Nigerian J. Anim. Sci. 2012, 14:71-80

Effects of feeding *Fusarium Verticillioides* culture material containing known levels of fumonisin B₁on growth performance and egg quality traits of laying hens.

¹Ogunlade, J.T., ²Ewuola, E.O., ³Gbore, F.A., ⁴Olawumi, S.O. and ⁵Egbunike, G.N.

^{1,4}Department of Animal Production and Health Sciences, Faculty of Agricultural Sciences, University of Ado-Ekiti, Nigeria. ^{2,5}Department of Animal Science, University of Ibadan, Nigeria. ³Department of Environmental Biology and Fisheries, Adekunle Ajasin University, Akungba Akoko, Nigeria.

Target Audience: Livestock farmers, Feed millers, Animal Nutritionists and Poultry products consumers

Abstract

The implications of fumonisin B_{l} , a secondary metabolite of Fusarium verticillioides(common contaminant of maize) on growth, pubertal development and egg quality traits of laying hens were studied in a 16-week experiment. Sixty Isa-Brown Pointof-lay(POL) birds with an average weight of 710.02g were divided into four groups with fifteen birds per group such that the weight per group range from 710.50-720.42g. Four nutritionally balanced test diets were prepared to contain 0.2, 5.2, 10.2 and 15.2 ppm of fumonisin B_1 constituting diets 1(control), 2, 3 and 4 respectively by substituting ground corn cultured with F.verticillioides for ground autoclaved, noncultured corn in graded proportions. Each group was assigned to one experimental diet in a completely randomised design .Feed intake and body weight gain were determined daily. The age at which 50% of the POL birds on each experimental diets began to lay was considered their pubertal age. Ten eggs were randomly selected from each treatment every week for a period of five weeks for the assessment of egg quality traits. Results showed that the daily feed intake, daily weight gain and feed conversion ratio of the laying hens were not adversely affected (P > 0.05) by the dietary fumonisin B_1 concentrations. Statistically similar values (P>0.05) were obtained for the pubertal age of the experimental birds across the treatments. The dietary mycotoxin also failed to exert any significant influence (P>0.05) on the external and internal egg quality traits investigated except the volk colour of laving hens on diet 4 which was statistically superior (P < 0.05) to those on diets 1,2 and 3, respectively. Although, egg cholesterol values tended to decrease while those of egg triglycerides apparently increased with increase in the levels of dietary fumonisin B_{l} , the parameters were not significantly influenced (P>0.05) by the dietary fumonisin concentrations. These results imply that laying birds can tolerate fumonisin B_1 up to 15.2ppm in their diets without compromising the growth performance of the birds, nutritional and reproductive potentials of their eggs.

Keywords: Egg quality, Fumonisin B₁., Isa Brown point-of-lay, Pubertal development,

Description of Problem

Fumonisin is a secondary metabolite of the fungus Fusarium verticillioides (=Fusarium moniliforme). It is a toxic, fungal contaminant of maize intended for man and animal consumption and has been implicated by association as the cause of various human and animal diseases(11). Pure fumonisin $B_1(FB_1)$ has been shown induce equine to leukoencephalomalacia (9, 12), Porcine pulmonary oedema(7) and to be hepatotoxic and carcinogenic in rats(6).It has also been shown to increase the risk of oesophageal cancer in humans consuming infected maize(22).

Ingestion of fumonisin contaminated diets by animals has been reported to detrimental effects on have their reproductive performance, feed intake and body weight particularly in species like horses, rabbits and swine which have been reported to be more susceptible(4,14,24). Available data on Poultry species like turkey poults (10), day-old broilers(26) and day-old Peking ducklings(2) revealed that fumonisin contaminated diets in the range of 0-190ppm fed to these poultry species had no significant effect on their feed intake, body weight gain and feed conversion.

However, mycotoxins in the diet have been implicated to have detrimental effects on egg production and quality. Aflatoxin has been reported to inhibit egg production at the point of commitment of an ovum to maturation and reduce the quantity of yolk deposited in ova already committed (8). Among other disturbances in poultry, Ochratoxin and T-2 toxins in diets have been reported to depress egg production, with thin, rubbery shells(8). Blood spots were also reported to increase significantly in the eggs of birds ingesting T-2 toxin.

With these reported effects of mycotoxins on egg qualities, coupled with current paucity of information on the effects of fumonisin on the performance of laying hens which largely depend on maize as a feed source, this study was therefore explore designed to the growth performance and egg quality traits of laying birds fed with graded levels of fumonisin in their diets with a view to elucidate more on its implication on laving hens.

Materials and Methods

Materials collection and preparation

The feeding trial was carried out in the Poultry Unit of the Teaching and Research Farm, University of Ibadan, Nigeria. Clean maize grains intended for inoculation with the fungus Fusarium verticillioides were purchased from reputable feed mills and Bodija market in Ibadan. The grains were autoclaved and inoculated with the fungus according to the method of Nelson and Ross (13) in the mycotoxin laboratory at International Institute of Tropical Agriculture(2TA), Ibadan, Nigeria. The inoculated maize grains were air- dried for two weeks in a screen house, milled and quantified for fumonisin using the Neorgen's veratox fumonisin quantitative test kits (Neorgen Corp; USA)- a Competitive Direct Enzyme Immunosorbent Linked 2TA, Ibadan. Assay(CD-ELISA) at Nigeria.

Ogunlade et al.

The ground cultured maize was substituted for autoclaved, non cultured maize in graded proportions to formulate four experimental diets containing 0.2, 5.2, 10.2 and 15.2ppm FB_1 , as determined by the Neorgen's veratox fumonisin

quantitative test kits (Neorgen Corp; USA), constituting diets 1(Control), 2, 3 and 4 respectively (Table 1). All diets were isocaloric, isonitrogenous and supplemented with feed grade methionine and lysine (Table 1)

Ingredients	Dietary Treatments, g/100g				
	1	2	3	4	
	0.2ppm	5.2ppm	10.2ppm	15.2ppm	
Non-Inoculated Maize	45.00	43.26	41.52	39.78	
Inoculated Maize ^a	-	1.74	3.48	5.22	
Soy Bean Meal	14.00	14.00	14.00	14.00	
Wheat Offal	16.00	16.00	16.00	16.00	
Fish Meal	2.00	2.00	2.00	2.00	
Palm Kernel Cake	13.20	13.20	13.20	13.20	
Di calcium Phosphate	2.50	2.50	2.50	2.50	
Oyster Shell	6.50	6.50	6.50	6.50	
Salt (Nacl)	0.25	0.25	0.25	0.25	
Premix ^b	0.25	0.25	0.25	0.25	
Methionine	0.10	0.10	0.10	0.10	
Lysine	0.20	0.20	0.20	0.20	
Total	100.00	100.00	100.00	100.00	

Table 1: Percentage co	mposition of the	experimental diets (g/100g)

^a Inoculated with *Fusarium verticillioides*

^b To provide per kg of diet: Vit. A (8,000i.u); Vit. D3 (2,000i.u); Vit. E(5 i.u); Vit. K(3.2mg);Choline chloride(3,000mg); Folic acid(0.5mg); Mn(56mg); I(1mg); Fe(20mg); Cu(10mg); Zn(50mg); Co(1.25mg);Riboflavin(4.2mg); Vit. B12(0.01mg); Pantothenic acid(5mg); Nicotinic acid(20mg); ppm: Equivalent of mg fumonisin/ kg diet.

Layer bird management and experimental design

A total of sixty Isa Brown Point-of-lay (POL) birds with an average weight of 710.02g were randomly divided into four groups comprising of 15 birds per group. The average group weights of the experimental birds ranged between 710.50g-720.42g at the beginning of the experiment. The experimental design was the completely randomised type with 15 POL birds per diet in 3 replications of 5 per POL birds replicate. Routine and vaccinations medications were administered. The birds were fed their respective diets adlibitum for 16 weeks during which records on feed intake, weight gain and egg production were taken.

Pubertal age of the layer birds

When the female fowl is sexually mature, it usually starts to lay eggs (17). The age at which 50% of the POL birds on each experimental diet began to lay eggs was taken as their age at puberty.

Egg collection and analysis

Ten eggs were randomly selected every week from each treatment. The external and internal qualities of these eggs were determined as described by (15). Egg cholesterol and triglycerides were determined using Randox Kits at the Animal Physiology Laboratory, University of Ibadan.

Statistical analysis

The various data collected on the different parameters were subjected to one-way analysis of variance(ANOVA) of Statistical Analysis System(20). Where significant differences were found, the means were compared using the Duncan procedure of the same soft ware.

Results and Discussion Laying birds performance characteristics

The chemical composition of the experimental diets and the performance data of the laying birds on the diets are shown in Tables 2 and 3 respectively. The average feed intake of birds on diets 1 and 3(85.21g/day and 85.50g/day)respectively) were highest but were not significantly (p>0.05) different from those on diets 2(81.82g/day)and 4(81.33g/day). The body weight gain and feed conversion ratio of the laying birds were positively correlated and followed the same trend(Table 3) with the average feed intake in spite of the increasing levels of dietary fumonisin and their expected hazard potentials in the body of the birds. Birds fed 15.2ppm(diet 4) dietary fumonisin showed no significant differences(p>0.05) in final live weight, body weight gain, average egg weight and feed conversion ratio from the control birds fed 0.2ppm(diet 1) dietary fumonisin.

Composition	Dietary Treatments g/100g				
	1	2	3	4	
Dry Matter	88.32	88.34	88.31	88.33	
Crude Protein	18.29	18.31	18.22	18.05	
Crude Fibre	5.68	5.59	5.72	5.70	
Ether Extract	6.85	6.90	6.69	6.83	
Ash	11.60	11.54	11.65	11.59	
Nitrogen Free Extract	57.58	57.66	57.72	57.83	

Table 2: Proximate Composition (g/100g) of the experimental diets.

Ogunlade et al.

Parameters	Dietary Treatments				
	1	2	3	4	SEM
Initial Live Weight (g)	720.42	712.34	714.59	710.50	-
Final Live Weight (g)	1515.84	1495.42	1508.34	1498.84	111.8
					0
Ave. Feed Intake (g/day)	85.21	81.82	85.50	81.33	0.38
Ave. Body Weight Gain	9.44	9.33	9.45	9.38	2.23
(g/day)					
Ave. Egg Weight (g/bird)	60.25	60.45	55.30	59.94	2.18
Feed Conversion Ratio	1.41	1.35	1.55	1.36	0.58

Table 3: Growth Performance of laying birds fed graded levels of dietary fumonisin

Values shown on the table are means. SEM: Standard Error of Means

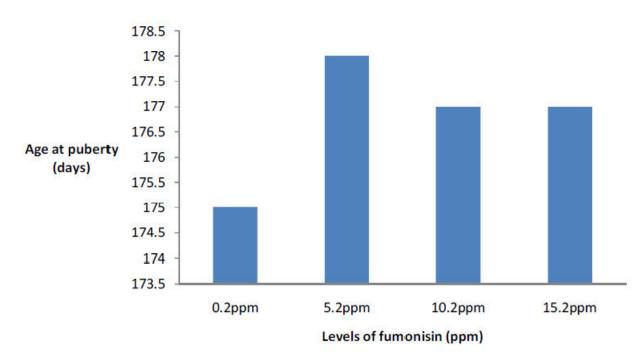


Figure 1: Age at Puberty of laying hens fed graded levels of dietary fumonisin.

The pubertal ages of the experimental birds are shown in Fig.1. Birds on control diet(0.2ppm) attained puberty(175^{th} day) 3 days ahead of those on diet 2(178^{th} day) and 2 days ahead of those on diets 3 and

4, respectively. Laying birds on diets 3 and 4 also became sexually matured $(177^{th}day)$ a day, ahead those on diet 2. The pubertal ages also correspond to the

5th, 6th, 5th and 5th week in lay for birds on diets 1, 2, 3 and 4 respectively.

Egg quality traits of experimental laying hens

The various inclusion levels of fumonisin in the diets of laving hens had no significant effect (P>0.05) on the external egg quality traits investigated (Table 4). The yolk weight, yolk width, shell weight and egg yolk cholesterol apparently decline with increase in dietary fumonisin levels but were not adversely (P>0.05)affected. Yolk colour of birds fed 15.2 ppm dietary fumonisin was statistically superior (P < 0.05) to those fed 0.2, 5.2, and 10.2 ppm dietary fumonisin. Egg volk cholesterol and Triglyceride were inversely related. Birds on diet 4(15.2 ppm) had a higher but statistically similar egg yolk triglyceride value with those on diets 1, 2 and 3.

It is evident from the results presented in Table 3 that the average feed intake, average body weight gain, average egg weight and feed conversion ratio of the laying birds were not significantly influenced by the dietary fumonisin levels. These results are consistent with those of (23) that there were no significant differences in feed intake and body weight gain of male rats fed fumonisin B_1 for 2 years when compared to rats on control diets. The apparent lack

of statistical significance in the feed intake of the birds could be occasioned by the low levels of dietary fumonisin and the failure of the mycotoxin to induce "feed refusal effect" in the laying hens. This opinion is contrary to that reported by (5) that male fischer rats fed fumonisin treated diets for 21 days had a depressed feed intake as a result of feed refusal effect. Similar evidences of depressed feed consumption was reported by (3, 18 and 21) in their separate studies. Laying birds are known to have natural instinct to eat to satisfy their nutrient requirements for body growth and egg laying. In this study, the pattern of body weight gain, egg weight and feed conversion ratio of the birds were directly related to their feed consumption and unaffected by dietary fumonisin levels. The results suggest that the absorption and utilisation of dietary nutrients by the birds fed diets 2, 3 and 4 were not inhibited by the dietary fumonisin levels when compared with those on control diet. These results are similar to those of (26) for broiler chicks, (2) for ducklings and (19) for minks fed different levels of dietary fumonisin when compared with those on control diet. Conversely, these results are at variance with those of (3) that dietary fumonisin probably impedes nutrient absorption and utilisation.

Parameters	Dietary Treatments				
	1	2	3	4	SEM
Egg Weight (g)	60.25	60.45	55.30	59.94	2.18
Egg Length (cm)	5.79	5.76	5.56	5.74	0.08
Egg Width (cm)	4.36	4.38	4.27	4.38	0.07
Yolk Weight (g)	15.98	15.74	15.20	15.36	0.45
Yolk Width (cm)	4.08	4.04	3.97	3.98	0.06
Yolk Height (cm)	1.73	1.79	1.71	1.81	0.06
Yolk Index (%)	42.40	44.31	43.07	45.48	2.79
Yolk Colour	1.00^{b}	1.00^{b}	1.00^{b}	1.25 ^a	0.07
Albumen Height (cm)	0.85	0.85	0.84	0.81	0.05
Haugh Unit	92.01	92.01	92.78	89.93	0.93
Shell Weight (g)	5.20	5.16	4.62	5.07	0.17
Shell Thickness (mm)	0.24	0.24	0.21	0.22	0.10
Egg Yolk Cholesterol (mg/c	11)150.20	138.84	130.20	125.00	19.49
Egg Triglycerides(mg/dl)	442.11	365.79	453.95	492.11	54.42

Table 4: Egg quality characteristics of laying birds fed graded levels of dietary fumonisin.

a, b : Values differently superscripted are significantly(p<0.05) different. SEM: Standard Error of Means

lack of statistical The apparent significance in the pubertal age(s) of the laving hens used in this study suggests that the dietary mycotoxin did not have detrimental effect on the physiology of egg production and by extension, the attainment of sexual maturity(puberty) in the laying birds. However, this result is at variance with the report of (8) and (1)that aflatoxin and T-2 toxin inhibit egg production at the point of commitment of ovum to maturation and have detrimental effect on date of puberty in bob white quail hens.

The fact that egg shell thickness and other external egg quality traits did not decrease significantly as the dietary fumonisin levels increased revealed that Calcium and Phosphorus in the diet were adequate and their absorption and utilisation were not impeded. These results further suggest that the quality of the eggs did not deteriorate. The report of (16) that a significant decrease in egg shell thickness is an indication of deterioration in egg quality further corroborates the results obtained in this study. The statistical superiority of the egg volk colour of birds fed 15.2 ppm (diet 4) to others may be an indication of the nutritional relevance of fumonisin in the diets of laying hens. It is suspected that the biosynthesis of complex sphingolipids was not inhibited by the fumonisin dietarv levels in the experimental birds, thereby resulting in the production of egg yolk cholesterol and triglyceride levels statistically similar to those of the control birds. Weibking et al., (26) reported that the cholesterol

values of broilers fed fumonisin treated diets were statistically similar to the controls.

Conclusion and Application

Since the growth and egg quality parameters of the birds investigated in this study were not adversely affected by the various inclusion levels of dietary fumonisin, it can be concluded that

- 1. Laying birds can tolerate dietary fumonisin up to 15.2 ppm.
- 2. The nutritional and reproductive potentials of eggs laid by such birds may be unimpaired.

Acknowledgements

The authors wish to express their gratitude to Dr. R. Bandyopadhyay and Mr. O. Ayinde of the Mycotoxin Laboratory, International Institute of Tropical Agriculture (2TA), Ibadan, Nigeria for their technical assistance.

References

Beasley, V. (1999). Effect of 1 fungal mycotoxins on tissues reproductive performance in bobwhite quail .In: Beasley, V. toxicology. (Ed.). Veterinary International Veterinary Information Service, Itacha, N.Y.1999: A2628;0899.

2 Bermudez, A.J., Ledoux, D.R. and Rottinghaus, G.E. (1995). Effects of *Fusarium moniliforme* culture material containing known levels of fumonisin B₁ in ducklings. *Avian Dis.*, 39(4):879-886.

3 Ewuola, E.O, Gbore, F.A., Ogunlade, J.T., Bandyopadhyay, R., Niezen J. and Egbunike,G.N.(2008).Physiologic al Response of Rabbit bucks to dietary fumonisin: Performance, Haematology and Serum Biochemistry. *Mycopathologia* 165: 99-104.

- 4 Gbore, F.A., Ewuola, E.O., Ogunlade, J.T., Idahor, K.O., Salako, A.O. and Egbunike, G.N. (2007). Spermatogenesis, gonadal sperm reserves and fertility of rabbits fed micro doses of fumonisin. *Nig. J. Anim. Prod.* 34(2):316-322.
- Gelderblom, W.C.A., Cawood, M.E., Snyman, S.D. and Marasas, W.F.O.(1994). Fumonisin B₁ dosimetry in relation to cancer initiation in rat liver. *Carcinogenesis*, 15:209-214.
- 6 Gelderblom, W.C.A., Kriek. N.P.J., Marasas W.F.O and Thiel, P.G (1991). Toxicity and Carcinogenicity of the Fusarium moniliforme metabolite. fumonisin B_1 in rats Carcinogenesis, 12:1247-1251.
- 7 Harrison, L.R., Colvin, B.M., Greene, J.T., Newman L.E. and Cole, J.R. Jr (1990). Pulmonary oedema and hydrothorax in swine produced by fumonisin B_1 , a toxic metabolite of *Fusarium moniliforme. J. Vet. Diagn. Invest.* 2:217-221.
- 8 Jewers, K. (2004). Mycotoxins and their effects on poultry production. Engormix. Com. http://www.engormix.com/mycot

oxins and their effect_ e_ articles 96 MYC.

- 9 Kellerman, T.S., Marasas, W.F.O, Thiel, P.G, Gelderblom, W.C.A, Cawood, M. and Coetzer J.A.W (1990). Leukoencephalomalacia in two horses induced by oral of fumonisin dosing B_{1} Onderstepoort. J. Vet. Res. 57:269-275.
- 10 Ledoux, D.R., Bermudez, A.J. and Rottinghaus, G.E.(1996). Effects of feeding *Fusarium moniliforme* culture material, containing known levels of fumonisin B_1 in the young turkey poult. *Poult. Sci.* 75(12):1472-1478.
- 11 Marasas W. (1986). F. 0 moniliforme Fusarium а mycotoxicological miasma. Mycotoxins and Phycotoxins, edited by P.S Steyn and R. (Amsterdam:Elsevier) Vleggaar Pp .19-20.
- Marasas, W.F.O, Kellerman, T.S, 12 Gelderblom, W.C.A, Coetzer. J.A.W. Thiel. P.G and Van Derlugt, J.J. (1988a). Leukoencephalomalacia in a horse induced by Fumonisin B₁ isolated from Fusarium moniliforme. Journal *Onderstepoort* of Veterinary Research. 55: 197-203.
- 13 Nelson, P.E. and Ross, P.F. (1992). Fumonisin production by Fusarium species on solid substrates. *Abstr.104,106th A.O.A.C Ann. Meet.*, Cincinnati, OH.,Aug.31-Sept. 2.
- 14 Ogunlade, J.T., Ewuola, E.O., Gbore, F.A., Bandyopadhyay, R.,

Niezen, J. and G.N. Egbunike (2006). Testicular and Epididymal Sperm Reserves of Rabbits Fed Fumonisin contaminated diets. *W. Applied Sci. J.* 1(1):35-38.

- 15 Olawumi, S.O. and Ogunlade J.T. (2008). Phenotypic correlations between some external and internal egg quality traits in the exotic Isa Brown layer Breeders. *Asian Journal of Poultry Science*. 2(1):30-35.
- 16 Olorede, B.R. and Longe, O.G. (2000). Effect of replacing Palm Kernel Cake with Shea butter Cake on egg quality characteristics, Haematology and Serum chemistry of laying hens. *Nigerian Journal of Animal Production* 27(1):19-23.
- 17 Oluyemi, J.A. and Roberts, F.A. (2000). Poultry production in warm wet climates. Spectrum Books Ltd.(publ.) Pp.10
- Powell, D.C., Bursian, S.J., Bush, C.R., Render, J.A., Rottinghaus, G.E. and Aulerich, R.J. (1996). Effects of dietary exposure to fumonisins from *F. moniliforme* culture material(M1325) on the reproductive performance of female mink. *Arch. Environ. Contam. Toxicol.*, 31:286-292. Pp. 42- 48.
- 19 Restum. J.C., Burson, S.J., Millerick, M., Merill, H.A.Jr., Wang E., Rottinghaus, G.E. and Aulerich, R.J. 1995). Chronic fumonisins toxicity of from F.moniliforme culture material (M-1325) to mink.

Ogunlade et al.

Arch.Environ.Contam.Toxicol, 29:545-550.

- 20 SAS Institute Inc. (1999). SAS/STAT User's Guide. Version 8 for windows. SAS Institute Inc, SAS Campus Drive, Cary, North Carolina, U.S.A.
- Sydenham, E.W., Shephard, G.S., 21 Gelderblom, W.C.A., Thiel, P.G. and Marasas, W.F.O. (1993a). Fumonisins: their implication for human and animal health. In: Scudamore K ed. Proceedings of the UK workshop on occurrence and significance of mycotoxins. United Kingdom, Slough, Ministry of Agriculture, Fisheries Food, Central Science and Laboratory.
- 22 Thiel, P.G., Marasas, W.F.O., Sydenham, E.W., Shephard, G.S. and Gelderbom, W.C.A. (1997). The implications of naturally occurring levels of fumonisin in corn for human and animal health. *Myctopathologia*, 117:3-9.
- 23 US NTP (1999). NTP technical report on the toxicology and carcinogenesis studies of fumonisin B₁(CAS No.116355-

83-0) in F344/N rats and B6C₃F₁ mice (feed studies). Research Triangle Park, North Carolina, US Department of Health and Human Services National Toxicology Program(NTP TR 496; NIH publication No. 99-3955).

- 24 US. F.D.A. (2000). Background paper in support of fumonisin levels in Animal feed. US food and Drug Administration Centre for Veterinary Medicine, June 6, 2000.
- 25 Vudathala, D.K., Prelusky, D.B., Ayroud, M., Trenholm, H.L. and Miller, J.D. (1994).
 Pharmacokinetic fate and pathological effects of ¹⁴ Cfumonisin B₁ in laying hens. *Nat.Toxins.*, 2:81-88.
- Weibking, T.S., Leudox, D.R., Bermudez, A.J., Turk, J.R., Rottinghaus, G.E., Wang, E. and Merill A.H. Jr.(1993). Effects of feeding *Fusarium moniliforme* culture material, containing known levels of fumonisin B₁ on the young broiler chick. *Poultry. Sci.* 72(3):456-466.