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ABSTRACT 

Intelligent Tool Condition Monitoring (TCM) is an essential requirement in the drive towards 

automated machining operations. In this paper, a Multi-Layered Perceptron (MLP) neural net-

work model has been developed for on-line condition monitoring of tool wear in high-speed 

turning of Titanium-based alloy (Ti-6Al-4V). Machining trials were conducted for typical rough 

and finish turning operations with cutting speed (90 – 120 m/min), feed rate (0.15 – 0.2 mm/rev), 

and depth of cut (0.5 -2.0 mm) using uncoated cemented carbide (K10 grade) inserts with Inter-

national Standard Organization (ISO) designation “CNMG 120412”. The tool maximum flank 

wear (VBmax), cutting forces (feed force, Fx, and tangential force, Fz), and spindle motor power 

were measured during each machining operation. The cutting parameters (cutting speed, feed 

rate, and depth of cut), and cutting force and spindle power were used in isolation or in combi-

nation as input dataset in training the neural network to predict wear land on  cutting tool at 

different stages of wear propagation (light, medium and heavy). The neural network model was 

designed using Matlab® neural toolbox. Accuracy of model for the prediction of tool wear at dif-

ferent wear stages were evaluated based on the Percentage Error (PE) for both roughing and 

finishing operations. Results showed that, the heavy wear stage (PE = ±5%) was predicted more 

accurately compared to the light (PE = +5 to -10%) and medium (PE = +25 to -30%) wear 

stages. The combination of the force, power signals and cutting parameters improved perform-

ance of the model.  
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INTRODUCTION 

Modern manufacturing technologies are con-

tinually tending towards automation of the pro-

duction process due to increasing demand for 

high productivity. For automation in metal cut-

ting operations, the Tool Condition Monitoring 

(TCM) system is an essential requirement for 

optimisation of machining operations and re-

duction of cost of tooling and ultimately a re-

duction in the overall cost of production 

(Ezugwu et al., 2004). Implementation of TCM 

systems involve acquisition of different direct 

process parameters such as cutting forces, vi-

bration, acoustic emission, power, temperature, 

© 2009 Kwame Nkrumah University of Science and Technology (KNUST) 

Journal of Science and Technology, Vol. 29, No. 3 (2009), pp 136-146 136 

Journal of Science and Technology  © KNUST December 2009 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AJOL - African Journals Online

https://core.ac.uk/display/478377102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


roughness and roundness of the machined sur-

face, which are measured during machining 

operations. These measured parameters, which 

are also influenced by the cutting parameters 

and other external factors are then used to 

model and predict the tool condition such as 

tool life, tool wear, wear rate, wear stage and 

failure mode. The relationship between the 

measured process parameters and tool wear 

parameters are known to be complex and non-

linear time-variant (Silva et al., 2000; Silva et 

al., 1998) and various modelling techniques 

have been developed. 

The earlier work on TCM systems were fo-

cused on development of analytical models 

(Dimla et al., 1997; Lin et al., 2003). The ana-

lytical method is complex and hence time con-

suming. The need for a more accurate and reli-

able model for TCM has led researchers into 

exploring other empirical methods such as mul-

tiple regression analysis (Ehmann et al., 1997), 

wavelet analysis (Wang et al., 2004), time se-

ries analysis and frequency domain analysis 

(Bernhard, 2002). These empirical methods 

have been applied in practical TCM in metal-

cutting processes with limited degrees of suc-

cess. These methods are dependent upon large 

volume of experimental data, costly and time 

demanding. 

In recent years, application of ANN model for 

condition monitoring of mechanical systems is 

becoming increasingly popular in many fields 

of engineering. Such as in fault detection in 

rotating machinery (Akangah and Wang, 2006), 

prediction of wear behaviour of A356/SiC 

metal matrix composites (Rashed and Mah-

moud, 2009), modelling and prediction of cut-

ting tool wear (Deiab et al., 2009), detection of 

degraded behaviours in wire electrical dis-

charge machining (Portillo et al., 2009, and 

vibration detection in milling operation 

(Kuljanic et al., 2009). In metal cutting opera-

tions, different process parameters such as cut-

ting forces, acoustic emission, power consump-

tion, temperature and surface roughness have 

been correlated to tool wear using a wide range 

of ANN models with different success rates 

(Sick 2002; Liu et al., 1998; Dimla et al., 1997; 

Dimla and Lister, 2000; Ezugwu et al., 1995). 

Wilkinson et al. (1999) investigated possible 

inter-relationship between surface roughness 

and acoustic emission at different tool wear 

stages for finish face milling of En24 steel.  

This paper investigated the feasibility of using 

cutting force parameters and spindle motor 

power consumption in isolation and in combi-

nation with cutting parameters for development 

of a neural network-based on-line tool condi-

tion monitoring model for high-speed turning 

of Ti-6Al-4V alloy. 

 

ARTIFICIAL NEURAL NETWORK 

Artificial Neural network (ANN) is a branch of 

Artificial Intelligence (AI), which belongs to 

the group of computational algorithms called 

connectionist model (Azimian, 2005). ANN 

models are inspired by the biological neural 

system, with capability to learn, store and recall 

information based on a given training dataset. 

They are „black-box‟ modeling technique capa-

ble of performing non-linear mapping of a mul-

tidimensional input space onto another multidi-

mensional output space without the knowledge 

of the dynamics of the relationship between the 

input and output spaces. ANN models have 

been successfully employed in solving complex 

problems in various fields of application in-

cluding pattern recognition, identification, clas-

sification, speech, vision, and control systems. 

In recent times, application of ANN model is 

becoming increasingly popular in modelling of 

complex engineering problems.  

Basically, ANN models consist of multiple 

connected Processing Elements (PE), which are 

called nodes or neurons. They consist generally 

of five basic components: (1) input, (2) weight 

and biases, (3) summing junction, (4) transfer 

function, and (5) output. The neurons are ar-

ranged in three multiple layers known as input, 

hidden and output layer. In neural networks, 

knowledge is acquired during the training or 

learning process by updating or adjusting the 

weights in the network through different algo-

rithms. The network weights are upgraded liter-
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arily until the network reproduces desired out-

put or target from a given set of input. The net-

work is trained with either supervised learning 

(when both input and the desired targets are 

presented to the network) or unsupervised 

learning (when the expected targets are not 

used in the training). The back-propagation 

algorithm is a supervised training rule with 

multiple-layer networks, in which the network 

weights are moved along the negative of the 

gradient of the Mean Squared Error (MSE) so 

as to minimize the difference between the net-

work‟s output and desired target. There are 

generally four steps in the training process: (1) 

assembling the training data, (2) designing the 

network object, (3) training the network, and 

(4) simulating the network response with new 

input data sets. After a sufficient training ses-

sion, which may require considerable computa-

tional resources such as memory and time of 

the computer, the trained network has adequate 

capabilities to perform non-linear pattern asso-

ciation between input and output variables and 

can easily predict the output when a new input 

data set that is not used in the training is pre-

sented to the network. ANN models are known 

to be efficient and less time-consuming in mod-

elling of complex systems compared to other 

mathematical models such as regression (Lin et 

al., 2003). Basic theories and applications of 

ANN can be found in generic texts such as in 

Picton (2000). 

 EXPERIMENTAL PROCEDURES 

The machining operations were conducted on 

an 11 kW Computer Numerical Controlled 

(CNC) turning lathe with a speed range from 18 

- 1800 rpm, which provides a torque of 1411 

Nm. A titanium-based, commercially available 

alpha-beta Ti-6Al-4V alloy was used as the 

workpiece. The chemical composition and 

physical properties of the workpiece are given 

in Tables 1 and 2 respectively. Indexable rhom-

boid shaped uncoated carbide (K10 grade) in-

serts with ISO designation CNMG 120412, 

with nominal chemical composition (by 

weight): 93.8% WC, 0.2% (Ta, Nb)C and 6% 

Co were used as cutting tool. The mechanical 

and other properties of the inserts are: Vickers 

HV Hardness 1760, density 14.95 g.cm-3 and 

substrate grain size 1.0 mm. Tool holder with 

ISO designation MSLNR 252512 was used to 

hold the insert and the followings cutting ge-

ometry are employed during the trials: ap-

proach angle 40o, side rake angle 0o, clearance 

angle 60 and back rake angle -50. 

Prior to the machining trials about 6 mm thick-

ness of the top surface of the workpiece was 

removed in order to eliminate any skin defect 

that can adversely affect machining result. The 

cutting conditions typical of rough and finish 

turning of titanium-based alloys in manufactur-

ing industry were employed in this investiga-

tion (Table 3). 

Chemical element Al V Fe O C H N Y Ti 

Min. 5.50 3.50 0.30 0.14 0.08 0.01 0.03 50ppm Balance 

Max. 6.75 4.50 - 0.23 - - - - - 

Table 1. Chemical composition (% wt) of Ti-6Al-4V alloy 

Tensile strength 

(MPa) 

0.2% Proof 

stress 

(MPa) 

Elongation 

(%) 

Density 

(g.cm-3) 

Melting 

point  (°C) 

Thermal 

conductivity 

(W.m-1.K-1) 

Measured 

Hardness*   

(HV100) 

900-1160 830 8 4.50 1650 6.6 
Min. = 341, 

Max. = 363 

Table 2: Physical properties of Ti-6Al-4V alloy 

*Confidence interval (CI) of 99%, represented by the minimum (Min) and maximum (Max) values. 
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The component forces (targential force, Fz and 

feed force, Fx) were measured using a Kistler 

piezoelectric tri-axial dynamometer (Type 

9257B) attached to the tool post. Signals from 

the dynamometer were passed through charge 

amplifiers (Type 5001) with in-built low-pass 

filters of 680 Hz cut-off frequency. National 

Instruments data acquisition card (Model NI 

PCI/PXI-5112) with threshold frequency of 100 

MHz and 2 acquisition channels with one trig-

ger and a desktop PC with Labview® signal 

processing software were used for automatic 

logging and processing of the cutting force sig-

nals. The signals were captured at sample rate 

of 100 MHz and a total of 10,000 data points 

were recorded for each machining operation.  

The spindle motor power required during each 

of the cutting operation was measured using a 

machine inbuilt multifunction 3-phase power 

meter. The experimental setup is shown in Fig-

ure 1, while the schematic of the setup is shown 

in Figure 2. 

The maximum width of flank wear land, VBmax, 

for each machining trials were measured with a 

Mitutoyo toolmaker microscopy at interval of 

two minutes during the machining operations 

until tool life is reached using the International 

Standard tool rejection criteria for maximum 

flank wear land > 0.70 and > 0.40 mm for 

roughing and finishing operations respectively. 

Based on the measured tool wear, the tool is 

classified into three wear states: light wear, 

medium wear and heavy wear as shown in Ta-

ble 4. 
 

DESIGN OF THE NEURAL NETWORK 

Structure of the ANN 

The artificial neural networks used in this study 

are standard multi-layer perceptron designed 

with MATLAB® Neural Network Toolbox. The 

networks consisted of three layers of fully in-

terconnected neurons in the input layer, hidden 

layer and output layer. Neural networks with 

three different structures were considered. Net-

work with structure #1 has five neurons in the 

input layer corresponding cutting parameters: 

cutting speed, feed rate and depth of cut, and 

cutting force signal, tangential force and feed 

force. Structure #2 consisted of four neurons in 

the input layer corresponding cutting parame-

ters: cutting speed, feed rate and depth of cut, 

and spindle motor power, while structure #3 

has six input variables: cutting speed, feed rate 

and depth of cut, spindle motor power and tan-

gential force and feed force. In all the struc-

tures, the hidden layer consists of two layers, 

with the number of neurons in each layer varied 

Machining Parameters 

Cutting speed (m/min) 80, 90, 100, 110 and 120 

Roughing:     
Feed rate (mm/rev) 0.2 

Depth of cut (mm) 2.0 

Finishing:     

Cutting speed (m/min) 100, 110, 120 and 130 

Feed rate (mm/rev) 0.15 

Depth of cut (mm) 0.5 

Cutting 

fluid:     

Type Emulsion oil (Tri-(2-Hydroxyethyl)-Hexahydrotriazine) 

Concentration (%) 6 

Method of delivery Overhead cooling at an average flow rate of 2.7 L.min-1 

Table 3: Cutting conditions 
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Fig. 1: Experimental setup 

Fig. 2: Schematic of the experimental setup 
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from 5 to 15 in the step of 5, while the output 

layer consists of a single layer of 1 neuron cor-

responding to the predicted tool wear. The to-

pologies of the networks are shown in Figure 3. 

 

Training of the ANN model 

Tangential sigmoid and linear transfer func-

tions were used in the hidden and output layer. 

The resilient back-propagation training algo-

rithm was chosen to train the network because 

of its fast convergence time in function ap-

proximation (Demuth and Beale, 2000). Ran-

domised initial weights and biases were used 

for each neuron in all the layers and maximum 

number of iterations for training of the network 

was set at 30,000, learning rate was set at 0.55, 

while Mean Square Error (MSE) of 0.005 was 

used as minimum network performance.   Prior 

to the training process, the input/output dataset 

were normalised to values between ±1.0. The 

training input/output dataset consisted of ran-

domly selected 25 machining data from the 

roughing operations and 15 machining data 

from the finishing operations.  

 

Testing of the ANN model 

The accuracies of networks were tested with 9 

(nine) machining data randomly selected from 

both rough and finish turning operations. The 

testing data sets for the roughing operation 

were chosen at cutting speeds of 90, 100 and 

120 m/min for each of the three wear stages, 

while data sets for finishing operation were 

chosen at cutting speeds of 100, 110 and 120 

m/min. The network accuracy was determined 

by comparing the predicted and actual meas-

ured tool wear and the network percentage er-

ror was calculated as: 

Tool wear state 
VBmax range (mm) 

Roughing Finishing 

Light 0.00 - 0.35 0.00 – 0.20 

Medium 0.35 – 0.70 0.20 – 0.40 

Heavy > 0.70 > 0.40 

Table 4: Classifications of tool wear states  

100
1

1

N

N j

jj

t

ta

N
PE (1) 

Where aj is the network predicted tool wear at 

node j, tj is the actual measured tool wear at 

node j, PE is the network percentage error and 

N is the number of trials. Based on the network 

percentage error, the network performance was 

classified as follows: 

 PE < 0.0% Over-prediction (ANN predicted 

values above actual tool wear values) 

PE = 0.0% Correct prediction (ANN pre-

dicted values equal to actual tool wear val-

ues) 

PE > 0.0% Under-prediction (ANN pre-

dicted values below actual tool wear values) 
 

RESULTS AND DISCUSSION 

Electron scanned micrographs of typical wear 

land observed during the finish turning opera-

tions for light, medium and heavy wear stages 

are shown in Figure 4. It can be observed that 

flank wear is the predominant wear mode in 

high-speed turning of Ti-6Al-4V alloy. The 

cutting force signals acquired during the finish 

turning operation with cutting speed (100 m/

min), feed rate (0.15 mm/rev) and depth of cut 

(0.5 mm) for a medium worn cutting tool are 

shown in Figure 5. For this cutting condition, 

the tangential force (Fz) was about two fold 

higher than the feed force (Fx).  

The actual and the ANN predicted tool wear 

using the network with structure #3 (with the 

cutting speeds, feed rate, depth of cut, cutting 

forces and spindle motor power as input data-

set) for finishing operations are presented in 

Table 5. The predicted values represent average 
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Cutting speed

Feed rate

Depth of cut

Spindle motor power

Tool wear

Input

Layer

Hidden

Layer
Output

Layer

Cutting speed

Feed rate

Depth of cut

Tangential force

Tool wear

Input

Layer

Hidden

Layer
Output

Layer

Feed force

a) Structure #1 

b) Structure #2 

Cutting speed

Feed rate

Depth of cut

Tangential force

Tool wear

Input

Layer

Hidden

Layer
Output

Layer

Feed force

Spindle motor power

c) Structure #3 

Fig. 3: Topologies of the ANN for prediction of tool wear  
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of 30 different trials where different random 

initial weights and biases were used in each 

trial. For finish turning operations (Table 5) 

percentage error of the model ranged between -

14.08 and 12.62%. The range of error obtained 

is within the general acceptable values for ma-

chining operations (Bernhard, 2002). 

The variations in the neural network percentage 

error for rough turning of Ti-6Al-4V alloy us-

ing uncoated K10 carbide inserts are shown in 

Figure 6. Figure 6(a) shows variation in the 

network percentage error when the network 

was trained with only the machining speed and 

force signals. The variations when the network 

was trained with only machining speed and 

power consumption is represented in Figure 6

(b), while Figure 6(c) shows the variation when 

the network was trained with both machining 

speed, force and power consumption signals. It 

can be observed from Figures 6(a-c) that there 

were variation in the network performance at 

different levels of tool wear. The network per-

centage errors are consistently lower when the 

wear level is heavy, followed by light wear and 

finally medium wear. The network's ability to 

predict tool wear more accurately for heavy and 

light wear levels can be explained in part by the 

wear pattern of the cutting tool. The wear pat-

tern of cutting tool is divided into three regions: 

initial breakdown; uniform wear rate; and rapid 

breakdown. The initial breakdown and rapid 

breakdown regions are known to exhibit much 

higher wear rate (Bernhard, 2002). Therefore, 

the machining parameters employed in this 

Fig. 4: Worn carbide inserts used in finish turning of Ti-6Al-4V alloy showing: (a) light 

 wear; (b) medium wear; (c) heavy wear 

(a) (b) (c) 

Fig. 5:  Cutting force signals acquired during the finish turning of Ti-6Al-4V alloy (cutting  

 speed = 100 m/min, feed rate = 0.15 mm/rev and depth of cut = 0.5 mm  
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Table 5. Actual and ANN predicted tool wear for finishing operations. 

Wear stage 
Cutting speed  

(m/min) 

Tool wear (mm) 

Actual ANN Predicted Percentage error (%) 

Light 100 0.1040 0.1054 1.35 

  110 0.1790 0.1538 -14.08 

  120 0.1220 0.1374 12.62 

Medium 100 0.2620 0.2850 8.78 

  110 0.2590 0.2831 9.31 

  120 0.3160 0.3006 -4.87 

Heavy 100 0.4230 0.4558 7.75 

  110 0.4110 0.4616 12.31 

  120 0.5510 0.5131 -6.88 

(a) 
(b) 

(c) 

Fig. 6:  Rough turning of Ti-6Al-4V: (a) cutting speed and force signals only; (b) cutting 

 speed and spindle power only; (c) cutting speed, force and spindle power  
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study tend to be more correlated to tool wear at 

the regions of rapid initial wear and accelerate 

final wear in comparison to the steady interme-

diate wear region. The network's ability to pre-

dict tool wear for heavy wear level correspond-

ing to the rapid breakdown region appears to be 

systematically high due to accelerated wear rate 

in this region, followed by the prediction for 

light wear level corresponding to initial break-

down region with equally high rate of tool 

wear. 

Figure 6(a) shows that the network predicts tool 

wear relatively well with percentage error rang-

ing between 23.4 and -13.8% for rough turning 

when trained with only the speed and force 

signals. From Figure 6(b), it can be seen that 

the performance of the network degraded with 

percentage error ranging between 12.8 and –

31.4% when the network is trained with only 

speed and power consumption signals, while 

Figure 6(c) shows a general improvement in the 

network performance with percentage error 

ranging between 10.0 and -25.2% when the 

network is trained with both speed, force and 

power consumption signals. 

 

CONCLUSIONS 

From analysis of results obtained in high-speed 

machining trials of Ti-6Al-4V alloy with un-

coated carbide inserts at the cutting conditions 

investigated, the following conclusions can be 

drawn: 

1. The predictive performance of a multilayer 

perceptron improves significantly for heav-

ily worn tools than light and medium worn 

tools. 

2. The use of cutting force signal as tool wear 

indicator has proved to be more efficient 

than power consumption signal. 

3. Better tool wear prediction can be obtained 

by combining the cutting parameters, cut-

ting force and power consumption signals. 
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