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Abstract

The physiological responses of the acid-sensitive amphipod Gammarus fossarum exposed in
situ to acid stress (pH 4.5 and 5.5) and then transferred back to neutral water were
investigated. Survival rate and haemolymph [CI'] and [Na'] were assessed after 24, 48 and
72h of exposure in acidic streams and after a recovery period of 12, 24, 36, 48 and 60h. After
24h, exposure to slightly acidic (pH 5.5) and strongly acidic water (pH 4.5) led to a severe
and significant depletion in haemolymph [Na'] and [Cl] compared to organisms exposed in
circumneutral water (pH 7.3). However, after only a 12h- period of transfer back in neutral
water and whatever the previous exposure time (24, 48 and 72h) in both slightly and strongly
acidic water, haemolymph [Na'] and [CI ] were equal or superior to the control level without
associated mortality. In spite of this fast physiological recovery capacity, populations of G.
fossarum living in streams undergoing episodic acid stresses were drastically affected thus,
demonstrating the high acid-sensitivity of this species. We discuss the possible reasons of

population regression and the absence of population recovery.
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INTRODUCTION

Acidification of freshwater ecosystems related to anthropogenic emissions of SO, and NOx
has been one of the most striking ecological problems throughout the northern hemisphere
during the 20th century. National and international legislation in the 1980s and 1990s aimed
to reduce the emissions of acidifying pollutants (e.g. Clean Air Act in the USA and the
Convention on Long-Range Transboundary Air Pollution in Europe) have led to the decline in
acidic depositions across wide areas of Europe and North America (Stoddard et al., 1999;
Lawrence et al., 2000; Likens et al., 2001). Several recent studies have shown that recovery of
alkalinity has occurred in many areas of Europe and North America (Stoddard et al., 1999;
Skjelkvale et al., 2001), but acidification of freshwater ecosystems still occurs in many areas
(Guérold et al., 2000; Driscoll et al., 2001; Evans et al., 2001). In addition, acidification of
aquatic ecosystems is now reported across other large areas of the world where high economic
and demographic growth rates occur, such as in China (Thorjern et al., 1999; Tang et al.,
2001) and India (Aggarwal et al., 2001).

Episodic acidification following snowmelt or heavy rainfalls has been well documented
(Ormerod & Jenkins, 1994; O’Brien & Eshleman, 1995; Wigington et al., 1996). These
hydrometeorological events induce a decrease of pH, Acid Neutralizing Capacity (ANC), and
base cations concentrations as well as an increase of aluminum concentrations (O’Brien et al.,
1993; Soulsby, 1995). The intensity of acid-stress tends to be greater in more acidic
environments because low ANC streams can be subject to episodic acidic stress throughout

the year (Colin et al., 1989). Change in Al speciation accompanying large pH depressions has
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been shown to cause stress and mortality in many aquatic species (Weatherley & Ormerod,
1991; Carline et al., 1992; Van Sickle et al., 1996).

One of the most striking consequences of freshwater acidification is the erosion of
biodiversity (Muniz, 1991). Numerous studies have clearly demonstrated a failure to regulate
blood or haemolymph Na' and CI" levels in acid-stressed fish, clams (Unionidae) and
decapods (Massabuau, 1985; McMahon & Stuart,- 1989; Pynnonen, 1991; Masson et al.,
2002). However, most of the studies have focused on large species, and relatively little is
known about physiological responses in smaller acid-sensitive species of macroinvertebrates.
Crustaceans contain many of the most acid-sensitive macroinvertebrate species (Sutcliffe &
Carrick, 1973; Guerold et al., 2000). In previous studies, Felten & Guérold (2001, 2004)
showed that Gammarus fossarum (Crustacea: Amphipoda) also suffered a severe depletion of
haemolymph Na’ and CI ions when exposed to acidic conditions. Conjointly, we determined
relationship between acidification level and haemolymph ion losses. Thus, we proposed that
haemolymph ion concentrations in the acid-sensitive species G. fossarum could represent
effective biomarkers for monitoring acidification of running waters.

The present study aims to investigate the recovery of haemolymph [Na'] and [CI] in G.
fossarum previously exposed to different magnitudes of acid stresses. In this context we
assessed in situ the short-term response of haemolymph [Na'] and [CI] in G. fossarum
transferred to 3 headwater streams providing 3 different acidification levels (defined by: pH,
ANC, [Mg2+], [Ca’"] and [Alio]). For each stream and each exposure time, organisms were
transferred back to their native circumneutral stream not only to test for G. fossarum recovery

capacity but also to evaluate the effect of an episodic acid stress.
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MATERIALS AND METHODS
Study organisms. Experiments were performed on Gammarus fossarum because this species
presents several interesting characteristics for ecotoxicological investigations : 1) it is an
acid-sensitive species (Guérold et al., 2000), 2) widespread and common in West Paleartica
(Barnard & Barnard, 1983), 3) often occuring in high density, 4) easy to identify to species
level, 5) characterised by a sexual dimorphism and (6) playing a major role in the leaf litter
breakdown process and consequently in the entire food web (Pockl, 1995).
Experimental design. The study was conducted in the Vosges Mountains (north-eastern
France) in 3 headwater streams draining sandstone bedrock and providing exposure to a range
of acidification levels (Fig.1., neutral : La Maix; Ravine: slightly acidified; Gentil Sapin:
strongly acidified). The 3 sites were located in the same area, the highest distance between 2
sites being less that 10 km representing a 20 mn transport of the organisms.
Males G. fossarum with 8-10mm body size were collected from the neutral stream, La Maix.
The experimental design we used is shown in Fig. 2.. Each Plexiglas flow-through enclosure
(experimental unit) contained 144 G. fossarum. Enclosures were divided in 18 compartments
with 8 individual each. Two enclosures like this were placed in each river. Enclosures were
then transferred to each of the 3 streams including the neutral streams. The total number of G.
fossarum collected for this experiment was 2592.
For each stream, one enclosure was used for haemolymph analyses and the other for the
assessment of survival. For each stream, there were 3 pairs of enclosure each corresponding to
one exposure time (24, 48 and 72 h).
In order to evaluate the initial concentrations of haemolymph Cl" and Na” in G. fossarum, 12
organisms were sampled in the neutral “native” stream just before the onset of the
experiments (T,, control). At 24, 48 and 72 h of exposure, survival was assessed and samples

of haemolymph from 8 organisms were randomly collected in each stream for analysis (in
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enclosure corresponding to exposure time). For more details concerning the enclosure
protocol see Felten & Guérold (2004).

After each exposure time, the sampling enclosures were transferred to the circumneutral
stream (La Maix) in order to initiate the recovery experiment (Fig 2.b.); the latest values of
haemolymph [C17] and [Na'] recorded before the transfer to circumneutral water were referred
as t, for the recovery experiment. After 12, 24, 36, 48 and 60 h of recovery, the survival was
assessed and samples of haemolymph from 8 organisms were randomly collected for analysis
in each enclosure corresponding to each stream exposure time (Fig 2.b.).

Survival rates calculated for the recovery period are based on the number of organisms
remaining (in the enclosure) at the time of transfer to the circumneutral stream. Thus, there
was a 60 h-recovery kinetic for each exposure type (circumneutral, slightly acid and strongly
acid).

Survival, haemolymph sampling and analysis. For each acid exposure time and recovery
time, the survival was assessed in each stream (3 replicates of 48 organisms). Samples of
haemolymph (0.8 to 1.2 pul) were taken from the telson of each individual (n = 8) using a
microsyringe, transferred to a gauged 5-pul microcapillary tube and centrifuged for 10 min at
6596 g. After centrifugation the liquid phase was diluted in 2 ml of Nanopur water to
determine chloride and sodium concentrations in haemolymph by ionic chromatography
(Dionex 45001 with Ion Pac AS4A column) and atomic absorption spectrophotometry (AAS)
(Perkin Elmer Analyst 100), respectively.

Water analysis. Water samples were collected at the initiation of the experiment (T,) and at
each time of acid exposure (24, 48 and 72 h) and recovery (12, 24, 36, 48 and 60 h). Cations
were analysed by flame AAS and anions by ionic chromatography as described previously.
Total aluminium was determined by graphite furnace AAS (Varian Spectraa 300) after

acidification with 0.25% HNOs. Acid neutralising capacity (ANC) was measured by Gran’s
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titration and pH (glass electrode), and conductivity with multi-parametric equipment (WTW).
Chemical characteristics of water from each stream are given in Table 1.

Statistical analysis. All data are reported as mean + SD. Statistical comparisons of
experimental data were performed by two-way analysis of variance (ANOVA) and Ficher’s
Least Significant Difference test (LSD). The analyses were carried out using STATISTICA

(Microsoft), with a probability limit of p < 0.05 considered as significant.

RESULTS
Acid exposure
Acidified streams were characterized by low pH, low ANC, low [Mg*"] and low [Ca®] and
high [Aly] (Table 1). The baseline levels of haemolymph [CI] and [Na'] prior to the
exposure were 54.1 + 8.1 and 90.4 + 15.9 mmol 1", respectively, in control organisms (Fig.

2.a.-b.).

The 2-way analysis of variance (ANOVA) indicated that stream acidity, exposure time and
the interaction between them (Stream x Exposure Time) exerted a significant effect on

haemolymph parameters ([Na'], [C17]) and survival (Table 2.a.).

Haemolymph [Na'] and [CI] in G. fossarum exposed to circumneutral stream remained
constant over a 72-h exposure period, but decreased significantly in organisms exposed to
slightly acidic (Ravine, mean pH = 5.5) and strongly acidic streams (Gentil Sapin, mean pH =
4.5) during the first 24 h (Fig. 3.a.-b.). Indeed, after 24 h of exposure, the loss of
haemolymph CI" ranged from 22.5% in the slightly acidic stream (mean haemolymph [C]] =
41.9 + 6.7 mmol I'") to 48.8% in the strongly acidic one (mean haemolymph Cl' =27.7 5.5
mmol 1) compared with the control (mean haemolymph CI" = 54.1 + 8.1 mmol I'") (Fig.
3.a.). The same trend was observed for haemolymph [Na']. After 24 h of exposure, the loss of

haemolymph Na' ranged from 19.9% in Ravine (mean haemolymph Na" = 72.4 + 13.6 mmol
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1) to 53.9% in Gentil Sapin (mean haemolymph Na" = 41.7 + 9.6 mmol I"") compared with

the control (mean haemolymph Na* = 90.4 + 15.9 mmol I'") (Fig. 3.b.).

After 48 h of exposure, the haemolymph [Na'] and [CI7] of the organisms exposed to slightly
and strongly acidic streams were close to 24h-exposure values and remained constant until the
end of the experiment. Individuals transferred for 72 h to Ravine had a mean haemolymph
[CI'] of 42 + 11.5 mmol "' and [Na'] of 70.8 = 20 mmol I"', representing a significant 22.3%
loss of chloride and a significant 21.7% loss of sodium (p<0.05). On the other hand,
individuals transferred for 72 h to Gentil Sapin had a haemolymph [CI] of 25.6 + 4.6 mmol 1!

and [Na'] of 44.7 + 6.9 mmol 1", representing a chloride loss of 45.3% and a sodium loss of

50.5 (p<0.001).

For each exposure time, the survival rate in G. fossarum transferred to the native
circumneutral stream (La Maix) remained very high and above 99%. After 72h of exposure,
the survival rates in organisms exposed to slightly and strongly acidic streams were
significantly different from mean control values for the same exposure time (p<0.05),
reaching 89.6 + 7.5% and 42.4 + 11.9% respectively. On the contrary the survival rates after
24 and 48h of exposure in slightly acidified streams (Ravine) were not significantly different
from those observed in the neutral stream whereas significant differences were measured in
organisms transferred to strongly acidified stream (Gentil sapin). Thus, survival rates of
gammarids transferred to Gentil sapin reached 79.9 + 11.8% and 51.7 + 10.8% after a 24h and

a 48h-exposure time respectively (Fig. 3.c.).

Recovery
The 2-way analysis of variance (ANOVA) indicated that Exposure Time and/or Recovery
Time as well as the interaction term had a significant influence on haemolymph [Na'],

haemolymph [CI'] and survival (Table 2.b.).



176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

We observed a rapid and total recovery of haemolymph [CI] and [Na'] in organisms
previously exposed to slightly and strongly acidic stream. After only 12h transferred back in
the native circumneutral stream, the mean values of haemolymph parameters were similar or
significantly higher than those measured at To (Fig. 4.a.-b. and Fig. 5. a.-b.).

After a 12h-recovery in La Maix following a 72h-exposure in Gentil sapin (the longest and
most intense acid stress tested), the mean haemolymph [Cl'] increased from 29.6 + 4.3 mmol
" to 63.8 £ 13.9 mmol 1", representing an increase of 115.6%. Similarly the mean
haemolymph [Na'] increased from 44.7 + 6.9 mmol I"' to 85.2 + 8.5 mmol "', representing an
increase of 90.6%.

In all enclosures, the survival rates remained high throughout the recovery experiment (>93%,

Fig. 4.c. and Fig. 5 .c.).

DISCUSSION

Acid-exposure

Several studies have shown that crustaceans exposed to water-borne pollutants, environmental
stressors and pathological agents usually exhibit disruption of ionic regulation (Lignot et al.,
2000). Different causes include alterations in the structure and ultrastructure of the branchial
and excretory organs, and changes in Na', K'-ATPase activity, ion fluxes and surface
permeability (Lignot et al., 2000). Ion-regulation failure leading to a severe deficiency of
extracellular ions (i.e. Na" and CI) has been recognised to be the major response in fish to
acid stress (McDonald et al., 1989; Potts & McWilliams, 1989; Wood, 1989). Similar results
have been reported in crayfish (Appelberg, 1985; Fjeld et al., 1988; McMahon & Stuart,
1989; Jensen & Malte, 1990), gammarids (Rupprecht, 1992; Felten & Guérold, 2001, 2004)
and molluscs (Pynndnen, 1991). Surprisingly, and despite the numerous papers reporting

detrimental effects of acidification on invertebrate communities, few studies have been
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performed on the ecophysiology of smaller acid-sensitive macroinvertebrate species
(Herrmann, 1987; Herrmann & Andersson, 1986).

In the present study we showed that exposure of G. fossarum to strongly acidic or slightly
acidic water induced early significant losses of haemolymph [Na'] and [Cl]. Moreover,
failure in ion-regulation was accompanied by a significant mortality. These results were in
agreement with those obtained in previous studies (Felten & Guérold, 2001, 2004) which

permitted us to demonstrate that ion losses were significantly correlated to pH.

Recovery from acid stress

Despite drastic ion losses (Cl" and Na") following exposures to slightly and strongly acidic
stresses, organisms transferred back to the native circumneutral stream were surprisingly able
to recover rapidly from acid stress (as soon as 12h). Moreover, survival rates associated with
the recovery period were very high (>93.4%). Consequently, the ion-regulation failure
evidenced during the exposure under acidic conditions appears reversible even when the loss
of ions was severe (>50%).

These results are in accordance with those of several studies which have highlighted the
recovery capacity of several acid-sensitive species following their transfer from an acidified
medium to a circumneutral medium. Favrel (1998) observed a total recovery of haemolymph
[CI] and [Na'] in Dinocras cephalotes (Plecoptera) after 16 days of recovery in a
circumneutral water (pH = 6.6, [Al] = 10 pg I'") following a 8 days exposure in an acidified
water (pH = 4.6, [Al] =540 ug I'"). Comparable results had been also reported for Anodonta
anatina (Mollusc) for a 8 day exposure to pH 4.0-5.0 followed by a 8 days transfer in a water
with a pH 7.2-7.4 (Pynndnen, 1994). Similary, Kroglund & Staurnes (1999) conducted an
experiment showing that acid-exposed (pH 6.0 and 5.6) Salmo salar smolts were able to re-

establish their plasma chloride levels within 3 days in pH 6.28 water, but the authors did not
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sample organisms until the end of the 3 days. In our study, the recovery observed for G.
fossarum was definitely faster than those observed in the species mentioned above.

Moreover, these results are in accordance with our previous observation (Felten & Guérold,
2004) showing the physiological adaptation of G. fossarum exposed to slightly acidic stress
(pH 5.7, [Alir] = 2.5 pmol I, [Ca®"] = 26.8 pmol I'"). After 24h of exposure, G. fossarum had
undergone significant ion losses but following 96h, no differences were observed in
haemolymph [C17] and [Na'] (compared to the control) without any additional mortality.
Several assumptions may be advanced to explain the fast recovery of haemolymph [CI] and
[Na']. On the one hand Chamier et al. (1989) reported that Na' turnover is very fast in G.
pulex (65% of total body in Na' per day at 9°C). In addition, Wood & Ronago (1986)
observed an increase in Cl and Na" uptake during the recovery following an exposure to pH 4.
This can be due to a reduction of the [H']/[Na'] ratio in water, consequently decreasing the
competition between these two ions at ionic transport sites, leading to an increase in Na"
uptake. In addition organisms transferred back to circumneutral waters were then facing lower
passive ion losses and water uptake because of the increase in [Ca®"]/[Al] and [Ca*]/[H]
ratios. Thus, the easier access to Ca*" allowed the reinforcement of cellular junctions allowing
reduced permeability. Finally, different studies have shown an increased number of chloride
cells in gills as well as morphological changes in the apical surface of these chloride cells, in
various species of fish exposed to acid water (Chevalier et al., 1985; Karlsson-Norrgren et al.,
1986; Jagoe & Haines, 1990, 1997). For example, chloride cells can present apical wells
(Leino & McCormick, 1984; Leino et al., 1987a, 1987b) or apical evaginations (Chevalier et
al., 1985; Leino et al., 1987a, 1987b) increasing exchange surface. This kind of change which
can limit and/or offset ion losses under acidic conditions, could explain the fast recovery of

haemolymph Na“ and Cl concentrations after a transfer back to circumneutral water.
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However, to our knowledge, no study has highlighted such modifications in small

macroinvertebrate species.

Extrapolation for populations

In a previous study (Felten, 2003), populations of G. fossarum were sampled using a surber
sampler, on 10 occasions and in 3 sites of the same circumneutral stream (La Maix). This
stream was characterized by a decreasing gradient of acidification from upstream to
downstream (the most distant sites were 2.7 km apart). The most downstream site, studied in
this paper, was circumneutral throughout the year (mean pH : 7; from 6.7 to 7.4; n = 25). The
most upstream site was affected by episodic strong acidification events (mean pH: 6.0; from
4.3 to 6.80; n = 25) whereas slightly episodic stresses occurred in the intermediate site (mean
pH : 6.6; from 5.7 to 7; n = 25). As a result, G. fossarum was totally absent from the upper
site and, at the intermediate site, the density of the species was 10 times lower (443 ind./m?)
that those observed downstream (4317 ind./m”). Consequently, although G. fossarum was
able to rapidly compensate high ion losses caused by acid stress, gammarid population was
drastically affected by repeated episodic acid stress meaning that the rapid compensation of
high ion loss seems not to help the G. fossarum population in surviving acid episodes if these
are repeated.

Episodic acidification has been recognized to exert a drastic impact on macroinvertebrate and
fish populations and communities (Weatherley & Osmerod, 1991 ; Baker et al., 1996 ; Van
Sickle et al., 1996; Lepori et al., 2003). McCahon & Poulton (1991) and Merrett et al. (1991)
showed the cumulative effect of multiple acid stresses on macroinvertebrate mortality.
Finally, several studies conclude that acid episodes can restrict or offset the recovery process

of acid sensitive invertebrates (Kowalik et al., 2006) and fish (Kroglund et al., 2001).
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According to Davies et al. (1992), episodic acidifications take place over hours (rainfall) to
months (snowmelt). In a previous experiment, Felten & Guérold (2005) showed that a 168h-
exposure of G. fossarum to Gentil sapin streamwater led to 80 % of mortality which can
explain the total absence of the specie in the upper site.

Several non exclusive hypotheses can conjointly explain the decrease of density or the loss of
population in streams subjected to episodic acid stresses, such as i) an increase of drift-
response and mortality of sensitive stages (juveniles) (McCahon & Poulton, 1991; Taylor et
al., 1994), ii) a lower food quality (Willoughby, 1988; Willoughby & Mappin, 1988; Sutcliffe
& Hildrew, 1989) or/and a lower conversion efficiency of food to growth (Lee ef al., 1983;
Hargeby & Petersen, 1988), iii) a lower food intake (Lemly & Smith, 1985; Tierney &
Atema, 1986), iv) an enhanced energetic cost associated with osmoregulation, ion retention
and respiration (Okland & Okland, 1986) leading to a decrease of growth and reproduction
(Maltby, 1994; Seiler & Turner, 2004).

Moult is known to be a critical phase for crustaceans (Wright & Frain, 1981; McCahon &
Pascoe, 1988; Wheatly & Gannon, 1995) requiring a lot of energy (Maltby, 1994; Wheatly &
Gannon, 1995). According to Pockl (1992), in younger gammarid stages, moult occurred
close together. Consequently, a higher acid-sensitivity of younger stages (Naylor et al., 1990)
explained by the moult frequency could partly account for population regression in acidified
streams. Moreover, small-sized gammarids affected by an acid stress may be unable to resist

to the associated hydrological stress.

Conclusion

G. fossarum facing acid stress fail to regulate ion losses, leading thus to an important
mortality when the environmental stress is intense. This failure is rapidly reversible when the

stress ceases. However, despite the recovery capacity of G. fossarum from important ion
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losses following acid stress, populations have been severely reduced or have totally
disappeared from numerous headwater streams draining catchments subject to acidification.
Thus, it is suggested that both the frequency and the intensity of stresses clearly structure
gammarid population. In this context, we recommend to conduct further studies dealing with
the effects of episodic acidification on population structure, in relation to physiological
parameters (e.g. energetic cost, growth) to better understand population regression and
recovery. This kind of study is particularly important since the decline of base cations (mainly
Ca”" and Mg”") in soils and surface waters has been reported in most areas where high rates of
sulphur depositions occurred previously. These trends should indeed lead to an increase of

episodic acid stress frequency and intensity.
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Table 1. Mean and SD values of chemical parameters of each exposure stream (n = 4). ANC:

Acid Neutralizing Capacity.

La Maix Ravine Gentil Sapin

Mean SD Mean SD Mean SD
pH 73 0,0 5,5 0,1 4,5 0,1
ANC (peq 1) 599,3 10,4 5,5 3,5 -19,4 6,5
conductivity (uS cm'l) 78,6 2,2 30,5 2,0 29,9 1,0
Temperature (°C) 10,3 0,3 11,9 0,5 12,9 0,5
Ca”" (umol I'") 281,7 52 55,9 5,6 38,8 0,8
Mg (umol 1™ 187,1 4,7 35,7 2.4 25,9 1,3
Na' (umol I'") 47,6 0,0 52,0 4,8 37,0 2,0
K (umol I 45,7 0,6 42,5 2,7 25,7 0,8
SO,” (umol I'") 63,4 0,4 72,5 5.1 50,7 2,6
NO;” (umol I'") 62,8 1,0 49,6 55 80,3 3.4
CI' (umol 1 38,7 1,2 42,2 2,5 32,1 1,4
Total Al (umol 1™") 0,4 0,2 4.4 4.8 15,9 1,3
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Table 2. Summary of 2-way analysis of variance. F, F ratio; p, probability; d.f., degrees of

freedom; n.s., not significant.

[CI'] hemolymph [Na'] hemolymph Survival
d.f. F p d.f. F p d.f. F p
a) Exposure effect
Factor a (Stream) 2 341 <107 2 462 <107 2 1104 <107
Factor b (Exposure time) 3180 <107 230 <10° 3 298 <107
Interaction 6 46 <107 6 67 <107 6 200 <107
b) Recovery effect
Slightly acid exposure (Ravine)
Factor a (Exposure time) 3 32 <5%107 1,7 n.s. 2 0,3 n.s.
Factor b (Recovery time) 5 141 <107 17,5 <10° 5 29 <5%107
Interaction 15 20 < 5%107 15 3,2 <10? 10 0,3 n.s.
Strongly acid exposure (Gentil sapin)
Factor a (Exposure time) 3 39  <5*107 0,5 n.s. 2 11,7 <10?
Factor b (Recovery time) 5 373 <107 5 536 <107 5 0,7 n.s.
Interaction 15 52 <107 15 79 <107 10 07 n.s.
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Figure 4. Mean (+SD) [CI'] haemolymph (a) and [Na'] haemolymph, (b) and survival (c) of
Gammarus fossarum exposed to slightly acidic waters (Ravine) and transferred in the
circumneutral stream (La Maix) to test recovery capacity. Significant differences against T,
are indicated by asterisks (Ficher’s Least Significant Difference test; *: p<0.05; **: p<0.01;
*a%: p<0.001). t, represents the last exposure time before organism transfer in circumneutral
stream.
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