
The world’s marine fisheries currently generate a
catch of about 150 million tons per year, about 90 mil-
lion tons of nominal catch reported by individual
countries to the Food and Agriculture Organization of
the United Nations (Garcia and Newton 1997),
20–30 million tons of discarded by-catch (Alverson
et al. 1994) and the remainder a (probably low) estimate
of unreported/illegal catches. Detailed analyses of
these figures, in view of understanding the dynamics of
world fisheries, and predicting their future evolution,
requires a stratification scheme permitting compar-
isons among areas. Large Marine Ecosystems
(LMEs) may serve for this purpose, because many
biological processes relevant to the sustainability of
marine fisheries are ecosystem processes, occurring
on a large scale.

However, the LME concept is rather amorphous, in
spite of a series of proceedings having been devoted
to it (Sherman and Alexander 1986, 1989, Sherman et
al. 1990, 1991, 1993). This amorphous nature is not
due to a lack of dictionary-type definitions – many
have been proposed. Rather it is due to the lack of a
functional definition, i.e. the type of definition that, in
a given discipline, allows people to work, publish and
understand what their colleagues are talking about, to
do “normal science” sensu Kuhn (1970). Indeed,
close study of the above-cited series of proceedings
will show that, notwithstanding existing definitions
and list of LMEs (Sherman 1993), their coverage is

entirely based on authors contributions, and not on a
priori definitions of LMEs based on, say, biogeographic
or oceanographic considerations. This leads to minor
irritants (e.g. the Gulf of Thailand being treated, in
the same proceedings series, as an LME by Piyakarn-
chana [1989] and as a component of the South China
Sea by Pauly and Christensen [1993]), and to serious
problems when attempts are made to raise ocean fluxes
estimated at the LME level to the world’s oceans.

An important element of a functional definition of
LMEs is that they must identify real ecosystems, i.e.
entities with identifiable boundaries, internally homo-
genous, and whose internal fluxes are much higher
than their exchanges with adjacent entities. These criteria
exclude, for example, the 18 large areas which FAO
uses to stratify the world’s oceans (Fig. 1) and used to
generate global figures such as those cited above.

To address these, and similar issues raised in Bakun
(1985), Longhurst (1995) provided a framework for
comparative studies of ocean processes in the form of
57 “biochemical provinces”, with boundaries defined
by oceanographic structures that generate distinctive
patterns of nutrient fluxes. For comparative work on
LMEs, there would be great benefit in the use of the
framework provided by these 57 provinces (Fig. 2).
Recent work by Longhurst et al. (1995) on global
primary production, and by Fonteneau (1997) on
global tuna catches, illustrate the usefulness of these
standardized areas. 
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STUDYING THE ECOSYSTEM NATURE OF
LONGHURST AREAS

To study the ecosystem nature of LMEs and
Longhurst areas, it is first necessary to deal with the
internal fluxes of such ecosystems. What are these
fluxes? In this paper, the focus will be on fluxes of
organic carbon (and/or biomass, a close correlate)
from primary producers up various foodwebs to top
predators and fisheries.

The key input into LMEs, the flux generated by
primary production, has been recently re-estimated
as 45–50 GtonsC·year–1 for the world’s oceans as a
whole (Longhurst et al. 1995), much higher than the
12–15 GtonsC·year–1 estimated by Steemann Nielsen
and Jensen (1957), and even than the much-cited 
23 GtonsC·year–1 estimated by Koblents-Mishke et
al. (1970; see, for example, FAO 1971). The key outputs
of LMEs are the 150 × 106 tons·year–1 mentioned above
as taken by fisheries, and 400 – 500 × 106 tons·year–1

taken by marine mammals (see below).
To study how the primary production input into the

world’s oceans is turned into output, it is necessary to

study the foodwebs that turn primary production into
harvestable biomass. This is illustrated herein through
some preliminary studies pertaining to the Pacific
Ocean, as stratified by FAO areas, and soon to be 
extended to the world’s oceans, using Longhurst areas
for stratification.

Figure 3 shows an example of the basic structure
of the foodwebs in FAO area 77, the Central Eastern
Pacific. This allows, among other things, differentiat-
ing the strands leading to the fisheries and the marine
mammals. The transfer efficiency between trophic
levels can be calculated from the quantified flows in
such graphs (Christensen and Pauly 1992), as can a
number of other important holistic features of the
ecosystems so represented (Wulff et al. 1989). 

Figure 4 illustrates the concept of primary produc-
tion required to support top predators, and its impli-
cations in terms of what may be called “foodweb
competition”. This concept is developed in Figure 5,
suggesting that, in the Pacific, the primary production
required to sustain the fisheries is incompatible with
the large biomass of marine mammals, which con-
sume 150 × 106 tons·year–1 of food per year there
(Trites et al. in press) and about three times that on a
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Fig. 2: Stratification of the world’s oceans proposed by Longhurst (1995) based on 57 “biochemical provinces”
whose boundaries define Large Marine Ecosystems. As opposed to Mercator’s, the Peter’s projection

used here allows direct comparison of surface areas
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global basis. An attempt is now being made to verify
these results by re-expressing them on the basis of
Longhurst areas (which should lead to more natural
groupings of fisheries and mammal species assem-
blages), and for the world as a whole. 

Studying LMEs as true ecosystems involves more,
however, than input-output analyses: notably, it 
implies paying attention to the detailed structure of
the foodweb mediating between the input and the out-
puts. Foodwebs quantifying the fluxes between a
number of functional groups (i) can be straightfor-
wardly constructed for any period for which sufficient
data are available by the system of linear equations:

Bi(P/B)i EEi = Yi + ∑
k

j=1
Bj (Q/B)j DCji ,       (1)

where Bi is the biomass of group (i) and Bj that 
of its consumers during the period in
question;

P/Bi is the production/biomass ratio of i, 
equivalent to its total mortality (Allen 
1971);

EEi is the fraction of its production consumed
(or caught) within the system;

Yi is its fishery catch (equivalent to FiBi );
Q/Bi is the consumption/biomass ratio of its k

consumers; and 
DCji is the fraction of i in the diet of j.

Such a system of equations consists (except for
EEi ) of quantities that are routinely estimated by fishe-
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ries and/or marine biologists, and a large published
database of generic values exists to complement 
locally derived data sets. Solving this system of equa-
tions (which for example allows estimation of the EEi
value, by leaving them as unknowns) can be done by
the use of any matrix inversion routine, such as that
incorporated in the Ecopath software, which includes
numerous routines for the analysis of the fluxes and
biomass so estimated (Christensen and Pauly 1992,
1995). The straightforwardness of this approach is the
reason why nearly 100 Ecopath models now exist,
describing freshwater and marine systems, with the
latter ranging from smaller areas to LMEs.

A number of generalizations has emerged from
these models that are relevant to an understanding of
their functioning. For, example, Figure 6 shows that,
in LMEs, it is mostly fish that consume the bulk of
fish production, although there are exceptions, e.g. the
upwelling ecosystem off Namibia, where the fisheries
catch is more than is consumed internally. Another
generalization is that, in aquatic ecosystems, 10% is a
good estimate of mean transfer efficiency between
trophic levels (Pauly and Christensen 1995), so con-
firming earlier guesses by, for example, Slobotkin

(1980). On the other hand, this invalidates earlier
guesses, e.g. by Ryther (1969), of 15 and 20% for coas-
tal and upwelling systems respectively. Indeed, it is
the upwelling ecosystems which tend to have low
transfer efficiencies (Jarre-Teichmann 1992, Pauly
1996).

Yet another generality is that the trophic levels of
exploited organisms in LMEs range from 2 (for strict
herbivores) to 4 for tuna and other near-top predators.
This value, combined with global catches by group of
species (FAO 1996), the 10% transfer efficiency 
alluded to above and the principle illustrated in Fig-
ure 4, allows estimation of the primary production re-
quired to sustain global fisheries as 8% of global pri-
mary production. However, this value is computed
from two very unequal parts, one of 2% for large
oceanic systems, in which about 10% of global catches
are taken, the other of 25–35% for the smaller shelves
and upwelling systems, from which the other 90% of
global fisheries catches originate (Pauly and Christensen
1995). The latter figure, pertaining to systems fully
exposed to human impacts, is close to the estimate of
35–40% of terrestrial primary production currently
appropriated by humans (Vitousek et al. 1986), a
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frightening reminder that the Earth’s carrying capacity
is not only finite, but that we are closing in on it.

Another way of assessing human impacts on LMEs,
once they are described using the system of mass-
balance equation in (1), is to re-express them as a system
of ordinary differential equations, viz:

dB/dt = (Bi {P/Bi} EEi)–(Fi Bi +∑
k

j=1
Bj {Q/B}j DCji) , (2)

whose parameters, defined as in Equation 1, can be
estimated, for any period without biomass change, by
setting dB/dt to 0, solving as for Equation 1, then inte-
grating over time, with F changing such as to simu-
late different fishing regimes (Walters et al. 1997).

A software package named Ecosim has been 
recently developed to read Ecopath files, and it imple-
ments Equation 2 in the form of dynamic simulation
models that can be used to investigate the behaviour
of any LME; first results of comparative studies based
on this approach are already available (Mackinson et
al. in press, Vasconcellos et al. in press).

For example, the effects were studied of a 10-year

pulse (5 × baseline F; Fig. 7) applied to the small
pelagic group of 15 marine ecosystems, i.e. to the
group that, in most of these systems, transfers the
bulk of primary and secondary production to the
upper trophic levels (Csirke 1988, Bakun 1996).

Figure 8 shows that, in these systems, recovery
time is closely related to the percentage of total detritus
flux recycled (Vasconcellos et al. in press), a finding
predicted by the leading theory of ecosystem develop-
ment (Odum 1969). This is encouraging enough to
make one disagree with those who question the pre-
sent ability to understand even first-order ecosystem
responses to perturbations, and hence the ability to
manage ecosystems.

LMEs AS (MIS)MANAGED ECOSYSTEMS

Criticism of the concept of ecosystem manage-
ment, besides noting its undeniable buzzword nature,
generally focuses on:
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(i) the “general lack of knowledge” about ecosystem
functioning;

(ii) a history of failure to predict simple processes
such as that which generates the production of
single-species stocks;

(iii) the lack of tools with which to explore alterna-
tive management options and to quantify their
benefits;

(iv) the lack of formal explicit goals for such man-
agement.

Rebutting such criticisms is not difficult. It is, for
example, always true that knowledge is incomplete,
and that the conceptual tools are inadequate to the
task. Indeed, when knowledge is perfect, and the tools
adequate, there is no Science, only Technology and
Engineering, devoted to applying the codified know-
ledge and a set of standard tools to a specific job, e.g.
building a bridge. The point about science is how irre-
ducible uncertainty and a lack of adequate data and
tools are dealt with creatively (Medawar 1967).

One ecosystem-based approach for dealing with
problems (i) – (iii) above is to implement marine pro-
tected areas (MPAs) whenever fisheries have devel-

oped that are capable of exploiting the natural refuges
that sustained earlier, less-developed fisheries, e.g.
deep waters in the case of the recently collapsed cod
around Newfoundland, Canada (Hutchings and
Myers 1994), or heavily-structured sea bottom areas,
now often flattened by heavy ground trawls. For such
areas, suitably placed and sized MPAs should help
rehabilitate most stocks, despite items (i) – (iii) above
(Roberts et al. 1995). Thus, MPAs may be seen as an
ecosystem management tool par excellence and the
biological research agenda implied by MPAs (how
large should they be, where should they be, how should
they be monitored) is ecosystem management research.

As for item (iv), the lack of explicit goals for
ecosystem management, I believe a major goal, even
though many fisheries scientists are not yet ready to
open their eyes to it, is the maintenance of marine
biodiversity. Many governments have already com-
mitted themselves to this issue by signing and ratifying
the International Convention on Biodiversity, and 
related documents.

Given the traditional clients of fisheries scientists,
governments and the fishing industry, this goal may
be viewed as contentious or even too “green” to be
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Fig. 7: Simulation of pulse fishing, i.e. a five-fold increase of baseline fishing mortality of a given group (here
the small pelagics), for 10 years, using the Ecosim routine of Ecopath (Walters et al. 1997). System recovery

time (t3) is defined as that required by the slowest group to return to baseline level of biomass (B)



taken seriously. Yet the overwhelming bulk of the
world’s fisheries having overfished their resources
base, increasing catches or even maintaining them
can only be achieved by rehabilitating stocks, which
itself can only contribute to maintaining and, in many
cases, re-establishing marine biodiversity to those
parts where excess fishing has reduced it. Indeed, a
vision for fisheries science and for the work of indi-
vidual fisheries scientists would be that, for all systems
studied, all historical sources be identified which may
help reconstruct the earliest possible stage of these
ecosystems. Then, this information could be used, 
together with the biomasses and fluxes it implies, as
baseline for evaluation of present management options.
The reason for this suggestion is that currently it is the
converse which applies. Every generation of (fish-
eries) scientists uses ecosystem states at the start of
their careers as baseline, and largely ignores (or dis-
miss as “anecdotal”) the work of the preceding gener-
ations (Pauly 1995). The result is a steady shift of
baseline (Fig. 9). 

Using earlier stages of ecosystem states as baseline
for ecosystem rehabilitation would not only lead to

more biodiversity, but also to larger exploitable bio-
masses for most of the resources we fish. Indeed,
“anecdotal” evidence suggests pre-exploitation bio-
mass in many systems to be one order of magnitude
higher than the biomass now (see, for example, Mac-
Intyre et al. 1995).

It is straightforward to conceive high-biomass 
systems which would lead to larger yields than can be
now obtained. These, given well regulated and smaller
fisheries, would generate far more net social benefit then
the present subsidy-guzzling overfisheries. In Figure 10,
industrial overfisheries are contrasted with the small-
scale fisheries of the past, and which should be brought
back again. Such a transition could be particularly 
appropriate for the new, democratic South Africa.

For those who think such ideas are unrealistic, how
realistic is it to assume that, in our greenhouse future,
fisheries that burn up 80 tons of diesel fuel to catch
100 tons of fish, of which 80% consist of water, can
be afforded? Further, how would the economy of
these overfisheries look if they had to pay a carbon
tax on top of the immense subsidies they generally
now require to keep operating?
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TOWARDS A TRANSITION: A CONCLUSION
AND A PLEA

A precondition for a change in the way fisheries are
allowed to impact marine ecosystems is for the tax-
paying public to be informed and involved, i.e. for
fisheries scientists to realize that, ultimately, there are
more clients for their services than the governments
which employ them, and the industry which the govern-
ments try to regulate.

The public can be dismissed, but it can dismiss
fisheries scientists too, for instance by electing politi-
cians that will close down the government agencies
employing fisheries scientists. Alternatively, the public,
along with those NGOs that articulate public sentiments
about the need to protect and rehabilitate marine 
resources, and that part of industry that lets its actions
be guided by the enlightened form that self-interest
can take, can be taken seriously.

To illustrate how this may occur, it is worth briefly
mentioning an initiative, the Marine Stewardship
Council (MSC), patterned after the Forestry Steward-
ship Council which, jointly with a multitude of other

initiatives, may help turn fisheries around and help
rehabilitate marine ecosystems. The MSC, co-spon-
sored by the World Wildlife Fund for Nature (WWF)
and Unilever, an Anglo-Dutch corporation heavily
involved in the international fish market, was created
to ensure that as much as possible of the fish products
reaching consumers (mainly in the developed world)
are labelled as having been caught in fisheries certi-
fied as sustainable. 

A three-day workshop was held in October 1996
near London for an invited group of fisheries scien-
tists to develop the first draft of a set of principles and
criteria to be used by certifiers acting on behalf of the
MSC. These criteria, to be refined in regional work-
shops, considered the state of the art in fisheries ecology
(including concepts relative to ecosystem manage-
ment, as presented above) and social sciences, while
remaining realistic, i.e. implementable in the field.
Biological considerations were crucial when deriving
these principles and criteria (because maintenance of
the stocks and the ecosystems that sustain them is the
key to the sustainability), but economic, social and
governance issues were also considered which, if im-
plemented, should also lead to more equitable fisheries.
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Clearly, marine ecosystems can and should be
analysed and managed, even if currently doing a less
than adequate job is being made of it. 
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