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Abstract. The stable population theory is classically applicable to populations in which there 

is a maximum age after which individuals die. Demetrius (1972) extended this theory to 

infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, 

Demetrius had to assume that the survival probability per time step tends to 0 with age. We 

generalise here the conditions of application of the stable population theory to infinite Leslie 

matrix models and apply these results to two examples, including or not senescence. 

 

Keywords: stable population theory; Leslie matrix; Usher matrix; senescence; infinite matrix. 
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1. Introduction 

 The Leslie matrix is a classical model for population projection (Caswell, 2000), 

characterised by asymptotically exponential growth and by the convergence to a stationary 

age distribution, as a result of the spectral decomposition in the Perron-Frobenius theorem 

(e.g. Sykes, 1969; Seneta, 1981). The Leslie matrix model has been used in general under the 

assumption that all individuals die before a maximal age n. The projection matrix is then an 

n n×  matrix. A less restrictive assumption leading to the same representation is that all 

individuals stop reproducing at age n, older individuals playing no role in population growth. 

However, in natural populations, the evidence for senescence is often scanty and controversial 

(Gaillard et al., 1994). This has led Usher (1972) to define an age n at which demographic 

performances, i.e. both survival and fecundity, stabilise. Age class n is then made up of 

individuals aged n or more. The underlying population model can be represented either by an 

n n×  matrix with a survival term in the lower corner of the matrix or by an infinite matrix 

(cf. example 1 in section 5). 

 Although a model similar to an infinite Leslie matrix model is frequently used in the 

framework of the stable population theory based on the Lotka equation (see e.g. Mertz, 1971), 

the mathematics of such a model have only been considered by Demetrius (1972). Infinite 

nonnegative irreducible matrices do not necessarily have the same properties as finite 

nonnegative irreducible matrices (e.g. Vere-Jones, 1967, 1968). To show that the classical 

Leslie matrix results hold for an infinite matrix, Demetrius used an analogy of the classical 

Perron-Frobenius theorem for infinite matrices (Krein and Rutman, 1948) under restrictive 

assumptions on the matrix coefficients. In particular, Demetrius' results do not apply to the 

infinite matrix form of the Usher model. Obviously, this leaves some hope of getting more 

general results for infinite Leslie matrices. The purpose of this paper is to provide such 

results, based on spectral properties of linear operators less stringent than those used by 
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Demetrius. We also develop conditions under which various quantities of demographic 

interest are defined and provide illustrations of our results through two examples. The last 

example echoes a variety of studies that concentrated on evidence for a plateau in mortality or 

at least mortality deceleration with age (e.g. Pletcher & Curtsinger, 1998; Vaupel et al. 1998; 

Partridge & Mangel, 1999). However, to our knowledge, nobody ever considered how to 

produce population projections under such a mortality scheme. As convergence of the 

mortality (or equivalently, survival) probability to the plateau value is progressive, it is 

impossible to set up a model with a finite number of age classes, albeit using an ad hoc 

truncation. If an infinite matrix is used, the results by Demetrius (1972) do not apply since too 

restrictive. Example 2 covers this case and provides a clear rationale for finite dimensional 

truncation. The approach proposed makes it possible to easily implement in a reliable fashion 

any model with a mortality plateau reached asymptotically with age. We finally discuss the 

bearing of our results on the study of mortality deceleration and mortality plateaus (e.g. 

Pletcher and Curtsinger 1998; Vaupel et al. 1998). 

2. A broad generalisation of Demetrius’ (1972) results 

 Like Demetrius (1972), we denote as: 

  ai  the net fecundity of a female aged i, i.e. the (average) number of females 

aged 1 at the next time step with a mother aged i, where i is a positive integer; 

  bi  the probability of survival of a female from age i to age i + 1. 

The infinite Leslie matrix M is then equal to: 
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 We denote as Mn  the n n×  Leslie matrix obtained by truncating M after age n: 
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We also denote as ( )r Mn  the spectral radius of the matrix Mn , i.e. the maximum modulus of 

the eigenvalues. 

 As Demetrius (1972), we assume 0 ≤ < ∞ai  and 0 1< ≤bi  for every i. We also 

assume throughout that the greatest common divisor of the indices i of the positive ai  equals 

1, which we think is a biologically unrestrictive assumption.  

 Demetrius (1972) demonstrated that the matrix M behaves as a finite Leslie matrix 

under the following assumptions : 

  (i) ai > 0  for infinitely many i and the sequence ( )ai i
 is bounded from above 

(i.e. sup
i

ia < ∞ ), and 

and  (ii) lim
i

ib
→ ∞

= 0. 

 The latter condition appears as quite restrictive, and prevents to use these results when 

mortality stabilises to a positive plateau with increasing age. More general sufficient 

conditions (Appendix 1) are as follows. If: 
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  (i) ai > 0  for infinitely many i and the sequence ( )ai i
 is bounded from above 

(i.e. sup
i

ia < ∞ ), and 

and  (iv) there is n such that ( )lim sup
i

i nb r M
→ ∞

< , 

then the operator associated with the matrix M asymptotically behaves as a finite Leslie 

matrix (Theorem 1 in Appendix 1). 

The assumption (iv) is more general than (ii) and brings a marked improvement. Indeed, it 

makes the standard results of stable population theory valid in particular for the following 

infinite Leslie matrices :  

– the infinite counterpart of the Usher matrix (example 1 in Section 5); 

and – populations whose survival probabilities converge to a plateau under mild 

conditions (example 2 in section 5). 

It should also apply to most demographic schemes whether they include a mortality 

deceleration or not (Carey et al. 1992; Mueller & Rose, 1996; Pletcher and Curtsinger 1998; 

Vaupel et al. 1998; Rose et al. 2002; Steinsaltz 2005; Styer et al 2007). Actually, condition 

(iv) is obviously satisfied if for some n, the matrix Mn  has a leading eigenvalue (i.e. spectral 

radius) ( )r Mn  greater than 1. If on the contrary ( )sup
n

nr M ≤ 1, condition (iv) is met if bi  

remains less than ( )r Mn − ε  for some n and ε > 0  and for all but a finite number of i, a 

condition much more general than (ii). 
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3. Demographic quantities of interest 

Asymptotic exponential growth, stable age distribution, reproductive values 

 Under conditions (i) and (iv), Eq. (A1.1) in Appendix 1 tells us that the matrix M has 

asymptotic properties similar to those of finite Leslie matrices (Caswell, 2000). Indeed, when 

time θ  tends to infinity: 

     vxuMrxM ),()(
θθ

≈ ,    (1) 

where ≈  means asymptotic equivalence in )(1 kFl  norm for every 0>k  (cf. notation in 

Appendix 1). This signifies that for every 0>k  and ( )
,...2,1=

=
ii

xx  such that  

∞<∑
∞

=1i
i

k
xi , ∑

∞

=

−







1

),()(
i

i
i

k
vxuMrxMi

θθ
 converges to 0 when time θ tends to 

infinity. In Demetrius (1974)'s words, this means that under this norm, M is strongly ergodic. 

In other words, our results show that under our conditions, by restricting the vector space on 

which the matrix M acts – for some 0>k , to those vectors ( )
,...2,1=

=
ii

xx  such that  

∞<∑
∞

=1i
i

k
xi  –  M has asymptotic properties similar to those of finite Leslie matrices. The 

vector ( )v v j j
= , with an infinite number of components, gives the stable age distribution. 

Similarly, the vector ( )u u j j
=  gives the reproductive value of age classes j. These two 

infinite vectors are such that for every 0>k , ∞<∑
∞

=1i
i

k
vi  and ∞<

=
k

i

i i

u

...,2,1

sup  

(Appendix 1). 
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The speed of the convergence of θ

θ

)(Mr

xM
 to ( , )u x v  is then asymptotically described by the 

damping ratio ρ =
r M

r S

( )

( )
 (cf. notation in Appendix 1): the bigger this ratio, the quicker the 

convergence asymptotically. 

Relationship with stable population theory 

 Is there an equivalent of the characteristic equation in infinite Leslie matrices? We are 

not aware of any generalisation of the characteristic equation method for infinite matrices. 

This constitutes another evidence of the difference between the spectral theory of infinite 

matrices and that of finite matrices. We show in Appendix 2 that such an equation: 

     Φ( )λ λ= =−

=

∞

∑ l i i
i

i

a 1
1

,   (2) 

permits to determine the leading eigenvalue λ = r M( )  of an infinite Leslie matrix satisfying 

(i) and (iv), where l i i
i

i

b=
=

−

∏
1

1

, with l1 1= . Following Murray (1991), we call Eq. (2) the 

discrete time version of the Lotka equation. 

Even if Eq. (2) has a priori no bearing on eigenvalues of M other than the dominant one, it 

resembles the characteristic polynomial of finite matrices. Based on it, one obtains, as 

classically for finite Leslie matrices (e.g. Caswell, 2000, or Lebreton, 1996): 

u u ai
i

j j
j

j i

= − −

=

∞

∑λ λ1 l  and v vi i
i= − −

l λ ( )1
1, for every i ≥ 2 , where u and v are the 

vectors defined in Theorem 1 (cf. Appendix 1). 
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Generation time and net reproductive value 

We prove in Appendix 2 that, under our conditions (i) and (iv), we can differentiate the 

function Φ  in a neighbourhood of λ = r M( ) : 

′ = − < ∞− +

=

∞

∑Φ ( ) ( )λ λi ai i
i

i

l
1

1

. 

Denoting T i ai i
i

i

= −

=

∞

∑ l λ
1

, we get ′ = −Φ ( )λ
λ
T

. The quantity T can be written as 

T i
v

v
ai

i
i

=
=

∞

∑ λ 11

, with T < ∞ , as a result of A vi
i

i =

∞

∑ < ∞
1

 and (i), where A is any number 

such that A > 1 and ( )lim sup
i

i nAb r M
→ ∞

<  (cf. Appendix 2). As usual (e.g. Houllier and 

Lebreton, 1986), T is called the generation time and can be interpreted as the mean age of 

mothers at birth once the stable age distribution has been reached. 

The lifelong contribution of an individual, R ai i
i

0
1

=
=

∞

∑ l , or net reproductive value, is 

obviously finite under (i) and limsup
i

ib
→ ∞

< 1, since l i i
i

i

b=
=

−

∏
1

1

.  

Sensitivity of population parameters to variation in individual parameters 

Finally, under further conditions, unlikely to be limiting for infinite Leslie matrices, 

sensitivity analysis results identical to those in finite dimension (e.g. Caswell, 2000, Chapter 

9) are available (Gosselin, 1997, Submitted). For instance, using the terminology in 

Demetrius (1989), the sensitivity of the population-level dominant eigenvalue r M( )  

concomitant to the variation in the individual demographic parameter d mi j,  of the ( , )i j -

entry of matrix M is equal to 
),(d

)(d

, vu

vu

m
Mr ji

ji
= . Another example is when all fecundities (resp. 
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survivals) vary proportionally: the sensitivity of the dominant eigenvalue r M( )  to such 

changes is 
),(

1
1

vu

vau
j

jj∑
∞

=  (resp. 
),(

1
1

vu

vub
j

jjj∑
∞

=
+

). A final application is the situation when there 

is senescence – i.e. no reproduction above a maximum age bound – and survival rates are 

disturbed only above the senescence age: the abovementioned results show that the 

asymptotic growth rater M( )  remains constant under such perturbations, an infinite 

dimensional echo of evolutionary considerations on the non-selection of genes that would 

have an impact only on survival after senescence (e.g. Pletcher & Curtsinger, 1998; Partridge 

& Mangel, 1999). The question is then to determine whether such perturbation schemes are 

biologically and evolutionarily realistic (Pletcher & Curtsinger, 1998; Partridge & Mangel, 

1999). 

4. Convergence of the dominant value of finite truncations of the infinite Leslie matrix 

While suppressing a maximum age bound may have a strong effect on the model results (e.g. 

Lande, 1988), the numerical manipulation of infinite Leslie matrices, e.g. for calculating the 

asymptotic growth rate, will require to reintroduce some kind of maximum age bound at the 

computer implementation stage. Then, under general conditions which are met under the 

conditions of Theorem 1 in Appendix 1, ( )lim ( )
n

nr M r M
→ ∞

=  (cf. Seneta, 1981), i.e. the 

eigenvalue of the n n×  truncated matrix converges to the infinite matrix leading eigenvalue 

when n tends to infinity. Once a good approximation ( )r Mn  of λ = r M( )  has been obtained 

– as e.g. in Example 2 of section 5 –, the corresponding eigenvectors u and v can be easily 

calculated from the formulas in section 3. Further results can be found in Gosselin (1997, 

Appendix 7). 
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5. Some examples 

Example 1 

 The Usher model with stabilisation at age n of net fecundity (with value a > 0) and of 

survival (with value b > 0) has both a finite matrix form, i.e. 

′ =



























−

−

M

a a a a

b

b

b b

n

n

1 2 1

1

2

1

0 0 0

0

0 0

0 0

K

K

O M M

M O O

K

 , 

and an infinite matrix form, i.e. 
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 . 

We here consider this last representation. M obviously satisfies (i). The spectral radius of the 

truncated matrices M N  (for N n> ), λN Nr M= ( ) , increases with N and we denote 

′ =b
N

Nsupλ . We then have ′ >b b , as can be proved from the Lotka equation associated with 

M N : 

b b b a b b b b ai i N
i

i

n

n
i n

N
i

i n

N

1 2 1
1

1

1 2 1

1

1... ...−
−

=

−

−
− −

=

−

∑ ∑+ =λ λ  , 

which implies : 

  b b b b a
b b b a

b

b
n

i n
N

i

i n

N
n

n

i

N
i

i n

N

1 2 1

1
1 2 1

1

1...
...

−
− −

=

−
−

=

−

∑ ∑= ≤λ
λ

 .  (3) 



 12 

If ′ ≤b b , the term 
bi

N
i

i n

N

λ=

−

∑
1

 would obviously tend to infinity with N, and Eq. (3) would not 

be met for every N. Hence ′ >b b , and condition (iv) holds for some N. From Theorem 1 in 

Appendix 1 and section 3, we get, for any k > 0, that when time θ  tends to infinity: 

     vxuMrxM ),()(
θθ

≈ ,     

where ≈  means asymptotic equivalence in )(1 kFl  norm; the generation time, T, and the 

lifelong contribution of an individual, R0, are well defined (provided 1<b  for R0). Since these 

quantities are not simpler than above, we refer the reader to section 3 for the expressions of 

these quantities. 

Example 2 

Infinite matrix models are relevant in all cases where survival varies with age in a complex 

fashion, in particular when there is a senescent decrease in survival. Most empirical studies 

consider a simple function of age such as the inverse logit of a linear or quadratic function of 

age. The survival will then decrease to 0, and Demetrius (1972) result on infinite matrices is 

sufficient to handle this case. However, it may be more realistic to consider that survival 

decreases to a plateau (Pletcher and Curtsinger 1998; Vaupel, et al. 1998; Steinsaltz 2005). 

Let us consider for instance an example in which the annual survival probability, ib  varies 

between 0.6 and 1 according to the inverse logit of a quadratic function of age, denoted as i . 

Survival increases from prime age to mature females, and then decreases progressively to 

reach a senescent plateau (Figure 1). 

As survival reaches the senescent plateau value 0.6 only asymptotically, the population matrix 

model is necessarily infinite. Les us assume moreover that reproduction starts at age 2, with a 

net fecundity equal to 0.35 female aged one per female aged 2 or more. A version of the 

model truncated at age n either considers that all individuals die at age n (Leslie matrix) or 
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that survival stabilizes at its current value (Usher matrix). The Leslie 
5

M  and Usher 
5

U  

matrices for n=5 are given below: 
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090.0000
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00088.00

000087.0

35.035.035.035.00

5
M , 























=

90.090.0000

0089.000

00088.00

000087.0

35.035.035.035.00

5
U  

The corresponding dominant eigenvalues are 1.0073 and 1.1582, respectively. Since with the 

notation of section 2, we have ( ) 0073.16.0suplim
5

=<=
∞→

Mrb
i

i

, condition (iv) holds. Our 

results ensure that the dominant eigenvalues of the two types of matrices converge to that of 

the infinite matrix when the order of truncation increases. The result is straightforward for 

matrix nM , based on Section 4. The result also holds for matrix nU , based on a slightly 

different proof on the same lines (unpublished results). This convergence is illustrated in 

Figure 2. At order 43 the two eigenvalues are numerically indistinguishable up to 9 decimals, 

and equal to 1.163342945. 

 

6. Discussion 

 Our work was motivated by the possibility of a discontinuity between the asymptotic 

behaviour of finite, truncated matrix models – including for example a maximum age or 

assuming a constant survival rate above a given age bound–, and their infinite counterpart. 

Our results show that this is not the case. They indeed prove that the stable population theory 

still holds with an infinite number of age classes under specific conditions (points (i) and (iv) 

in section 2). These conditions are much more general than those proposed by Demetrius 

(1972) as they do not require that the age-specific survival probability tends to 0 with age. In 

particular, they are met by the infinite matrix version of the Usher matrix. Our approach also 
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provides a reliable way of assessing the effect of truncation of an infinite matrix model on the 

population growth rate. Our results show that the population quantities involved in the stable 

age theory are defined in a consistent fashion in the infinite matrix formulation (section 3) 

and are the limits of the same quantities obtained under finite truncation (section 4). Similar 

results may also be obtained for stage-classified population matrices (Caswell, 2000) with an 

infinite number of stages. However, due to the more complex shape of the matrices, specific 

checks and conditions have to be developed for each case. 

We could not completely match our results with those of Demetrius (1983; Theorems 5.0 and 

5.1). Under the conditions 01 =a , 2,0 ≥>≡ iaai , and ∑
∞

=

>=Φ
1

1)1(
i

ii al , Theorem 5.0 in 

Demetrius (1983) shows the existence of a unique equilibrium state. It can actually be shown 

that the conditions of Theorem 5.0 in Demetrius (1983) imply our conditions (i) and (iv) (cf. 

the proof of Theorem 5.0 in Demetrius 1983): this theorem must therefore be considered as a 

special case of our Theorem 1 in Appendix 1. The reverse holds when 01 =a , 

2,0 ≥>≡ iaai , and ∑
∞

=

==Φ
1

1)1(
i

ii al : then, Theorem 1 in Appendix 1 is a special case of 

Theorem 5.1, (1), in Demetrius (1983). However, the results of both theorems are then 

surprisingly different, since our results imply – as Feller (1968, p. 330-331) – a unique 

equilibrium state which is iterparous in the terms of Demetrius (1983, p.734), whereas 

Demetrius (1983, Theorem 5.1, (1)) gets two equilibria, one iterparous, one semelparous. 

Actually, what is most striking with the results of Demetrius (1983), is the different number 

of equilibrium states given by his two theorems when applied to a matrix 
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 and ∑
∞

=

==Φ
1

1)1(
i

ii al  – then his Theorem 5.1, (1) applies and 

yields two equilibria – whereas when considering the matrix 
'r

M
, with 1'<< rr , Theorem 

5.0 of Demetrius (1983) applies and yields only one equilibrium. 

The two examples presented in section 5 cover population models in presence of a 

mortality plateau, whether it is reached at a finite age (example 1) or only asymptotically with 

increasing age (example 2). Our results would therefore make possible a general, population-

level treatment of the continuum from negligible senescence (Finch, 1998; Finch & Austad, 

2001) to senescence, including the intermediate case of mortality deceleration and mortality 

plateaus: Example 2 in section 5 treats the case of mortality plateaus without a maximum age 

bound; it would similarly be possible to handle cases where fecundity decreases with age 

without a maximum reproductive age. We expect these results will encourage the use of 

realistic survival variation with age of the type considered here. 

 Our main result – Theorem 1 in Appendix 1 – may be generalised to multisite Leslie 

matrices (Lebreton, 1996) or to frailty models, incorporating a finite number of demographic 

profiles (e.g. Vaupel & Yashin, 1985; Vaupel & Carey, 1993), with an infinite number of age 

classes. Then, the same kind of results as in section 3 and appendices 1 and 2 apply if we 

consider, instead of conditions (i) and (iv), the following two conditions: 

  (i') the sequence ( )
ii

A  is bounded (i.e. ∞<
i

i

Asup ), and 
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  (iv') there is n such that ( )lim sup
i

i nB r M
→ ∞

< , 

where Ai  and Bi  are s s×  matrices corresponding respectively to the reproduction and 

dispersal of new-borns from individuals aged i and to the survival– and dispersal in the case 

of multisite models – of individuals aged i, where s is the finite number of sites or frailty 

groups. This could encourage the population-level evolutionary analysis of two of the 

hypotheses identified by Vaupel et al. (1998) for mortality deceleration: i.e. mortality 

correlation and heterogeneity in frailty, with various levels of heritability in frailty (e.g. 

Ducrocq et al. 2000). Generalisations to an infinite number of sites or frailty groups would 

require more specific approaches. Similarly, the incorporation of  dependences between 

individuals, the history of individuals or individual-environment interactions – other potential 

classes of explanations for mortality deceleration proposed by Vaupel et al. (1998) and 

Partridge & Mangel (1999) – would require the use of Markov chain models (Gosselin & 

Lebreton 2000; Gosselin, 2001; Lebreton et al. 2007) or more complicated stochastic models. 

The inclusion of an infinite number of age classes in these models would also require further 

developments. 

 

 

Appendix 1. Spectral decomposition of the infinite Leslie matrix model 

For the sake of simplicity, we use in this paper the same notation for a matrix and for 

the linear operator associated with it. A linear operator U on the Banach space E is compact if 

the image by U of every bounded subset of E is relatively compact, i.e. for every infinite 

bounded sequence ( )xn  of elements in E (i.e. there is M > 0 such that for every n, 
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x Mn E
< ), we get by U an image ( )U xn  from which we can extract a convergent 

subsequence, i.e. there are a sequence of integers ( )kn  and y in E such that 

lim
n

nk
→ ∞

= ∞  and lim
n

k
E

U x y
n→ ∞

− = 0 . 

A linear operator U is quasi-compact if there exists a positive integer n and a linear operator 

V on E such that U Vn −  is a compact operator and r V r UE E
n( ) ( )< , where rE (.)  denotes the 

spectral radius of a linear operator. The interest of these notions is that spectral properties of 

compact or quasi-compact operators make them (spectrally) closer to operators in finite 

dimensional Banach spaces than non-compact operators, whose spectrum can be continuous. 

 Demetrius (1972) showed that under assumptions (i) and (ii) in section 2, the matrix 

M corresponds to a bounded and compact operator on the Hilbert space 
2

l  made of the 

complex sequences ( )
ii

x  such that ∞<∑
i

i
x

2

. Demetrius (1974) also mainly relied on the 

notion of compactness to develop sufficient conditions for different kinds of ergodicity. Then, 

from Krein and Rutman (1948), the operator M behaves asymptotically as a classical finite 

Leslie matrix. We obtain more general sufficient conditions than Demetrius (1972) based on 

the notion of quasi-compactness (Sasser, 1964) rather than compactness, on other Banach 

spaces than 
2

l , namely, as in Vere-Jones (1968) and Gosselin (2001): 

( ) ( )












∞<==
∞

∞ )(
sup:;)(

, jF

x
xxFl

j

jFjjjj , 

And 

( ) ( )








∞<== ∑
j

j
Fjjjj yjFyyFl )(:;)(

,1
1 , 
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where F is a map on positive integers j such that F j( ) > 0 and lim ( )
j

F j
→ ∞

= ∞ . )(Fl∞  is the 

dual space of )(1 Fl . In brief, quasi-compactness corresponds to a weaker decrease in the 

terms in M with their row and column number than compactness, and nevertheless implies 

that M behaves in certain respects as a finite matrix. 

 
 Theorem 1. Let M be the matrix defined above. Further assume: 

  (i) ai > 0  for infinitely many i and the sequence ( )ai i
 is bounded from above 

(i.e. sup
i

ia < ∞ ), and 

  (iv) there is n such that ( )lim sup
i

i nb r M
→ ∞

< . 

Then, for every 0>k , the operator associated with the matrix M on the Banach space )(1 kFl  

is quasi-compact, where F i ik
k( ) = , and 

     M r M v u S= +( ) t ,    (A1.1) 

where 

 r M( ) , the spectral radius of the operator M on )(1 kFl , is real positive; 

 S is a bounded operator on )(1 kFl  with spectral radius r S( )  less than r M( ) ; and 

 u and v are positive vectors in )( kFl∞  and )(1 kFl  respectively, such that 

( , )u v u v u vi i
i

= = =∑t 1, S v = 0  and t S u = 0 , t u  (resp. t S ) denoting the transposed 

vector (resp. matrix) of u (resp. S). u and v are thus eigenvectors of the matrices t M  and M, 

respectively, associated with the eigenvalue r M( ) . 
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 Proof. The transposed matrix of M, denoted by t M , is: 

t

i i

M

a b

a b

a b

=























1 1

2 2

0 0

0 0

0 0 0

0

L L

L

M M O O O M

L

M M O O O

 . 

From (i) and (iv), the operator t M  on )( kFl∞  is bounded. From proposition 5.3 in Gosselin 

(2001), t M  is quasi-compact on )( kFl∞  provided r M( ) > 0 and 

limsup
( )

( )
i

i
k

k

k i
a

i

i

i
b r M

→ ∞
+

+











<
1

. The first condition, r M( ) > 0, results from the 

aperiodicity of M. As to the second condition, M Mn≥  implies r M r Mn( ) ( )≥  for every n 

(e.g. Seneta, 1981). Furthermore, sup
i

ia < ∞  implies lim
i

i
k

a

i→ ∞
= 0 for every 0>k  and the 

second condition reduces to limsup ( )
i

ib r M
→ ∞

< . Hence, under (i) and (iv), the operators t M  

on )( kFl∞  and M on )(1 kFl  are quasi-compact. Equation (A1.1) is then a direct application of 

lemma 6.1 in Gosselin (2001). 

� 

Appendix 2. Relationship with stable population theory 

Some properties, trivial in the finite-dimensional case, raise the need of sound proofs in the 

infinite-dimensional case. Such is the case for the existence of a solution for the discrete time 

version of the infinite Lotka equation. The conditions and techniques we used in Appendix 1 

actually make it possible to prove that λ = r M( )  fulfils the discrete time version of the Lotka 

equation: Φ( )λ λ= =−

=

∞

∑ l i i
i

i

a 1
1

. Although this point is treated by Feller (1968, p. 330-
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331), when Φ( )1 1≥ , the existence of λ  satisfying Φ( )λ = 1 is not obvious when Φ( )1 1< , 

since one can have Φ( )1 1<  and Φ( )1− = ∞ . This is why Feller (1966, p. 360-363) assumed 

that such a λ  exists to find results when Φ( )1 1< . 

Theorem 2. Let M be the matrix defined above. Further assume (i) and (iv). Then, 

denoting λ = r M( ) , we have: Φ( )λ λ= =−

=

∞

∑ l i i
i

i

a 1
1

 and Φ  is differentiable in a 

neighbourhood of λ  with ′ = − < ∞− +

=

∞

∑Φ ( ) ( )λ λi ai i
i

i

l
1

1

.  

Proof. We denote by )(
1

θN  the population size in the first age class at time θ when 

the initial composition of the population is such that N1 0 1( ) =  and Ni ( )0 0= , i ≥ 2 . We 

also denote λ = r M( ) , ′ =λ r S( )  and λn nr M= ( )  (cf. Appendix 1). We have already seen 

in the proof of Theorem 1 in Appendix 1 that λ λ≥ n . Now, λn  satisfies the characteristic 

equation of the matrix Mn : 

l i i n
i

i

n

a λ −

=

−

=∑ 1
1

1

, 

where l i i
i

i

b=
=

−

∏
1

1

, with l1 1= . This implies, together with λ λ≥ n , that for every n: 

l i i
i

i

n

a λ−

=

−

≤∑ 1
1

1

. 

Whence, 

l i i
i

i

a λ−

=

∞
≤∑ 1

1

. 

Besides, for every ε > 0 chosen such that ′ + <λ ε λ , Theorem 1 implies 

( )( )θθ
ελλθ ++= ')(

11
ovKN , 
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where ( )( )θελ +'o  is such that 
( )( )
( )

0
'

'
lim

,1
=

+

+

∞→ θ

θ

θ ελ

ελ
k

F
o

 for k as in Theorem 1. But, as in e.g. 

Lebreton (1996), the very nature of the Leslie matrix model implies the following renewal 

equation: 

    ∑
=

−=
θ

θθ
1

11
)()(

i
ii

iNaN l , for every θ.  (A2.1) 

These elements combine to prove that λ  satisfies: 

     Φ( )λ λ= =−

=

∞

∑ l i i
i

i

a 1
1

.   (A2.2) 

We now prove formally that we can differentiate the function Φ  in a neighbourhood 

of λ . Indeed, considering A > 1 such that ( )lim sup
i

i nAb r M
→ ∞

< , we can prove the same 

results as in Theorem 1, but on the Banach space )( 1
1

FAl , where A i AF i1 ( ) = . Indeed, 

following the same line as in the proof of Theorem 1, it is sufficient to show that 

)(suplim
1

Mrb
A

A

A

a

ii

i

i
i

i

<











+

+

∞→
, which follows directly from conditions (i) and (iv) and the 

condition met by A. Since the Leslie matrix model with a given initial population vector 

N ( )0  has its own asymptotic behaviour, we know by taking N ( )0  in the intersection of 

)(1 kFl  and )( 1
1

FAl  that the eigenvalue r M( )  and the eigenvectors v and u are the same 

whether Eq. (A1.1) is written in )(1 kFl  or )( 1
1

FAl . This proves A vi
i

i =

∞

∑ < ∞
1

 and, given the 

shape of the vector v, that for every R
A

>
λ

, Φ( )R < ∞ . From classical results about power 

series, Φ  can thus be differentiated near λ  as: 
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′ = − < ∞− +

=

∞

∑Φ ( ) ( )λ λi ai i
i

i

l
1

1

. 

� 
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Figure 1. Survival rate bi (y axis) as a function of age class i (x-axis) in the model of Example 

2. Survival increases from prime age to mature females, and then decreases progressively to 

reach a senescent plateau of 0.6, according to 201.02.05.01

1
4.06.0

iii
e

b
×−×++

×+= . 

0000 5555 10101010 15151515 20202020 25252525 30303030 35353535 40404040 45454545 5 05 05 05 0
0000

0.10.10.10.1

0.20.20.20.2

0.30.30.30.3

0.40.40.40.4

0.50.50.50.5

0.60.60.60.6

0.70.70.70.7

0.80.80.80.8

0.90.90.90.9

1111

Age i

S
ur

vi
va

lb
i

 



 27 

Figure 2. Dominant eigenvalue 
n

λ (y-axis) of truncated Leslie (dotted line) and Usher (plain 

line) matrices as a function of the order of trunctaion n (x-axis).  
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