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Abstract 
In this paper we construct the suborbital graphs of the symmetric group Sn acting 
on unordered r‐element subsets of X = {1, 2, 3, ..., n}, X(r) (�, � ∈ ℕ) and analyse 
their properties. It is shown that the suborbital graphs are undirected, connected if 

� <
�

�
�  , and have girth three if  n ≥ 3r. 
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1.0 Introduction 
In 1967, Sims [11] introduced the idea of suborbital graphs of a permutation group 
G acting on a set X; these are graphs (possibly directed) with vertex‐set X, on which 
G induces automorphisms. 
 
Many interesting graphs like the Petersen graph, the Coxeter graph and the Biggs‐ 
Smith graph can be realized as suborbital graphs of some group acting on a given 
set (Neumann 1977; Kamuti 1992; Bon and Cohen 1989). Suborbital graphs of 
subgroups of the modular group PSL(2, ℤ) acting on the rational projective line 

ℚ� = ℚ ∪ {∞} have been studied by several authors (Besenk et al., 2010; Keskin 
and Demirtürk 2009; Guler et al., 2008; Keskin 2004; Akbas and Baskan 1996). In 
this paper we construct and investigate properties of the symmetric group Sn 
acting on the set X(r) of r‐element subsets from the set X = {1, 2, ..., n}. 
 
2.0 Definitions and Preliminary Results 
A (simple) graph is an ordered pair H = (V, E), where V is a finite, non‐empty set of 
objects called vertices, and E is a (possibly empty) set of 2‐subsets of V called 
edges. The set V is called the vertex set of H, and E is called the edge set of H. If e = 
{u, v}∈E(H), we say that vertices u and v are adjacent in H, and that e joins or 
connects u and v. The edge e is said to be incident with u (and v), and vice versa. 
The following important facts arise from carefully considering what the definition 
of a graph says. 

• E is a set. Therefore two vertices are either adjacent, or not adjacent, 
period. 
There can be at most one edge joining any two vertices. 

• The elements of E are subsets of V of size 2. Therefore no vertex can be 
adjacent to itself. Edges join pairs of distinct vertices. 

 
There is no requirement that the edge set be non‐empty. Therefore the minimum 
number of edges a graph can have is zero. If the graph has n vertices, then the 
maximum number of edges it can have equals the number of two element subsets 

of V , which is �
�
2

�.  A graph with n vertices has �
�
2

� edges if every pair of distinct 

vertices is an edge. Such a graph is called a complete graph on n vertices. We 
represent graphs by pictures in the plane by associating a point with each vertex 
and joining points corresponding to adjacent vertices by a (possibly curved) line 
segment. How the vertices and edges are drawn is unimportant, the same graph 
can have many pictures. What is important is what the vertices are (i.e., V ), and 
which pairs of vertices are adjacent (i.e., E). 
 
Two graphs are equal if they have the same vertex set and the same edge set. But 
there are other ways in which two graphs could be regarded the same. For 
example, one could regard two graphs as being the same if it is possible to rename 
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the vertices of one and obtain the other. If this happens we call the graphs 
isomorphic. (Formally, two graphs J and H are isomorphic if there is a 1‐1 
correspondence f : V (J) → V (H) such that  
{x, y}∈ E(J) ⇔ {f(x), f(y)}∈ E(H).) 
 
The relation ℜ on the set of all graphs defined by J ℜ H if and only if J and H are 
isomorphic (i.e., the vertices of J can be renamed so as to obtain H) is an 
equivalence relation, and the equivalence classes are collections of graphs which 
are the same in this sense. 
 
The degree of a vertex x of a simple graph H is the number of edges that contain x. 
We use deg(x) to denote the degree of the vertex x. If H is a graph with n vertices, 
then for any vertex x, 0 ≤ deg(x) ≤ n ‐ 1. For any graph H, the sum of the degrees of 

the vertices equals twice the number of edges (i.e., ∑ deg(�) = 2|�|�∈� ). Notice 
that this says the sum of the vertex degrees is an even number. The minimum 
degree of H denoted by δ(H), is the smallest number of edges incident with a point 
of H while the maximum degree of H, denoted by Δ(H), is the largest such number. 
If δ(H) = Δ(H) = r, G is called regular of degree r. 
 
A walk in a simple graph H is a sequence v0v1...vk of vertices such that consecutive 
vertices in the sequence are adjacent (i.e., {vi−1, vi}∈ E for i = 1, 2, ..., k). The integer 
k is called the length of the walk. Notice that k equals the number of vertices in the 
walk minus one. Thinking of the picture of a graph, it is the number of edges that 
would be traversed if you started at v0 and travelled to v1 along {v0, v1}, then to v2 
along {v1, v2} and so on until vn is reached. Observe that a walk is any sequence of 
consecutive adjacent vertices. It may or may not end where it starts, and may 
contain the same vertex many times. Also notice that the sequence consisting of a 
single vertex is a walk (of length zero). 
 
A path in a simple graph H is a walk in H that contains no repeated vertices. Notice 
that every path is a walk, but the converse is false. Also, since every path is a walk, 
it has a length (as before). 
 
A graph H is called connected if for all pairs of vertices u and v there is a walk that 
starts at u and ends at vertex v; otherwise H is disconnected. A walk in a graph H is 
called closed if its first and last vertex are the same. Since a closed walk is a walk, it 
has a length as above. Also, notice that a closed walk may or may not contain 
repeated vertices other than the first and last (which are the same). A closed walk 
of length at least three in which all vertices are distinct except the first and last is 
called a cycle. The length of the shortest cycle (if any) in H is called the girth of H. 
Every cycle is a closed walk, but not every closed walk is a cycle. 
A tree is a connected graph that contains no cycles. 
A leaf of a tree is a vertex of degree one. 
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Let X be a nonempty set and G be a group. We say that G acts on the left of 
X if for each x ∈ X and g ∈ G there corresponds a unique element gx ∈ X such 
that, for all x ∈ X and g1, g2 ∈ G 

a) (g1g2)x = g1(g2)x 
b) 1.x = x, where 1 is the identity in G. 

The action of G from the right can be defined in a similar way. 
 
Let G act on X. Then X is partitioned into disjoint equivalence classes (with respect 
to an equivalence relation) called orbits or transitivity classes of the action. For 
each x ∈ X, the orbit containing x is denoted by OrbG(x). Thus, 
OrbG(x) = {gx|g ∈ G} 
The action of a group G on the set X is said to be transitive if for each pair of points 
x, y ∈ X, there exists g ∈ G such that gx = y; in other words, if the action has only 
one orbit. 
Suppose that G acts transitively on X. For each subset Y of X and each g ∈ G, let  
gY = {gy|y ∈ Y } ⊆ X. A subset Y of X is said to be a block for the action if, for each g 
∈ G, either gY = Y or gY ∩ Y =∅. In particular, ∅, X and all 1‐element subsets of X are 
obviously blocks. These are called the trivial blocks. If these are the only blocks, 
then we say that G acts primitively on X. Otherwise, G acts imprimitively. 
Suppose G acts on X, then G acts on X×X by g(x, y) = (gx, gy), g ∈ G, x, y ∈ X.  If  
O ⊆ X ×X is a G‐orbit, then for a fixed x ∈ X, Δ = {y ∈ X|(x, y) ∈ O} is a Gx‐orbit. 
Conversely, if Δ ⊆ X is a Gx‐orbit, then O = {(gx, gy)|g ∈ G, y ∈ Δ} is a G‐orbit on X × 
X. We say Δ corresponds to O. The G‐orbits on X × X are called suborbitals. 
Let Δ be an orbit of Gx on X. Define Δ* = {gx|g ∈ G, x ∈ gΔ}, then Δ* is also an orbit 
of Gx and is called the Gx ‐orbit paired with Δ. If Δ* = Δ, then Δ is called a self‐paired 
orbit of Gx. 
Let Oi ⊆ X × X, (i = 0, 1, 2, ..., r − 1) be a suborbital. Then we form a graph Γi, by 
taking X as the points of Γi and including a directed line from x to y (x, y ∈ X) if and 
only if (x, y) ∈ Oi. Thus each suborbital Oi determines a suborbital graph Γi.  
Now Oi

* = {(x, y)|(y, x) ∈ Oi} is also a G‐orbit. Let Γi
* be the suborbital graph 

corresponding to the suborbital Oi
* and let the suborbit Δi  (i = 0, 1, ..., r − 1) 

correspond to the suborbital Oi. Then Γi  is undirected if Δi  is self‐paired and Γi is 
directed if Δi is not self‐paired. 
 
Theorem 2.1 (Nyaga, 2011) 
If n ≥ 2r, the rank of Sn acting on X(r) is r + 1. 
 
Theorem 2.2 (Nyaga, 2011) 
The suborbits Δ0, Δ1, Δ2, ..., Δr−1, Δr of Sn acting on X(r) are self paired. 
                                                
Remark 2.3 
The r + 1 suborbits of Sn given in Theorem 2.2 are defined by: 
OrbG{1,2,3,...,r}{1, 2, 3, ..., r} = Δ0, the trivial orbit. 



 Sub-orbital graphs                                                                                           JAGST Vol. 15(1) 2013 

118                                                         Jomo Kenyatta University of Agriculture and Technology 

OrbG{1,2,3,...,r}{1, r + 1, r + 2, ..., 2r − 1} = Δ1, the orbit containing exactly one of 1, 2, 
3,..., r. 
OrbG{1,2,3,...,r}{1, 2, r + 1, ..., 2r − 2} = Δ2, the orbit containing exactly two of 1, 2, 3,..., 
r. 
OrbG{1,2,3,...,r}{1, 2, 3, r + 1, ..., 2r − 3} = Δ3, the orbit containing exactly three of 1, 2, 
3,..., r. 
OrbG{1,2,3,...,r}{1, 2, ..., r − 1, r + 1} = Δr−1, the orbit containing exactly r − 1 of 1, 2, 3,..., 
r. 
OrbG{1,2,3,...,r}{r + 1, r + 2, ..., 2r} = Δr, the orbit containing none of 1, 2, 3,..., r. 
 
Theorem 2.4 (Nyaga, 2011) 

If 2 ≤ � <
�

�
�, then the action of Sn on X(r) is primitive. 

 
Theorem 2.5 (Sims, 1967) 
Let G be transitive on X. Then G is primitive if and only if each suborbital graph 
Γi, i = 1, 2, ..., r is connected. 
 
3.0 Main Results 
The construction of the suborbital graphs corresponding to the suborbits of Sn is as 
follows: 
The suborbital O1 corresponding to the suborbit Δ1 is 
O1 = {[g{1, 2, 3, ..., r}, g{1, r + 1, r + 2, ..., 2r − 1}]}, where g ∈ Sn. Therefore, in Γ1, the 
suborbital graph corresponding to O1, there is an edge from vertex A to B if and 
only if 
 |A ∩ B| = 1. 
The suborbital O2 corresponding to the suborbit Δ2 is 
O2 = {[g{1, 2, 3, ..., r}, g{1, 2, r + 1, ..., 2r − 2}]}, g ∈ Sn. Therefore, in Γ2, the 
suborbital graph corresponding to O2, there is an edge from vertex A to B if and 
only if |A ∩ B| = 2. 
The suborbital O3 corresponding to the suborbit Δ3 is 
O3 = {[g{1, 2, 3, ..., r}, g{1, 2, 3, r + 1, ..., 2r − 3}]}, g ∈ Sn. Therefore, in Γ3, the 
suborbital graph corresponding to O3, there is an edge from vertex A to B if and 
only if |A ∩ B| = 3. 
Continuing with this argument, the suborbital Or−1 corresponding to the suborbit 
Δr−1 is 
Or−1 = {[g{1, 2, 3, ..., r}, g{1, 2, 3, ..., r − 1, r + 1}]}, g ∈ Sn. Therefore, in Γr−1, the 
suborbital graph corresponding to Or−1, there is an edge from vertex A to B if and 
only if 
 |A ∩ B| = r − 1. 
The suborbital Or corresponding to the suborbit Δr is 
Or = {[g{1, 2, 3, ..., r}, g{r + 1, r + 2, ..., 2r}]}, g ∈ Sn. Therefore, in Γr, the suborbital 
graph corresponding to Or, there is an edge from vertex A to B if and only if |A ∩ B| 
= 0 
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Theorem 3.1 

a) Γ1, Γ2, Γ3, ..., Γr are undirected. 

b) If n ≥ 3r, Γ1, Γ2, Γ3, ..., Γr have girth 3. 

c) Γ1, Γ2, Γ3, ..., Γr are connected if � > 2� 
Proof 

a) Using Theorem 2.2, Δi, i = 1, 2, 3, ..., r are self‐paired, implying that Γ1, Γ2, 
Γ3, ..., Γr are undirected. 

b) Let X = {1, 2, 3, ..., n} and suppose that n ≥ 3r. Then there exists three 
unordered r‐element subsets of X, say A, B, and C such that, |A ∩ B| = |A 
∩ C| = |B ∩ C| = 1; 
 |A ∩ B| = |A ∩ C| = |B ∩ C| = 2; ... |A∩B| = |A∩ C| = |B ∩ C| = r −1; 
 |A∩B| = |A∩ C| = |B ∩ C| = 0. Thus in each case A, B, and C are adjacent 
vertices in Γ1, Γ2, Γ3, ..., Γr respectively. Therefore if n ≥ 3r, Γ1, Γ2, Γ3, ..., Γr 
have girth 3. 

c) By Theorem 2.4, G acts primitively on X(r) if  2 ≤ � <
�

�
�. So, by Theorem 

2.5, Γ1, Γ2, Γ3, ..., Γr are connected if � > 2�.  
 

Remark 3.2 
Theorem 3.1 (b) means that if n < 3r, then some Γi, i = 1, 2, ..., r may be of girth 3 
but not all of them. This theorem gives a sufficient condition for all of Γi to have 
girth 3. 
 
Example 3.3 
Let G = S5 acting on X(2). We shall base our discussions on Δ1, and Δ2. The suborbital 
O1 corresponding to the suborbit Δ1 is O1 = {[g{1, 2}, g{1, 3}]|g ∈ G}. The suborbital 
graph Γ1 corresponding to the suborbital O1 has 2‐element subsets A and B from X 
adjacent if and only if |A ∩ B| = 1. Secondly, the suborbital O2 corresponding to the 
suborbit Δ2 is 
O2 = {[g{1, 2}, g{3, 4}]|g ∈ G}. The suborbital graph Γ2 corresponding to O2 has 2‐
element subsets A and B from X adjacent if and only if |A ∩ B| = 0. We construct Γ1 
as in Figure 1. 
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Figure 1: Γ1, the suborbital graph of S5 acting on X(2) corresponding to Δ1 

From Figure 1, Γ1 is connected, regular of degree 6 and has girth 3. 
We also construct Γ2 as in Figure 2 

 
Figure 2: Γ2, the suborbital graph of S5 acting on X(2) corresponding to Δ2 

From Figure 2, Γ2 is regular of degree 3. It is connected and has girth 5. 
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