to be equal (namely all training
instances have the same importance). In
subsequent iterations, these weights are
adjusted so that the weight of the instances
misclassified by the previously trained
classifiers is increased whereas that of the
correctly classified ones is decreased. In this
way, these ‘‘hard” instances can be better
predicted by the subsequently trained
classifiers.

The training set L
t
 used for learning each

classifier C
t
 can be obtained by either

resampling from the original training set L
(Breiman, 1998; Freund & Schapire, 1996)
or reweighting the original training set L
(Freund & Schapire, 1997) according to the
updated probability distribution D

t
 maintained

over L. In the current research, the former
is chosen due to its simple implementation.
Furthermore, each base classifier C

t
 is

assigned to a weight in the training phase
and the final decision of the ensemble
classifier is obtained by weighted voting of
the outputs from each ensemble member.
Note that in the above algorithm, the iteration
is carried out until T classifiers are generated
or until a classifier achieves an error zero or
accuracy below 0.5, in which cases the weight
updating rule fails and the algorithm stops
(Zhang et al., 2008).

Rotation Forest is another newly proposed
successful ensemble classifier generation
technique (Rodríguez, 2006), in which the
training set for each base classifier is formed
by applying principal component analysis
(PCA) to rotate the original feature axes.
Specifically, to create the training data for a
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base classifier, the feature set F is randomly
split into K subsets (K is a parameter of the
algorithm) and PCA is applied to each subset.
All principal components are retained in order
to preserve the variability information in the
data. Thus, K axis rotations take place to
form the new features for a base classifier.
The main idea of Rotation Forest is to
simultaneously encourage diversity and
individual accuracy within the ensemble:
diversity is promoted through doing feature
extraction for each base classifier and
accuracy is sought by keeping all principal
components and also using the whole data
set to train each base classifier (Salkhordeh
Haghighi et al., 2011).

For describing the RotBoost algorithm let’s

consider a training set N
1iii )}y,x{(L 

consisting of N independent instances, in

which each case ),( ii yx  is described by an

input feature vector X
i
 = (X

i1
, X

i2
,....X

iP
) RP

and a class label iy  which takes value from

the label space },....,2,1{ J . In a

classification task, the goal is to use the
information only from L to construct
classifiers that have good generalization
capability, namely perform well on the
previously unseen data which are not used
for learning the classifiers. For simplicity of
the notations, let X be an N×p matrix
composed of the values of p input features
for each training instance and Y be an N-
dimensional column vector containing the
outputs of each training instance in L. Put in
another way, L can be expressed as
concatenating X and Y horizontally, i.e., L =
(X Y). Denote by C

1
, C

2
, …, C

T
 the base

classifiers included into an ensemble
classifier, say, C*. And let F = (X

1 
, X

2 
,…,

X
p
)T be the feature set composed of p input

features. Appendix 1 gives the pseudocodes
of this algorithm.

For solving a classification task using
RotBoost algorithm, some parameters
included in it should be specified in advance.
As with the most ensemble methods, the
values of the parameters S and T,
respectively, specify the numbers of
iterations done for Rotation Forest, and
AdaBoost can be subjectively determined by
the user and the value of K (or M) can be
chosen to be a moderate value according to
the size of the feature set F (Zhang et al.,
2008). Since the good performance of an
ensemble method largely depends on the
instability of the used base learning algorithm
(Breiman 1996; Breiman, 1998; Dietterich,
2000), it can, therefore, be selected to be
either a classification tree or a neural network
(Hansen & Salamon, 1990), which is instable
in the sense that small permutations in its
training data or in its construction can lead
to large changes in the constructed predictor
(Breiman, 1996; Breiman, 1998).

For a better comparison, some classifier
combination methods including RotBoost,
Bagging (Breiman, 1996), AdaBoost (Freund
& Schapire, 1997), and Rotation Forest
(Rodríguez, 2006) were used and compared
for land suitability evaluation. At the same
time, the results computed with the base
learning algorithm were also considered for
a complete comparison. In order to simplify
the notations, Rotation Forest was
abbreviated as RotForest. In all the ensemble
methods, a classification tree was always
adopted as the base learning algorithm
because it is sensitive to the changes in its
training data and can still be very accurate.
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APPENDIX 1

Input:
L: a training set, L= { (x

i
 , y

i
 )}N

i=1
 = [X Y] where X is an N×p matrix containg the input values and Y is an

N-dimensional column vector containing the class labels
K: number of attribute subsets (or M: number of input attributes contained in each sbset)
W: a base learning
S: number of iterations for Rotation Forest
T: number of iterations for AdaBoost
X: a data point to be classified

Training Phase
For s= 1, 2, …. , S
1. Use the teps similar to those in Rotation Forest to compute the Rotation matrix, say, Ra

s 
and let La = [X Ra

t

Y] be the training set for classifier C
s
.

2. Initialize the weight distribution over La as D
1 
(i) = 1/N (i=1,2, … , N).

3. For t= 1, … , T
(a) According to distribution D

t
 perform N extractions randomly from La with replacement to compose a new

set La
t
.

(b) Apply w to La
t
 to train a classifier Ca

t
 and then compute the error of Ca

l
 as €

t
 = Pr

i~Dt
 (Ca

t
 (x

i
)‘“y

i
) = “N

i=1

(Ca
t
 (x

i
) y

i
) D

t
 (i)

(c) If €
t 
> 0.5, then set D

t
(i) = 1/N (i= 1, 2, …. , N) and go to step (a); if €

t
 = 0, then set €

t
 = 10-10 to continue

the following iterations.
(d) Choose 

t
 = ½ ln (1-€

t
/€

t
).

(e) Update the distribution D
t 
over La as D

t+1
 = (i) = D

t
(i) / Z

t
 ×

Wher Z
t
 is a normalization factor being chosen so that D

t+1
 is a probaility distribution over La.

4. End for
5. Let C

s
 (x) = argmax 

yeÖ 
T

t
 = 

1
 

t
 I (Ca

t
 (x)= y).

End for

Output
The class lable for x predicted by the final ensemble C* as C* (x) = argmax 

yeÖ 
(x)

For the techniques Bagging, AdaBoost,
and RotForest, 100 trees were trained to
constitute the corresponding ensemble
classifiers. With respect to RotBoost, the
number of iterations done for Rotation Forest
and AdaBoost were both taken to be 10 so
that an ensemble classifier created by it also
consists of 100 trees. As for the parameter
M (namely the number of attributes
contained in each attribute subset) included
in RotForest and RotBoost, the value of it
was taken to be 3.

To evaluate the performance of the
algorithms, two various errors estimation
methods .632+ bootstrapand and 10-fold
cross validation have been used. The .632+
bootstrap involves sampling a training set with
replacement from the original dataset. The
test set is formed by those samples omitted
from the training set. The .632+ bootstrap is
repeated K times, and the final bootstrap
error estimator b.632 are defined as

(2)b.632 =
 1

  (0.368i + 032


K

i=1
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where and i are the training error and
test error on the ith resampling. Following
the work in (Freund & Schapire (1996)), the
bootstrap samples are formed with K = 20
replicates. Each instance in the original
dataset is made to appear exactly 20 times in
the balanced bootstrap training samples.
Feature selection is then performed on the
whole dataset. Finally, the test error is
estimated on the unseen test samples. The
classification accuracy is then estimated using
Equation (2).

In 10-fold cross-validation, the original
sample is randomly partitioned into 10
subsamples. Of the 10 subsamples, a single
subsample is retained as the validation data
for testing the model, and the remaining nine
subsamples are used as training data. The
cross-validation process is then repeated 10
times (the folds), with each of the 10
subsamples used exactly once as the
validation data. The 10 results from the folds
then can be averaged to produce a single
estimation.

Study area and data used
The study area, Shavur plain, is located

in the Khuzestan province, in the southwest
of Iran, between latitudes 31° 00' 30" N –
32° 30' 00"N and longitudes 48° 15' 00" E –
48° 40240" E with an area of 774 km2

(Fig.1). Data used for the case study are
consisting of: topography (Primary slope,
Secondly slope and Micro relief), wetness
(Groundwater depth and Coroma depth),
salinity and alkalinity (EC and ESP), soil
texture, soil depth, CaCO

3
 , pH (H

2
O) and

gypsum in 63 points that were selected in
the total zone of study area randomly. A
summary of the data used for this study is
shown in the Table 2 (Khuzestan Soil and
Water Research Institute, 2009).

TABLE 1
Numerical values of index for the various classes
[Sys (1976)]

Class Index

S
1

75-100
S

2
50-75

S
3

25-50
S1 (highly suitable) S2 (moderately suitable)
S3 (marginally suitable) N (not suitable)

TABLE 2
Summary of effective parameters for land
suitability in the study area (Khuzestan Soil and
Water Research Institute, 2009)

Parameters Minimum Maximum

pH (H
2
O) 8.32 7.9

Gypsum 0 2.94
CaCO3 (%) 17.74 39.16
Soil depth(cm) 150 200
Soil texture* 7.2 9.75
Salinity and Alkalinity 1 62.98

EC (ds/m)
ESP (%) 1 49.99

Wetness
Groundwater depth(cm) 0 200
Coroma depth (cm) 0 100
Primary slope (%) 0 3.5

Topography
Secondly slope (%) 0 1.5
Micro relief(cm) 0 45

* Contents of Table 3 were used for replacing the
number value instead of quality value for soil texture.

Results
The land suitability maps based on the
parametric (FAO) method is shown in Fig.
2. The results of the FAO land suitability
evaluation method in the study area (Fig. 2)
showed that 26% of the lands are moderately
suitable (S2 class), 25% as marginally suitable
(S3 class) and 49% as not suitable (class N).

Fig. 3 demonstrated the mean prediction
accuracy of RotBoost, Bagging, AdaBoost,
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Fig. 1. Location of the study area in Iran.

Fig.2. Land suitability map for wheat (FAO method)
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and Rotation Forest and a single tree. Table
4 reports the means of prediction accuracy
(expressed in %) for each classification
method on the considered data sets, where
the values following ‘‘±” are their respective
standard deviations. In order to see whether
RotBoost is significantly better or worse than
other methods from the statistical viewpoint,
a one-tailed paired t-test was performed with

method. An open circle next to a result
denotes that RotBoost performs significantly
worse than the corresponding method. As
the results show, both error estimation
methods agreed to assert that RotBoost has
shown better performance than single
classifier and all other ensemble methods.

In order to evaluate and present the better
method between these methods, five different

Fig.3. prediction accuracy (expressed in %) for all algorithms

cultivation fields were randomly chosen. The
points are plotted on the prepared comparison
map and are shown in Fig. 4 (for better
compare, soil map was used) and their
information is given in Table 5, and shows

TABLE 3
Using of number value instead of quality value for
soil texture (Sanchez Moreno, 2007)

Number Soil texture

9.5-10 SiCL, SiCs, SiL, SCL, L
8.5-9.5 SL
6-8.5 LS, Cm, SiCm
4-6 S

significance level a 05.0 and the results
for which a significant difference with
RotBoost was found are marked with a bullet
or an open circle next to them. A bullet next
to a result indicates that RotBoost is
significantly better than the corresponding

TABLE 4
Means and standard deviations of prediction
Accuracy (expressed in %) for all algorithms

Methods Bootstrap Cross validation

RotBoost 99.95±0.13 88.49±3.36
Single Tree 88.47±0.90% 83.07±4.30%
Rotation Forest 92.45±0.88% 86.95±2.7%
AdaBoost 92.58±0.64% 84.32±2.27%
Bagging 90.64±0.81% 82.76±4.32%
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Fig.4. Sampling locations for comparison of the meth-
ods (Table 3, shows the information of the points).
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the corresponding classes of the locations
randomly selected locations. Also predicted
classes using different methods are shown
in Table 6.

According to Table 5, factors affecting
land suitability such as slope primacy (%),
slope secondary (%), water table depth (cm),
micro relief (cm), depth of chroma (cm),
gypsum me/100, ESP (%),Ec, (%), texture,
pH, CaCO

3
 were measured randomly for five

points. Land suitability classes based on FAO
method for five points were classified S2,
S3, N, S2 and N, respectively (Table 6). The
results of Single Tree, Rotation Forest,
AdaBoost, Bagging methods showed that
RotBoost algorithm was more accurate than
the other method. The Single Tree, Rotation
Forest, AdaBoost, Bagging method could not
predict land suitability class for total points
precisely. So for determination of land
suitability RotBoost algorithm class can be
used instead of FAO and other methods. The
RotBoost algorithm has more accuracy and
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faster than the other methods for the
determination of landform classification.

Conclusion
In this paper, RotBoost algorithm was applied
to tackle the land suitability classification
problem and this ensemble classifier
generation method is a combination of
Rotation Forest and AdaBoost. In this way,
a set of diverse and accurate trees is obtained
to build a robust ensemble classifier. In the
experiments, RotBoost algorithm was
operated on the data. To evaluate the
performance of RotBoost algorithm, other
techniques such as Bagging, Rotation Forest
and Boosting techniques were applied for
comparison. Here decision tree is applied as
a basis classifier. Results demonstrate that
RotBoost algorithm can generate ensemble
classifiers with significant higher prediction
accuracy than either Rotation Forest or
AdaBoost, which is about 99% and 88.5%
using two different performance evaluation
measures. So for determination of land
suitability class can use RotBoost algorithm
instead of other methods. The RotBoost
algorithm has more accuracy and faster than
the other method for determination of
landform classification. To achieved the high
classification accuracy by using RotBoost

algorithm, this method can be suggested as a
robust one for land suitability classification.
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