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Abstract.

We review the statistical mechanics approach to the study of the emerging collective
behavior of systems of heterogeneous interacting agents. The general framework
is presented through examples is such contexts as ecosystem dynamics and traffic
modeling. We then focus on the analysis of the optimal properties of large random
resource-allocation problems and on Minority Games and related models of speculative
trading in financial markets, discussing a number of extensions including multi-asset
models, Majority Games and models with asymmetric information. Finally, we
summarize the main conclusions and outline the major open problems and limitations
of the approach.
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1. Introduction

Collective phenomena in economics, social sciences and ecology are very attractive

for statistical physicists, especially in view of the empirical abundance of non-trivial

fluctuation patterns and statistical regularities – think of returns in financial markets or
of allometric scaling in ecosystems – which pose intriguing theoretical challenges. On an

abstract level, the problems at stake are indeed not too different from, say, understanding

how spontaneous magnetization may arise in a magnetic system, since what one wants

in both cases is to understand how the effects of interactions at the microscopic scale

can build up to the macroscopic scale. Clearly, ecologies or financial markets are quite

more complex systems than magnets, being composed of units which themselves follow
complex (and far from understood) behavioral rules. Still, in many cases it may be

reasonable to assume that the collective behavior of a crowd of individuals presents

aspects of a purely statistical nature which might be appreciated already in highly

stylized models of such systems. This is ultimately the rationale for applying statistical

mechanics to such problems.

In general, statistical physics offers a set of concepts (e.g. order parameters and
scaling laws) and tools (both analytical and numerical) allowing for a characterization in

terms of phases and phase transitions which might be useful in shaping the way we think

about such complex systems. The considerable progress achieved in the last decades

in the statistical mechanics of non-equilibrium processes and of disordered systems,

thanks to which it is now possible to deal effectively with fluctuations and heterogeneity

(respectively) in systems with many interacting degrees of freedom, is particularly
important for socio-economic applications. In fact, while equilibrium and homogeneity

are important in physics, non-equilibrium and heterogeneity are the rule in economics, as

each individual is different both in his/her characteristics and in the way he/she interacts

with the environment. Deriving general macroscopic laws taking the specific details of

each and every individual’s behavior into account is a desperate task. However, as long

as one is interested in collective properties, a system with complicated heterogeneous

interactions can be reasonably well represented as one with random couplings [1]. In
the limit of infinite system size, some of the relevant macroscopic observables will be

subject to laws of large numbers, i.e. some quantities will be self-averaging, and, if

the microscopic dynamics follows sufficiently simple rules, one may hope to be able to

calculate them explicitly. It is with these properties – which we call typical – that the

statistical mechanics approach is concerned.

In what follows, we shall mostly concentrate on problems arising in economics
and finance. When modeling these systems one must be aware that their microscopic

behavior is very different from that governing particles or atoms in physics. Economic

agents typically respond to incentives and act in a selfish way. This is usually modeled

assuming that individuals strive to maximize their private utility functions, with no

regard for social welfare. Not only agents might have conflicting goals, as their utility

functions will in general be different, but their selfish behavior may lead to globally
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inefficient outcomes – e.g. to a coordination failure or to a lack of cooperation. Such

outcomes, called Nash equilibria in Game Theory, are in general different from socially

optimal states where the total utility is maximized. Hence, generally, in a system of

interacting agents there is no global energy function to be minimized.

Another important difference between the dynamics of a physical system, such as

a magnetic material, and that of an economic system is that, while in the former spins
at a particular time depend at most on the past states of the system, in the latter the

agents’ choices also depend on the expectations which they harbor about the future

states. This suggests that the collective dynamics may have a non-causal component

(indeed, backward induction in time plays a big role in the strategic reasoning of rational

agents [2]). In many cases, however, it is reasonable to assume that agents are boundedly

rational or ‘inductive’, i.e. that their behavior as well as their expectations adjust as a
result of experience. We shall concentrate our analysis to these cases of adaptive agents

following a learning dynamics. We shall see that the lack of a global Hamiltonian is

reflected in the fact that such a dynamics, in general, violates detailed balance.

Actually, in many cases it is realistic to assume that agents behave as if they were

interacting with a system as a whole – be it a market or the crowd – rather than

directly with a number of other individuals. In economics, this is termed a price-taking
assumption, because it amounts to stating that agents act as if prices do not depend

on what they actually decide to buy or sell (i.e. they take prices as given), and it is

usually justified by saying that the contribution of a single agent to the total demand is

negligible when the number of agents is large. The equilibria of systems where agents

behave as price-takers are called competitive equilibria. However, prices depend on the

aggregate demand and supply and hence on the choice of each agent, and the statistical

physics approach provides a very transparent description of how price-taking behavior
modifies the global properties of a system.

This review gives a survey of some recent quantitative developments on the

statistical mechanics of systems of many interacting adaptive agents. This is a subject

that has been shaped over the past few years around a few basic models (like the El

Farol problem) and a few analytical techniques, mostly borrowed from the mean-field

theory of spin glasses (like the replica method). The models, though highly stylized
to an economist’s eyes, possess a strong physical content and in many cases provide

important indications as to whether the phenomenology of real systems is specific of

each of their particular natures or rather it is generic of large systems of adaptive units

interacting competitively. Ultimately, it is not too unfair to say that separating system-

specific features from general features can be seen as the main contribution statistical

physics can provide to this field (besides techniques).
Our choice of arguments is clearly biased, and the reader may dispose of several

recent books that cover some of the important issues (especially finance-inspired) we

merely touch here [3–7]. Along with a core of problems related to the emergence of non-

trivial fluctuation phenomena, cooperation and efficiency (understanding which has been

the original goal of these studies), other issues such as the impact of different information
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structures or the interaction between different multi-agent systems have just started to

be analyzed and are likely to attract a great deal of attention in the near future. On

the physical side, precisely because of the differences in the microscopic modeling of

economics and physics, these systems pose a number of fascinating questions that open

several directions for further work, some of which will be outlined here.

The review is organized as follows. In Sec. 2 we present a general discussion
of resource allocation by complex adaptive systems and a few exemplary models from

different contexts like ecology and traffic dynamics, including the El Farol problem. Sec.

3 is devoted to the statistical analysis of optimal properties of large random economies,

that is, more precisely, to a survey of the macroscopic properties of classical economic

optimization problems. Most of our attention will be on the model of competitive

equilibrium for linear production economies and on Von Neumann’s model of economic
growth. In Sec. 4 we review the basic properties of the Minority Game, a minimal and

yet highly non-trivial model of speculative trading derived from the El Farol problem,

and discuss the role of the different parameters involved in its definition. Besides its

physical richness, the Minority Game provides a simple adaptable framework where

a number of important issues related to financial markets (such as the emergence

of ‘stylized facts’, the role of different types of traders and the effect of information
asymmetries) can be analyzed in great detail. Some of them are discussed in Sec.

5. Finally, some concluding remarks are expounded in Sec. 6. The main analytical

techniques employed for these studies will be discussed in some detail only for cases

where details are not available in the published literature: the replica technique for a

model of a competitive ecosystem in Sec. 2; the continuous-time limit approach for the

El Farol problem, also in Sec. 2; the dynamical generating functional for the canonical

multi-asset Minority Game in Section 5.

2. Statistical mechanics of resource allocation: some examples

We start our discussion by introducing a general class of problems where a population

of heterogeneous agents competes for the exploitation of a number of resources. Then

we will discuss a few examples – ranging from ecosystems to urban traffic – where this
generic framework can be formalized in specific models where the nature of resources

and the laws governing the behavior of agents are completely specified.

2.1. General considerations

In a nutshell, the models we consider address the decentralized allocation of scarce

resources by N heterogeneous selfish agents subject to public and/or private information.
The word ‘allocation’ is to be intended here in a broad sense that includes the exchange

of resources (for example, commodities) among agents, the production of resources by

means of other resources and the consumption of resources. Agents take decisions on the

basis of some type of information aiming at some pre-determined goals, like maximizing
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a certain utility function, and are to various degrees adaptive entities. We shall consider

cases in which they are perfect optimizers (or ‘deductive’) as well as cases in which

their decision-making is governed by a learning process (‘inductive’). Heterogeneity

may reside in a number of factors, like the agents’ initial endowments, their learning

abilities or in how differently they react to the receipt of certain information patterns.

In general, the allocation is a stochastic dynamical process, where the noise may
be present in both the information sources and the agent’s learning process. We shall

mostly be concerned with the steady-state properties and, more than on individual

performances, we shall focus on the resulting distribution of resource loads and in

particular on

a. how evenly are resources exploited on average (i.e. whether the allocation process
leads typically to over- or under-exploitation of some resources)

b. the fluctuations of resource loads (i.e. how large the deviations from the average

can be)

In such contexts as production economies, ecosystems or traffic the meaning and the

relevance of the above observables is immediately clear. In toy models of financial
markets, where, as we shall see, the role of resources is played by information bits,

the former quantity plays the role of a ‘predictability’ while the latter measures the

‘volatility’.

It is implicitly assumed that optimal allocations are those where resources are

exploited as evenly as possible and where fluctuations are minimal. In an economic

setting, this corresponds to allocations with minimal waste whereas in financial markets,
optimality implies information being correctly incorporated into prices with minimal

volatility.

In what follows, we shall denote by 〈· · ·〉 time averages performed in the steady

state:

〈X〉 = lim
T,Teq→∞

1

T − Teq

T∑

t=Teq

X(t) (1)

where Teq is an equilibration time. Moreover, we shall label agents by the index

i ∈ {1, . . . , N} and resources by the index µ ∈ {1, . . . , P}. In the statistical mechanics

approach, the relevant limit is ultimately that where N → ∞ and P scales linearly with
N , so that α = P/N remains finite as N diverges. To give a loose name, we shall call the

relative number of information patterns α, which will be our typical control parameter,

the ‘complexity’ of the system.

Denoting by Qµ(t) the load of resource µ at time t, which is determined by the

aggregate action of all agents (for instance, µ may be a certain commodity and Qµ(t)

the demand for it at time t), one easily understands that the relevant macroscopic
quantities are given respectively by

H =
1

P

∑

µ

〈Aµ〉2 , Aµ(t) = Qµ(t) − 〈Q〉, (2)
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(〈Q〉 = (1/P )
∑

µ 〈Qµ〉) which measures the deviation of the distribution of resource

loads from uniformity (if H '= 0 at least one resource is overexploited or underexploited

with respect to the average load) and by

σ2 =
1

P

∑

µ

[〈
(Aµ)2

〉
− 〈Aµ〉2

]
=

1

P

∑

µ

[〈
(Qµ)2

〉
− 〈Qµ〉2

]
(3)

which measures the magnitude of fluctuations. Efficient steady states have H = 0 and
σ2 “small” in a sense that will be specified from case to case. To fix ideas, whenever

fluctuations are smaller than those which would be obtained by zero-intelligence agents

who act randomly and independently at every time step one can infer that agents are

to some degree cooperating to reduce fluctuations.

An important question we shall typically ask is how efficient are the steady-state

resource loads distributions generated by a particular group of agents with a given
information stream. Besides this, we shall also look at the inverse problem, namely

under which conditions can a steady state satisfy criteria for efficiency. For example,

what type of information should one inject into the system in order to facilitate the

reach of a steady state in which H and σ2 are as small as possible? Indeed the structure

of the information agents have access to may drastically affect global efficiency in many

cases (e.g. traffic models).

2.2. A simple model of ecological resource competition

Ecosystems constitute a foremost example of the class of problems we outlined above [8].

The following can be seen as a minimal model of a competitive ecology with limited

resources. Such a model will be taken as a prototype to illustrate the statistical
mechanics (static) approach. The statistical mechanics approach to ecosystems has

been pioneered in [9] based on the generating functional approach. The central issue is

that of the May’s biodiversity paradox [10], which shows that, contrary to expectations,

increases in biodiversity in a random ecosystem enhance its instability. We shall indeed

find the same result.

2.2.1. Definition Let us consider a system with N species whose populations ni(t)

(i ∈ {1, . . . , N}) are governed by Lotka-Volterra type of equations:

ṅi(t)

ni(t)
= fi +

P∑

µ=1

Qµ(t)qµ
i (4)

Qµ denotes the abundance of resource µ ∈ {1, . . . , P} (be it a mineral, a particular

habitat, water. . . ) while qµ
i is a coefficient saying how much species i benefits from that

resource. The constant fi is the population’s decay rate ‘in absence of resources’. To
simplify things, we mimic the complex interdependence between species and resources

by assuming that the qµ
i ’s are independent, identically distributed quenched random

variables.
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The abundance of resource µ depends on the population of each species, i.e.

Qµ(t) = Qµ
0 −

N∑

j=1

qµ
j nj(t) (5)

where Qµ
0 is the amount of resource µ that would be present in the system if no species

fed on it. To fix ideas, let us suppose that

Qµ
0 = P + s

√
P xµ (6)

where s > 0 is a constant and xµ is a quenched Gaussian random variable with zero

average and 〈xµxν〉 = δµν . (The P -scaling is introduced in order to obtain a well-defined
limit N → ∞, or P → ∞) Loosely speaking, the parameter s is related to the variability

of resources: for small s, the resource level is roughly the same for all resources, while

increasing s the distribution of resource levels gets less and less uniform. Clearly, the

number of species that survive (i.e. such that ni(t) > 0) in the steady state will depend

on a number of factors, like the distribution of available resources and how similar the

species are among themselves, that is on the distribution of qµ
i ’s, which we take to have

first moments

〈〈qµ
i 〉〉 = q,

〈〈
(qµ

i − q)2
〉〉

= 1 (7)

(here and in what follows we denote averages over the quenched disorder by 〈〈· · ·〉〉) Along
with the questions concerning the resulting resource loads distribution, an interesting

problem to raise is the following: what is the typical maximum number of species that

can be supported asymptotically when the number of resources P is large (P → ∞) as

a function of s?

This issue can be tackled by noting that

H(t) =
1

2

∑

µ

Qµ(t)2 −
Ns∑

i=1

fini(t) (8)

is a Lyapunov function of the dynamics (i.e. Ḣ(t) ≤ 0; this can be easily shown by a

direct calculation). This implies that the steady state properties are described by the
minima of H over {ni ≥ 0}. Note that in the steady state

H +
∑

µ

(
〈Qµ〉 − 〈Q〉

)2
, 〈Q〉 =

1

P

∑

µ

〈Qµ〉 (9)

In the rest of this section we shall first work out in detail the minimization of H

and then discuss the resulting scenario.
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2.2.2. Statics (replica approach) The task of minimizing H can be carried out by

introducing a ‘partition sum’

Z = Trn e−βH , n = {ni} (10)

and applying the replica trick:

lim
N→∞

〈〈
min

n

H

N

〉〉
= − lim

β→∞
lim

N→∞

1

βN
〈〈log Z〉〉 = − lim

β→∞
lim
r→0

lim
N→∞

1

βrN
log 〈〈Zr〉〉 (11)

The calculations are relatively straightforward. Using the Hubbard-Stratonovich trick

we can write

Z = Trn

[
P∏

µ=1

e−
β

2N
(Qµ)2

]

e−
β
N

∑
i fini = Trn

〈
P∏

µ=1

ei
√

β
N

zµQµ

〉

z

e−
β
N

∑
i fini (12)

where 〈. . .〉z is an average over the Gaussian variables zµ with 〈zµ〉z = 0 and 〈zµzν〉z =

δµν . So we have

〈〈Zr〉〉 = Tr{na}

〈
P∏

µ=1

〈〈
ei
√

β
N (

∑
a zµ

a)Qµ
0

〉〉 N∏

i=1

〈〈
e−i

√
β
N (

∑
a zµ

a nia)qµ
i

〉〉〉

z

e−
β
N

∑
i fi

∑
a nia

where the index a runs over replicas (a = 1, . . . , r). The first disorder average is done

over Qµ
0 as given by (6) (thus more properly over xµ), while the second is done over the

qµ
i ’s. The former is easily performed. As for the latter we note that if β/N , 1 (which

is the case since we first take the limit N → ∞ and then the limit β → ∞), then
〈〈

e−i
√

β
N (

∑
a zµ

a nia)qµ
i

〉〉
+ e−i

√
β
N 〈〈qµ

i 〉〉(
∑

a zµ
a ni,a)− β

2N (
∑

a zµ
a ni,a)

2〈〈(qµ
i −q)2〉〉

We thus find

〈〈Zr〉〉 = Tr{na}

〈
P∏

µ=1

ei
√

βN
∑

a zµ
a(α− q

N

∑
i nia)e−

β
2

∑
a,b zµ

a zµ
b (αs2+ 1

N

∑
i nianib)

〉

z

e−
β
N

∑
i fi

∑
a nia

The leading term in the above exponential is the first one. However, it corresponds to
an undesirable super-extensive term in the free energy unless

1

N

∑

i

nia =
α

q
(13)

If so, the annoying term acts as a δ-distribution that ensures the above condition:

ei
√

βN
∑

a zµ
a(α− q

N

∑
i nia) ∝

∏

a

δ

(

Nα/q −
∑

i

nia

)

∝
∫

dw eβ
∑

a wa(Nα/q−
∑

i nia)

Furthermore one sees that the relevant macroscopic order parameter is the overlap

Gab =
1

N

∑

i

nianib (14)
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which can be introduced in the replicated partition sum with the identities

1 =

∫
δ

(

Gab −
1

N

∑

i

nianib

)

dGab ∝
∫

dRab dGab e−
Nαβ2

2 Rab(Gab− 1
N

∑
i nianib) (15)

for all a ≥ b. Noting that when β → ∞ only the minima of H contribute to the partition

sum, it is easy to understand that Gab measures how similar different minima a and b

are to each other. We may now factorize over resources to obtain
∏

µ

〈
e−

β
2

∑
a,b zµ

a zµ
b (αs2+Gab)

〉

z
= e−

P
2 tr log[I+β(αs2+G)]

so that, finally, factorizing over species, we arrive at

〈〈Zr〉〉 =

∫
e−βrNf(w,G,R)dwdGdR (16)

with

f(w, G, R) =
α

2rβ
tr log

[
I + β

(
αs2 + G

)]
+

αβ

2r

∑

a≥b

RabGab

−
α

rq

∑

a

wa −
1

rβ
log

〈
Trn e

αβ2

2

∑
a≥b Rabnanb−β

∑
a wana−βf

N

∑
a na

〉

f

(17)

where now 〈· · ·〉f stands for an average over the distribution of decay rates. By the

principle of steepest descent, when N → ∞, 〈〈Zr〉〉 is dominated by the saddle point
values of the order parameters G, R and w (which we shall denote by a $) so

lim
N→∞

min
n

H

N
= lim

β→∞
lim
r→0

f(w$, G$, R$) (18)

To proceed further, we assume that G$, R$ and w$ take the replica-symmetric (RS)

form‡

G$
ab = g + (G − g)δab R$

ab = 2r − (r + ρ/β)δab w$
a = w (19)

which leads, in the limit r → 0, to the free energy density

fRS(g, G, r, ρ, w) =
α

2β
log [1 + β(G − g)] +

α

2

αs2 + g

1 + β(G − g)
+

αr

2
β(G − g)

−
α

2
Gρ −

α

q
w −

1

β

〈
log

∫ ∞

0

dn e−βV (n|z,f)

〉

z,f

(20)

where the “potential” V is given by

V (n|z, f) =
1

2
αρn2 +

(
w + f/N −

√
αrz

)
n (21)

and the average 〈· · ·〉z,f is over both the unit Gaussian variable z and the decay rate

f , whose distribution we left unspecified up to now. It is clear that if this distribution

‡ This assumption gives the exact results in almost all the cases we shall discuss in this review because
the functions to be minimized have a unique minimum. Should this condition fail, one must resort to
more complicated Ansätze known as replica-symmetry breaking.
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has finite moments and does not get broader with N , we can drop the term f/N above.

Now let us take the remaining limit β → ∞, where minima are selected, assuming that

H has a unique minimum. In this case, clearly, G → g (there is only one minimum by

assumption!) and we may look for solutions with

lim
β→∞

β(G − g) = χ (22)

finite. Moreover, the last integral in (20) in the limit β → ∞ is dominated by the

minimum of V . Therefore we end up with

lim
β→∞

fRS(g, G, r, ρ, w) =
α

2

αs2 + G

1 + χ

+
αr

2
χ −

α

2
Gρ −

α

q
w +

1

2
αρ

〈
n2

〉
$
+ w 〈n〉$ −

√
αr 〈zn〉$ (23)

where 〈· · ·〉$ are averages over the normal variable z, with the n = n$(z) which minimizes
V :

n$(z) =

√
αr

αρ
(z − z0)θ(z − z0), z0 = w/

√
αr.

Notice that this operation corresponds to an ‘effective species’ problem whose solution

describes the collective behavior of the original N -species system.
The saddle point equations are

∂fRS

∂w
= 0 ⇒ 〈n〉$ =

α

q
∂fRS

∂ρ
= 0 ⇒

〈
n2

〉
$

= G

∂fRS

∂r
= 0 ⇒ 〈nz〉$ =

√
αrχ (24)

∂fRS

∂G
= 0 ⇒ ρ =

1

1 + χ
∂fRS

∂χ
= 0 ⇒ r =

αs2 + G

(1 + χ)2

It is easier to find a parametric solution in terms of z0: let us define

I1(z0) =

∫ ∞

z0

dz√
2π

e−z2/2(z − z0) =
e−z2

0/2

√
2π

−
z0

2
erfc

(
z0/

√
2
)

I2(z0) =

∫ ∞

z0

dz√
2π

e−z2/2(z − z0)
2 =

1

2

(
1 + z2

0

)
erfc

(
z0/

√
2
)
−

z0e−z2
0/2

√
2π

(25)

Iz(z0) =

∫ ∞

z0

dz√
2π

e−z2/2z(z − z0) =
1

2
erfc

(
z0/

√
2
)

After some manipulations we find

α =
1

2

[
I2 +

√
I2
2 + 4s2q2I2

1

]
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Figure 1. Behavior of αc as a function of sq.

G =
α2I2

q2I2
1

(26)

χ =
Iz

α − Iz

The assumed scaling of parameters with β, and hence the above equations, are valid

only for z0 < z$
0 where z$

0 is the solution of

Iz(z
$
0) [Iz(z

$
0) − I2(z

$
0)] = s2q2I2

1 (z$
0). (27)

Indeed χ → ∞ as z0 → z$
0 . This singularity marks a phase transition at a point

αc = Iz(z$
0) between a phase α > αc which is described by the equations above, and one

where χ = ∞. The critical point αc is a decreasing function of sq (from a value αc = 1/2

for sq = 0) which rapidly vanishes as sq increases (it’s already 10−5 for sq = 4). It is

reported in Fig. 1. At the transition, the susceptibility χ ∼ |α − αc|−1 diverges and

the free energy, which as we said is proportional to the variance of the resource loads

distribution, vanishes. This means that below αc all resources are exploited to the same
extent, while above αc the resource load distribution is not uniform. For the fraction of

surviving species (with ni > 0) we get

φ = 〈θ(z − z0)〉z =

∫ ∞

z0

dz√
2π

e−z2/2 =
1

2
erfc

(
z0/

√
2
)

= Iz(z0) (28)

so φ < α for α > αc and φ → α at αc. This means that below αc the number of

surviving species equals that of resources while for α > αc there is on average less than

one species per resource (or φ/α < 1). The behavior of H , G and of the fraction of

surviving species per resource φ/α is displayed in Fig. 2 as a function of α for fixed sq.

2.2.3. Stability Note that at fixed q the maximal number P/αc of species that can be

sustained in an ecosystem with P resources is an increasing function of s, so that by

increasing the variability of resources the ecosystem gets more stable. The threshold of
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Figure 2. Behavior of H , G and of the fraction of surviving species φ as a function
of α for sq = 1.

stability also increases if q increases. Having fixed the variance of qµ
i to 1, increasing q

means that species get more and more similar. This seems at first sight a contradictory

scenario. To sort out this issue, let us analyze the linear stability of the system. Let

ni(t) = ni(∞) +
√

ni(∞)ηi(t) where ni(∞) is the asymptotic value of the population of

species i and ηi(t) is a small perturbation. To leading order, the dynamics is given by

η̇i(t) = −
N∑

j=1

∆ijηj(t) (29)

with

∆ij =
1

P

P∑

µ=1

√
ni(∞) (qµ

i − q)
(
qµ
j − q

)√
nj(∞). (30)

The stability is related to the smallest eigenvalue λ− of ∆ij . This can be computed
explicitly [11] and it is given by:

λ− =
1

q

(√
α −

√
φ
)

(31)

This shows that the phase transition point, where αc = φ(αc), is the onset of dynamical
instability of the system. The presence of the factor 1/q in λ− causes an interplay of the

effects of increasing s and increasing q (since λ− → 0 as q → ∞), ultimately leading to

a maximal stability for intermediate values of q, as can be seen by the behavior of λ−

versus q, Fig. 3. It is also easy to show that λ− is an increasing function of α, for all

values of s and q. Hence the introduction of new species always decreases the stability

of the ecosystem, in agreement with May’s classical result [10].
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Figure 3. Behavior of λ
−

as a function of q for α = 0.2 and s = 1. The ecosystem is
marginally unstable when λ

−
= 0, whereas maximal stability occurs when λ

−
attains

a maximum.

2.3. The El Farol problem

The El Farol problem is the paradigm of resource allocation games with inductive agents.
It can be stated as follows [12]. N customers labeled i have to decide independently on

each night t whether to attend (ai(t) = 1) or not (ai(t) = 0) the El Farol bar, which has

a capacity of L < N seats. The place is enjoyable only if it’s not overcrowded, that is

only if the attendance A(t) =
∑

i ai(t) doesn’t exceed the number of seats. In order to

make their decisions, customers aim at predicting whether the bar will be crowded or

not on any given night based on the past attendances.
In his seminal work, Arthur has pointed out the frustration inherent in such a

situation. If everybody expects that the bar will be crowded, no one will go and the bar

will be empty. Conversely all agents may attend the bar at the same time, if they all

expect it to be empty. Hence he argued that this is a situation which forces expectations

of different agents to diverge. It is reasonable to think that, if agents start with different

expectation models and revise them according to the history of the attendance, their

expectations will never converge and agents’ heterogeneity will be preserved forever.
He then showed by computer experiments with N = 100 and L = 60 that inductive

agents endowed with fixed ‘predictors’ (namely look-up tables associating to each series

of past attendances a binary decision like go/don’t go) are able to self-organize so that

the attendance A(t) fluctuates around the comfort level L.

Note that the El Farol problem can be regarded as an embryonic market where

L units of an asset or a commodity must be allocated on any given day t. They are
offered to N agents who may decide to invest 1 to buy it (ai(t) = 1) or not (ai(t) = 0).

The attendance A(t) is then the demand of the asset (the number of available units,

or supply, is fixed at L). Each unit of asset delivers a return of 1 to its owner at the

end of the period. Imagine that the price at which the asset is sold is determined at

each period by a market clearing condition (demand = supply): A(t) = Lp(t). Then an
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Figure 4. De Bruijn graph of order 3 (from [15]).

agent who invests ai(t) in the asset, receives ai(t)/p(t) units of it. These will be worth

ai(t)/p(t) at the end of the period. If p(t) > 1, which occurs if A(t) > L (crowded
bar), it is not convenient to invest (attend). If p(t) < 1 it is instead worthwhile to invest

(attend).

2.3.1. Definition In what follows, we focus on a tractable version of the model that

differs from Arthur’s original work in the form of the predictors but preserves all the

main qualitative features of the model [13]. In order to formalize the problem it is

reasonable to assume that (i) customers have a finite memory, that is, their analyzing

power is limited and they must base their prediction on the attendances of a finite

number (say, m) of past nights, and that (ii) they are insensitive to the actual size of
the attendance (perhaps simply because they don’t have access to it) and rather only

know whether the bar was overcrowded or not on a given night. This means that the

information available to customers on night t is encoded in the string

µ(t) = {θ (L − A(t − 1)) , . . . , θ (L − A(t − m))} ∈ {0, 1}m (32)

where θ(·) is the Heaviside function: θ(L− A(t)) = 1 if the bar is enjoyable (A(t) < L)

while θ(L − A(t)) = 0 if the bar is overcrowded (A(t) > L). The time evolution of the

string µ(t) is governed in time by the map

µ(t + 1) = [2µ(t) + θ(L − A(t))] mod(2m) (33)

The above equation completely defines the structure of the information available to

agents in the case in which they base themselves on the past attendances. Graphically,

the evolution of history strings is constrained to occur on a de Bruijn graph [14] of order

m, Fig. 4.

We shall consider, for comparison, another possibility, namely that the information

supplied to customers is a random binary string of length m or equivalently a random
integer (‘information pattern’) drawn from {1, . . . , 2m ≡ P} with equal probability at

each time step. We shall refer to the latter as the case of exogenous random information,

as opposed to the former of endogenous information. The obvious difference between

the two choices is that while in the latter case the space of informations is sampled

uniformly by construction, in the former this is in principle not true. There is however a

deeper difference that has serious consequences on the analytical solubility of the model:
in the case of random information the dynamics is Markovian.
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Having defined the information source, let us specify the agents’ behavior. Even

in a simplified context, making the optimal decision for each given string requires

an unrealistic computational capacity that should be shared by all agents. Inductive

reasoning requires that customers stick instead to simple decision rules. In particular,

we assume that they have at their disposal a small number S of 2m-dimensional vectors

called ‘strategies’ (analog to Arthur’s predictors) that map information strings into
binary actions (go/don’t go):

aig : {0, 1}m 1 µ → aµ
ig ∈ {0, 1} (i = 1, . . . , N ; g = 1, . . . , S) (34)

In the table below one such possible strategy is shown for m = 3 (or P = 8).

past attendance string pattern µ decision aµ

000 1 1

001 2 0

010 3 0

011 4 1

100 5 1

101 6 0

110 7 1

111 8 0

Customers are heterogeneous as of course different agents have different strategies.
This is modeled by assuming that each component aµ

ig of every strategy aig is drawn

independently for all i, µ and g with probability distribution

P (a) = aδ(a − 1) + (1 − a) δ(a) (35)

where a is the average attendance frequency of agents. Strategies are assigned to agents

at time t = 0 and are kept fixed throughout the game. In order to decide which strategy

to adopt on every night, agents keep tracks of their performance via a score function

that is updated according to the following rule:

Uig(t + 1) − Uig(t) =
(
1 − 2aµ(t)

ig

)
[A(t) − L] (36)

with the rationale that strategies suggesting not to go (aµ(t)
ig = 0) are rewarded when

the attendance is higher than L and punished when it is lower than L (and vice versa
when aµ(t)

ig = 1). Then on each night every agent selects the strategy with the highest

cumulated score:

gi(t) = arg max
g

Uig(t) (37)

and acts accordingly: ai(t) = aµ(t)
igi(t)

. In short, the model’s rules can be summarized as

follows:

gi(t) = arg max
g

Uig(t)
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Figure 5. Average deviation of the attendance from the comfort level (top) and
fluctuations (bottom) versus aN/L for endogenous (solid lines) and exogenous (dashed
lines) information (from [13]).

A(t) =
∑

i

aµ(t)
igi(t)

(38)

Uig(t + 1) − Uig(t) =
(
1 − 2aµ(t)

ig

)
[A(t) − L]

(from top to bottom: strategy selection; aggregation; updating). It is understood that
scores are initialized at time t = 0 at certain values Uig(0).

2.3.2. Macroscopic properties After a transient, the dynamics defined by (38) will

reach a steady state whose global efficiency can be conveniently characterized by two
parameters: the average deviation of the attendance from the comfort level L, 〈A − L〉
and its fluctuations σ2 = 〈(A − L)2〉. The former measures the degree to which agents

coordinate to generate attendances around the comfort level. The latter measures the

waste of resources: the larger σ2 the bigger the deviations of the attendance from

the comfort level (in either direction). In a nutshell, it quantifies the quality of the

coordination. The behavior of the two quantities (properly normalized with N) at fixed
L = 60, a = 1/2 and m = 2, 3, 6 and varying N is displayed in Fig. 5 for endogenous

(solid lines) and random (dashed lines) information. In the former case, a general feature

that emerges is that the average attendance settles at the comfort level in a window of

values of a centered around L/N whose size shrinks as m increases. Out of this window,

sensible deviations may occur. In parallel, fluctuations are maximal at a = L/N for

m = 2 and the height of the maximum decreases with increasing m until it disappears.
This implies that the waste of resources is comparatively larger when m is smaller, so

that for instance the fraction of losers is larger for small m. Thus one can say that global

efficiency increases when m increases. The behavior in the case of random information
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Figure 6. Normalized entropy Sm/m versus aN/L for different memory lengths m
(from [13]).

is qualitatively similar to the previous case in the vicinity of aN/L = 1. Quantitative
deviations occur outside this region.

Based on this, one expects that with endogenous information the information space

is sampled uniformly around a + L/N . This is indeed so. To see it, one can measure

the frequency with which histories are sampled in the steady state, ρ(µ), and calculate

the entropy

S(m) = −
∑

µ

ρ(µ) log2 ρ(µ) (39)

such that S(m) = m when the information space is sampled uniformly (the ‘effective’
number of information patterns visited by the dynamics is 2S(m)). As shown in Fig.

6, S(m)/m + 1 only for when a + L/N . Outside this phase, the entropy decreases,

signaling that the information dynamics is biased.

These findings indicate that the degree to which inductive agents are able to

coordinate the exploitation of the limited resource in a way that is collectively efficient

depends on the size of the information space they base themselves on. While the average
level of activity always settles at the resource level, fluctuations get smaller and smaller

as the information space grows. When the average attendance frequency is close to

L/N , then, the particular nature of the information provided to agents doesn’t affect the

stationary macroscopic properties. The relevant requirement is that all agents possess

the same information, independently of whether it’s the true attendance history or a

random string.

2.3.3. Dynamics (continuous-time limit approach) The mathematical analysis of this

model can be carried out in the case of exogenous information by studying the

continuous-time limit of (38) along the lines of [16]. A few simplifications are necessary

to this aim. First note that the dynamics (38) is non-linear in a way that doesn’t allow
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to write it in the form of a gradient descent, that is physically the model is defined by

a set of N globally coupled Markov processes that violate detailed balance and it is not

clear that a Lyapunov function exists. It is however possible to regularize the dynamics

by smoothing the choice rule gi(t) = arg maxg Uig(t) to

Prob{gi(t) = g} = C(t) eΓUig(t) C(t) = normalization (40)

with Γ > 0 the ‘learning rate’ of agents (the original choice is recovered for Γ → ∞).

This modification is not without consequences and Γ indeed turns out to play a rather

non-trivial role in the macroscopic properties. With (40), it is possible to construct the

continuous-time limit of (38).

The crucial observation is that there is a ‘natural’ characteristic time scale for
the dynamics given by P (intuitively, agents have to check the efficiency of their

strategies against all information patterns before they can evaluate their performance

meaningfully). This implies that if one is interested in steady state properties, time

should be re-scaled as t → τ = t/P . Iterating (38) from time t = P τ to time

t = P (τ + dτ) and setting uig(τ) = Uig(P τ) one obtains

uig(τ + dτ) − uig(τ) =
1

P

P (τ+dτ)∑

t=P τ

(
1 − 2aµ(t)

ig

)
[A(t) − L] (41)

The arguments of the sum on the right-hand side can be separated into a deterministic

and a fluctuating term:
(
1 − 2aµ(t)

ig

)
[A(t) − L] = (1 − 2aig) 〈[A(t) − L]〉π + Xig(t) (42)

where we used the fact that information is exogenous and random and we denoted by

〈· · ·〉π an average over the distributions

πis(τ) =
1

Pdτ

P (τ+dτ)∑

t=P τ

C(t) eΓUig(t) (43)

We have therefore

uig(τ + dτ) − uig(τ) = (1 − 2aig) 〈[A(t) − L]〉π dτ + dWig(τ) (44)

where dWig(τ) = (1/P )
∑P (τ+dτ)

t=P τ Xig(t) is a noise term whose statistics (average and

correlations) can be derived by noting that Xig(t) are independent identically-distributed

zero-average random variables, so 〈dWig(τ)〉 = 0 and

〈dWig(τ)dWjg′(τ
′)〉 =

〈
1

P 2

P (τ+dτ)∑

t=P τ

P (τ ′+dτ)∑

t′=P τ ′

Xig(t)Xjg′(t
′)

〉

=
δ(τ − τ ′)

P
〈Xig(t)Xjg′(t)〉π dτ (45)

The remaining term, 〈Xig(t)Xjg′(t)〉π can be evaluated from the statistics of disorder

and of A(t). Finally, taking the limit dτ → 0 one arrives at the following Langevin
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process:

u̇ig(τ) = (1 − 2aig) 〈[A(t) − L]〉π + ηig(τ)

〈ηig(τ)〉 = 0 (46)

〈ηig(τ)ηjg′(τ
′)〉 +

〈(A − L)2〉π
P

(2aig − 1)(2ajg′ − 1)δ(τ − τ ′)

where in the last relation we have factorized the average over µ’s. Note also that the

averages on the right-hand side of Eq. (46) are taken at fixed πig(τ) = C(τ) exp[Γuig(τ)]

so they are themselves time-dependent. Therefore (46) is a set of complex, non-linear

stochastic differential equations in which the noise correlation is also time-dependent.
At the same time, the probability to choose a predictor g, πig(τ), is easily seen to satisfy,

in the re-scaled time Γτ = τ̃ the stochastic equation

π̇ig(τ̃ ) = πig(τ̃ )F [π] +
√

ΓG[π, η] (47)

where F and G are Γ-independent functions whose form is not relevant for our scopes.
This tells us that agents’ preferences are subject to stochastic fluctuations of strength

proportional to
√

Γ around their average. The larger Γ the longer it takes to average

fluctuations out. Moreover only in the limit Γ → 0, in which the dynamics if the πig’s

(and consequently of the uig’s) becomes deterministic, the system performs a gradient

descent with the Lyapunov function

H =
1

P

∑

µ

(〈A|µ〉 − L)2 , 〈A|µ〉 =
∑

i,g

figa
µ
ig (48)

where 〈· · · |µ〉 denotes a time-average in the steady state conditioned on the occurrence

of pattern µ:

〈X|µ〉 = lim
T,Teq→∞

1

Tµ

T∑

t=Teq

X(t)δµ(t),µ, Tµ =
T∑

t=Teq

δµ(t),µ (49)

and fig = 〈πig〉.
Thus the minima of H over fig (subject to

∑
g fig = 1 for all i) describe the steady

state. From a physical viewpoint, H measures the amount of exploitable information

produced in the system, or the ‘predictability’: if e.g. 〈A|ν〉 '= L, the signal µ(t) carries

information which is useful to predict whether one should attend or not to the bar

when µ(t) = ν. The fact that the stationary state corresponds to minimal H means

that agents exploit to their best the system’s predictability. We shall term phases
with H = 0 ‘unpredictable’ or ‘symmetric’, while phases with H > 0 will be called

‘predictable’ or ‘asymmetric’.

Notice also that the noise correlations are proportional to the volatility σ2 =

〈(A − L)2〉 which in turn depends on the set of all uig’s. Hence calculating the volatility

requires solving a much more complex self-consistent problem.

The minimization can be carried out analytically resorting again to the replica trick.

The thermodynamic limit to be considered in this case is N → ∞ with / = L/N and
α = P/N finite. The interesting case is that where the average attendance frequency a
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Figure 7. Phase diagram of the El Farol bar problem. The solid line encloses the
‘unpredictable’ phase where H = 0. The dashed lines correspond to the trajectories
of systems with L = 60, ā = 1/2 and m = 2, . . . , 6 as the number of agents increases
(from bottom to top). The dot-dashed line corresponds to a typical trajectory of a
system with fixed L, N and ā > L/N as the agents’ memory changes (from [13]).

fluctuates around / so that a − / = O(1/
√

N). Indeed, if a − / = O(1) then each agent

will always use the strategy that prescribes him to go more (resp. less) often if a < /

(resp. a > /). A convenient parametrization is given by

a − / = γ

√
/(1 − /)

P
(50)

with γ finite and independent of N . The resulting phase diagram in the (α, γ) plane is

reported in Fig. 7. We see a region for small α and small γ where H = 0, i.e. 〈A〉 = L.

In this ‘unpredictable’ phase the average attendance converges to the comfort level but

fluctuations are large. On the other hand, the typical attendance differs from L outside

this phase. Looking at the m-dependence, we see that as N varies with L and ā and m

fixed, the system follows the trajectories shown in dashed lines. For small values of m

these cross the symmetric phase in the region āN + L.
This rich phenomenology, and specifically the non-trivial interplay between

predictability and fluctuations, is characteristic of the complexity of many other

resource-allocation models, two of which we shall now discuss.

2.4. Buyers and sellers in the ‘fish market’

Market organization, namely the establishment of stable relationships between buyers

and sellers, is one of the basic mechanisms that determine the efficiency of commodity

markets. An important question concerns the effects that organization has on prices

and their fluctuations. This issue has been investigated in detail in [17] in the context

of an empirical study of the Marseille fish market. This is the sense in which this

section refers to a model of a ‘fish market’. Loosely speaking, one can think that a
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seller with loyal buyers has an incentive to take advantage of the situation by raising

prices, thus removing the incentive of buyers to be loyal to him. Once the relationship

is broken, buyers will seek cheaper sellers thus driving a reduction of the average price.

This mechanism however is expected to cause an increase of fluctuations (and thus a

decrease of cost certainty), since in the ‘disorganized’ phase buyers will be switching from

one seller to another. This elementary scenario, from which it is clear that efficiency is
a two-sided concept, is worth of a deeper investigation. A highly stylized yet non-trivial

model addressing this issue was introduced in [18].

One considers a system with N buyers and P sellers, which for simplicity may be

assumed to sell different commodities each (say each seller supplies a different type of

fish). Ultimately, the limit N → ∞ with n = N/P finite shall be considered. On

each day t = 1, 2, . . ., every consumer i has to acquire one of S possible bundles of
commodities, for instance for his or her subsistence. A bundle is a vector qig = {qµ

ig} such

that qµ
ig denotes the amount of goods buyer i demands from seller µ (µ ∈ {1, . . . , P}).

g ∈ {1, . . . , S} labels the different feasible bundles. We are interested to model the case

in which buyers are heterogeneous, in the sense that different buyers have different needs

and thus different possible bundles. We therefore assume that bundles qig are quenched

random vectors with probability distribution

P (qig) =
∏

µ

[
(1 − q)δ(1 − qµ

ig) + qδ(qµ
ig)

]
, (51)

(0 < q < 1 being the probability that any given commodity is part of a bundle) that

are assigned to consumers independently on i and g on day t = 0 and are kept fixed.

In this way, we introduce a further simplification in that each seller is either visited or
not by a buyer, and the purchased quantities play no role. Moreover, we are implicitly

assuming that the different commodities are equivalent to consumers, that is there is

no commodity that all buyers will need to buy. Coming to sellers, we assume that they

set the daily price of their commodity according to the demand they receive, denoted

by Dµ(t), so that the higher the demand the higher the price. Each buyer, on the other

hand, aims at purchasing, on each day, the bundle he or she finds more convenient,
labeled by gi(t), with the limitation that when the choice is made the price at which

the purchase will take place is not known yet (it is determined by the collective decision

of all consumers, which form the demands). Hence they try to learn the convenience of

different bundles from experience in order to be able to predict which bundle will have

the highest marginal utility on any given day. The events taking place on each day t

can be summarized by the following scheme:

gi(t) = arg max
g

Uig(t)

Dµ(t) =
∑

i

qµ
igi(t)

(52)

Uig(t + 1) − Uig(t) =
1

P

∑

µ

qµ
ig [k − Dµ(t)]

At the decision stage, each buyer chooses the bundle which carries the highest
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(cumulated) utility Uig(t). The different choices are then aggregated and the demands

are formed. Finally utilities are updated with the following rationale: if the demand of

a commodity µ is above a certain threshold k, consumers perceive that commodity as

too costly and the utility of all of his feasible bundles that include it will tend to be

reduced. Similarly, if the demand has been lower than k the commodity will be seen as

‘cheap’ and will tend to increase the utility of the bundles that contain it. The utility
of a bundle is determined by the demands of all commodities in it. Finally, we assume

that the score updating is initialized at values Uig(0).

It is clear that k plays in this model the role of the comfort level L of the El Farol

problem. Based on the discussion of the previous section, we concentrate on the case

k = N(1 − q). The relevant macroscopic observables are given by

H =
1

P

∑

µ

〈Dµ − N(1 − q)〉2 (53)

∆ =
1

P

∑

µ

[〈
(Dµ)2

〉
− 〈Dµ〉2

]
(54)

H measures of how evenly buyers are distributed over sellers. Indeed if H = 0, each

seller receives on average the same demand so that none of them is perceived as more

convenient by buyers. In this case, consumers are distributed uniformly over producers.

If H > 0, instead, the distribution of demands is not uniform and some producers are

seen as more or less convenient than others. ∆ represents instead the magnitude of

demand fluctuations. Note that because of our assumptions on the relation between
prices and demands, H is a proxy for the average price whereas ∆ quantifies the typical

spread of prices in the economy. Note also that when H > 0 an external agent who

watches the economy from the outside trying to identify the best bargain would manage

to find more convenient sellers and make a profit. When H = 0, instead, this would

not be possible. So transitions from regimes with H > 0 to regimes with H = 0 can

be seen as transitions between inefficient and efficient states of the economy, where by
efficient state we mean one where goods flow from sellers to buyers in such a way that

no information exploitable by an external agent is generated. States that are optimal

from a collective perspective have both H = 0 and ∆ small, because on one hand a

uniform demand distribution is desirable and on the other price fluctuations should be

such that agents have as much cost certainty as possible on a day by day basis. Hence

H and ∆ describe intertwined properties, and it is on their mutual dependence that we
shall focus in what follows.

Results are shown in Fig. 8. The behavior of H indicates that as the number of

buyers increases they tend to distribute more and more uniformly over sellers until,

for n = nc, H vanishes and the distribution becomes uniform. For n < nc the

economy is inefficient as the uneven distribution of demands generates exploitable profit

opportunities. For n > nc the economy is instead efficient. Notice that results are
indeed independent of initial conditions Uig(0) in the inefficient phase, while for n < nc

ergodicity is broken and the steady state depends on initial conditions. Furthermore,
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Figure 8. Behavior of H and Σ = ∆ + H as a function of n for various q and flat
(Ui1(0) = Ui2(0)) and biased ([Ui1(0) − Ui2(0)] = 0.2) initial conditions (analytical
curves and numerical simulations, from [18]).

we see that in the inefficient phase fluctuations are small whereas when the economy

becomes efficient the dependence on initial conditions may drive the system to both

states with large price fluctuations where (∆ ∼ n), which are rather undesirable, and

states with small fluctuations (where ∆ ∼ 1/n). This can be interpreted with the

following mechanism. When there are few buyers, many sellers receive small demands
and thus the economy presents many profitable opportunities. As more and more

buyers join the opportunity window shrinks and players may be forced to switch bundles

repeatedly in the attempt to identify convenient commodities. This leads to the increase

of fluctuations and ultimately to a loss of day-by-day cost certainty.

Like the models described before, this one can also be studied analytically by

resorting to a replica minimization. It is not difficult to see that the Lyapunov function in
this case is precisely H , so buyers collectively act so as to exploit profitable opportunities

as much as possibles. In [18] a different solution method, based on dynamical generating

functionals, is employed. We defer a discussion of this technique to Sec. 5.3.

2.5. Route choice behavior and urban traffic

A most striking example of the influence of different information structures on the

stationary properties of these systems has been given in the experimental literature on

behavioral aspects of route-choice dynamics in vehicular traffic [19, 20]. Experiments

dealt with groups of people having to choose at each time step (day) between two

alternatives (routes), having at their disposals a certain externally provided information

about the aggregate daily result, a sort of tunable traffic bulletin. The payoff for each
choice depends on the number of agents making that choice in such a way that the larger

this number the smaller the payoff. Experiments have shown that while agents were able

to adapt rather well and reach states that were efficient on average, the overreaction,
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A

B

Figure 9. Regular grid with two routes for traveling from A to B.

namely the fluctuations or the difference between the optimal rate of decision change

by agents and the actual rate of change, displayed a strong dependence on the type of

information supplied, for instance with or without impact correction, time-dependent,
user-dependent etc. In particular, the overall best states (smallest overreaction) were

attained when the information is user-specific (see however [19,20] for additional details

and more results).

The issue of how the information structure affects macroscopic properties has

been tackled in a traffic-inspired resource allocation game which can be seen, roughly

speaking, as a lattice version of the previous ‘fish-market’ model [21]. Let us consider
the following situation. A road network, which for simplicity is taken to be a square

lattice with L2 sites, is given. On each day, each one of N drivers has to travel from

location A to location B (say, work/home) following one of S possible routes. The points

A and B are different for different drivers while the routes at their disposal are taken to

be S quenched random self-avoiding walks of length / going from A to B (see Fig. 9).

Routes play here the role of the predictors of the El Farol problem and of the feasible
bundles of the fish market: indexing lattice edges by µ, each route g of every driver i

can be written as a vector qig = {qµ
ig}, where qµ

ig = 1 if driver i passes through edge µ in

route g, and qµ
ig = 0 otherwise. Drivers are assumed to be inductive and their behavior

is governed by the following rules:

Prob{gi(t) = g} = C(t) exp [ΓUig(t)]

Qµ(t) =
∑

i

qµ
igi(t)

(55)

Uig(t + 1) − Uig(t) = −
1

P

∑

µ

qµ
igQ

µ(t) +
1

2

(
1 − δg,gi(t)

)
ζig(t)

Let us discuss them in some detail. The first one says that agents choose their preferred
route on day t, gi(t), using a probabilistic model with learning rate Γ > 0. Qµ(t) denotes

the traffic load on street µ on day t. The score updating process is composed of two

parts:

• the first term, − 1
P

∑
µ qµ

igQ
µ(t), says that agents prefer less crowded routes;
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• the second term, 1
2

(
1 − δg,gi(t)

)
ζig(t) is non-zero only for routes the driver has not

taken on any given day and represents the information noise, or the inaccuracy

with which he knows the traffic load on network edges he hasn’t visited. ζig(t) is a

Gaussian noise with mean η and correlations

〈ζig(t)ζjh(t
′)〉 = ∆δijδghδtt′ (56)

Different information structures correspond to different values of η and ∆:

• the case η = ∆ = 0 (no information noise) corresponds to the case in which all

drivers possess complete knowledge of the traffic load on each network edge on

every day

• for ∆ > 0 the information about unvisited edges is user-specific and noisy. In

particular

– for η = 0 the noise is unbiased
– for η > 0 the driver overestimates the performance of routes not taken

– for η < 0 the driver underestimates the performance of routes not taken

Let us notice, en passant, that smart drivers should be aware of the fact that the traffic

load on a given route would have been larger had they chosen it and therefore they

should underestimate the efficiency of unused routes. In other words, drivers account
for their impact on the traffic loads when they are able to disentangle their contribution

to it (their ‘impact’) before updating their scores. In this model, drivers completely

account for their contribution to the traffic for η = −2. We shall see however that

any small η < 0 is sufficient to alter significantly the collective properties. We shall

distinguish between two types of drivers: ‘random drivers’ with Γ = 0, who choose their

route every day at random with equal probability, and ‘optimizers’ with Γ = ∞, who
every day choose the route they expect to be faster.

As usual, one is interested in the collective properties in the steady state. We have

several control parameters, namely η, ∆, Γ and the vehicle density c = N/P . The

observables we focus on are

H =
1

P

∑

µ

〈
Qµ − 〈Q〉

〉2

, 〈Q〉 =
1

P

∑

µ

〈Qµ〉 (57)

σ2 =
1

P

∑

µ

〈(
Qµ − 〈Q〉

)2
〉

(58)

where as usual 〈· · ·〉 stands for a time average over the stationary state of the learning

dynamics. Just as in the fish-market model, H describes the distribution of drivers

over the street network in the stationary state. If H = 0, the distribution is uniform

(〈Qµ〉 = 〈Q〉 for all µ) and it is not possible to find less crowded streets on the grid. If
H > 0, instead, the distribution is not uniform and fast pathways do exist. Notice that

if transit times are assumed to be proportional to the street loads Qµ, then σ2 measures

the total traveling time of drivers. Then, the optimal road usage is achieved when σ2 is

minimal. Note that since all routes have the same total length / (i.e.
∑

µ qµ
ig = / for all

i and g), 〈Q〉 = c/ is a constant.
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Figure 10. Left panel: σ2/N (top) and H/N (bottom) for random drivers (open
symbols) and optimizers (closed symbols). Simulation parameters: S = 2, P = 200,
% = 50, Uig(0) = 0 for all i and g. Averages are taken over at least 50 disorder samples
for each point. The solid line in the graphs is the analytic estimate of H and σ2 (for
Γ = 0+) for the model with uncorrelated disorder. Right panel: behavior of σ2/N for
a city of P = 200 streets with N = 1024 drivers (c = 5.12, in the inefficient phase) as
a function of the parameter ∆ with η = 0. The horizontal lines correspond to drivers
with Γ = 0 (dashed) and Γ = 0+ (dotted). Results for optimizers with Γ = ∞ are
shown for equilibration times teq = 100 (full line), 400 (open circles) and 1600 (full

diamonds). In the inset, data are plotted versus ∆t1/4
eq (from [21]).

Numerical simulations for η = ∆ = 0 reveal the picture displayed in Fig. 10).

We see that random drivers lead to a stationary state where a uniform distribution

of vehicles is never achieved, as H > 0 for all c. Optimizers, instead, behave in a
similar way only for small vehicle densities. As c is increased, the traffic load becomes

more and more uniform (H decreases) and fluctuations (σ2) decrease, indicating that

inductive drivers manage to behave better than random ones. At a critical point cc + 3

the distribution becomes uniform (i.e. H = 0) and vehicles fill the available streets

uniformly. Now drivers can’t find a convenient way and are forced to change route very

frequently. As a consequence, global fluctuations increase dramatically. Notice that
above the critical point traffic fluctuations are significantly smaller for random drivers

than for optimizers. Finally, the stationary state depends on the initial conditions Uig(0)

for c > cc: the larger the initial spread, the smaller the value of σ2. The conclusion is

that random drivers lead to an overall more efficient state in conditions of heavy traffic

while optimizers perform better when the car density is low.

Unfortunately, the analytical side of this model is much harder than the previous
examples because the quenched disorder (the feasible routes) is in this case spatially

correlated. It is possible however to solve analytically a milder version with uncorrelated

disorder. Results (shown in the Fig. 10) reproduce the qualitative behavior described

above fairly well, and predict a critical density of cc = 2.97 . . ..).

For η = 0 and ∆ > 0, the dependence on initial conditions disappears and is

replaced by a non-trivial dynamical behavior (see again Fig. 10). In the high density
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Figure 11. Behavior of σ2/N for a city of P = 200 streets with η = −2. Adaptive
(resp. random) drivers have Γ = ∞ (resp. Γ = 0) (from [21]).

phase, where drivers would behave worse than random with ∆ = 0, global efficiency

can improve beyond the random threshold if ∆ > 0. Taking averages after a fixed

equilibration time teq, we find that σ2 reaches, for ∆ ≈ 40, a minimum that is well below

the value of σ2 for Γ = 0+ with the same homogeneous initial conditions yi(0) = 0. For

∆ → ∞ we recover the behavior of random drivers. However, when we increase teq,
the curve shifts to the left, showing that the system is not in a steady state. Rescaling

∆ by t−1/4
eq , the decreasing part of the plot collapses, while the the rest of the curve

flattens. This suggests that the equilibrium value of σ2 drops suddenly as soon as

∆ > 0. Loosely speaking: noise-corrupted user-specific information can avoid crowd

effects when the vehicle density is very high.

We finally come to the case η '= 0 and ∆ = 0, Fig. 11. While one observes
no qualitative changes for η > 0, for η < 0 fluctuations are drastically reduced in

the supercritical phase. In particular, for η = −2 (when, as we said above, drivers

completely account for their contribution to the traffic) the dynamics converges to a

state characterized by no traffic fluctuations (σ2 = H) because each driver selects one

route and sticks to it.

Hence this setup allows to address the impact of different information structures,
and thus of different types of information broadcasting, on the collective properties of

urban traffic. This is perhaps one of the most promising research lines with respect to

applications opened by resource allocation games so far.

3. Optimal properties of large random economies

3.1. Introduction

The standard tenet of microeconomics is that economic activity is aimed at the efficient

allocation of scarce resources [22]. As we said before, ‘allocation’ includes exchange,
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production and consumption of commodities. The concept of ‘efficiency’ is instead

usually connected to the solutions of constrained maximum and/or minimum problems,

as for instance firms strive to maximize profits at minimum costs while the goal

of consumers is to maximize their utility subject to their budget constraints. The

fundamental concept by which mathematical economists explain the emergence of

efficient states from the disparate choices of individual agents in economic systems is
that of ‘equilibrium’, that is a state where all agents maximize their objective functions

and the waste of resources – in the form of imbalance between demand and supply

– is minimum (actually, zero). Typical results concern the existence and stability

of equilibria for different types of economies (see below for a precise definition). In

such settings it is however extremely difficult to extract meaningful macroscopic laws

(comparable with empirical data) from the mathematical results, in great part because
of the difficulties in handling agents’ heterogeneity effectively. In what follows, we

will show that when heterogeneity is taken properly into account the structure of

equilibria of model economies (as well as of other related optimization problems of

microeconomics) proves to be rich and non-trivial. We shall review the collective

properties of a few exemplary linear optimization problems of microeconomics, whose

setting will be borrowed from the economic literature [23]. We will see that the
emerging scenario presents in all cases two distinct regimes: an expanding phase where

technological innovations lead to an overall economic growth, and a saturated regime

where growth is not achieved by technological innovation but rather by a diversification

of the production. The key technical role in our analysis is played by the replica

method and the transitions between expanding and contracting states can be completely

characterized by a few macroscopic order parameters. Remarkably, it will turn out that

the physical order parameters that arise bear an immediate economic interpretation.

3.2. Meeting demands at minimum costs

To begin with, we consider the simple linear model of production to meet demand

satisfying an optimality criterion [24, 25]. This illustrates the general two-phase

phenomenology described above in an extremely simplified setting. Let there be N
processes (or technologies) labeled by i and P commodities labeled by µ. Each process

allows the transformation of some commodities (inputs) into others (outputs) and is

characterized by an input-output vector ξi = {ξµ
i } where negative (positive) components

represent inputs (outputs). Each process can be operated at any scale si ≥ 0. The scales

si must be chosen so that the total amount of commodity µ that is produced (consumed)

matches a fixed demand (availability):
∑

i siξ
µ
i = κµ for all µ, where the thresholds κµ

may be positive (for goods one wants to be produced) or negative (for goods to be

consumed). Among all feasible states {si}, one may select the one which minimizes a

particular function of the si. Here we take the simplest choice of a linear combination∑
i sipi, which can be thought of as the total operating cost, if pi is seen as the operation

cost at unit scale.



CONTENTS 30

0.1 1 10
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

'

0.1 1 10
n

0.1

1

n
'

Figure 12. Fraction φ of active processes vs n for pi = 1. Inset: φn vs n for the
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2
δ(κ − 1) with m = 0.1 (from [25]).

We ask the following question: how does the operation pattern (e.g. the fraction
of active processes such that si > 0) change when N increases, i.e. as more technologies

become available? Indeed, the macroscopic structure of the efficient state must be

expected to depend on the ratio N/P : for N , P a technology will be more likely

to be active (si > 0) than for N 3 P , when selection will be stronger and processes

performing the required conversions more efficiently will be favored. This problem can

be tackled by methods of statistical mechanics in the limit N → ∞ with n = N/P finite
upon assuming that the ξµ

i ’s are quenched random variables (similarly to what has been

done for other linear optimization problems such as the knapsack problem [26–28]). A

further important requirement is that
∑

µ ξµ
i < 0 for all i, which ensures that processes

cannot be combined to yield a technology with only outputs. We refer the reader to [25]

for details and focus on the emerging picture (see Fig. 12). One sees that for small n

roughly a half of the processes are active. This means that as n increases, that is as
more and more technologies become available, the number of active processes per good

increases (see inset) i.e. the arrival of new technologies favors existing ones. The picture

changes radically for n ! 2, as φ starts to decrease and nφ = 1. Now the number of active

processes equals that of commodities and technologies undergo a much stronger selection

which reduces the probability that a randomly drawn input-output vector is active. This

simple model describes in a nutshell a transition to a highly competitive state where all
possible productions are saturated by existing technologies and an increase in activity

levels can be achieved only by increasing P . We shall see below that a similar picture

extends to the more complicated case of general equilibrium.
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3.3. Competitive equilibria of linear economies

An economy can be seen as a complex system of interacting agents (consumers, firms,
banks etc.) with conflicting goals and complementarities. It is indeed the heterogeneity

of the agents which drives the economic process. Surely, if all agents were identical with

identical endowments, there would be no trade. Modeling an economy as a system of

heterogeneous agents is however a quite complex task [29]. In this section we review

how statistical mechanics may be helpful in deriving the macroscopic properties of large

random economies. Specifically this approach allows one to derive statistical laws that
provide a picture of how structural properties are affected by changes of macroscopic

parameters. This is the same type of information than random matrix theory provides

about the structure of heavy nuclei [1, 30].

3.3.1. Definition We stick to the standard microeconomic setup (see e.g. [23]). An

economy is defined as a system of N firms labeled by i, P commodities labeled by µ

and L consumers labeled by /. Each firm is endowed with a technology that allows the

transformation of some commodities, called ‘inputs’, into others, called ‘outputs’. Every

technology is completely characterized by its ‘input-output vector’ ξi = {ξµ
i }, where

negative (respectively positive) components represent quantities of inputs (respectively
outputs), and can be operated at any scale si ≥ 0, meaning that when run at scale si

it produces or consumes a quantity siξ
µ
i of commodity µ. The price of commodities is

given by the ‘price vector’ p = {pµ ≥ 0}. Each consumer is characterized by his/her

initial endowment of commodities y' = {yµ
' ≥ 0} and by his/her utility function U',

associating to every bundle of goods x = {xµ ≥ 0} a real number U'(x) representing

his/her degree of satisfaction.
It is assumed that firms choose their activity levels si so as to maximize their profits

πi for a fixed price vector p:

max
si≥0

πi with πi = si(p · ξi) (59)

On the other hand, consumers choose their consumptions x' so as to maximize their

utilities within their budget constraints for a fixed price vector p:

max
x#∈B#

U'(x) with B' = {x ≥ 0 s.t. p · y' ≥ p · x} (60)

Equilibria are states ({s$
i }, {x$

'}, p$) for which (i) the above problems (59) and (60) are

simultaneously solved for all i and / and (ii) the aggregate demand of each commodity

matches the aggregate supply:
∑

'

(x$
' − y') =

∑

i

s$
i ξi (61)

The ‘market clearing’ condition (61) implies zero waste of resources and ultimately

determines the optimal price vector p$.

In order to connect the microscopic efficiency to macroscopic laws, one would like

to assess the typical values, relative fluctuations and distributions of consumptions,
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operation scales and prices at equilibrium in a large heterogeneous economy, that is,

when agents have different technologies, endowments etc. This problem can be tackled

in its most general form by applying techniques of spin-glass physics. However, a rich

qualitative description can be obtained already at a less general level, obtained by

introducing the following assumptions [31, 32]:

a. Consumers: there is only one consumer (the ‘society’) whose utility function is

separable: U(x) =
∑

µ u(xµ); the functions u are such that u′ > 0 and u′′ < 0

b. Initial endowments: the initial bundle y is a quenched random vector whose

components yµ are sampled independently for each µ from a distribution ρ(y)

c. Technologies: the input-output vectors ξi have quenched random components ξµ
i

that are identically distributed Gaussian random variables with zero mean and

variance ∆i/P satisfying
∑

µ ξµ
i = −εi with εi > 0; the quantities ∆i are themselves

quenched random numbers drawn from a distribution g(∆) independently for each

i and εi = η
√

∆i

Let us discuss them briefly. The assumption L = 1 simplifies the thermodynamic limit
considerably (in the most general setting, the latter corresponds to diverging N , P and

L). The separability of U implies that commodities are a priori equivalent. Hence the

society can increase its utility only by acquiring scarce commodities (ones with low yµ)

at the expense of abundant commodities (with high yµ). Reaching non-trivial optimal

states then requires that (i) some commodities are initially more abundant than others

(one can see that no activity takes place in the case ρ(y) = δ(y − y)) and (ii) the
productive sector is able to provide scarce goods using abundant goods as inputs. We

will see that this last point constitutes a strong selection criterion for technologies. The

convexity assumptions on u follow the economic literature and are convenient from an

analytic viewpoint, as will become clear later. Finally, the assumptions on technologies

guarantee, as in the previous case, that it is impossible to produce all commodities

without consuming any by simply constructing a suitable combination of technologies
(if this were possible, operation scales and consumptions would diverge while prices

would vanish, a situation that is often described as the ‘Land of Cockaigne’). We shall

refer to the case η → 0, which turns out to have special physical properties, as the limit

of ‘marginally efficient technologies’.

We therefore have a deal of control parameters: N , P , η, g(∆), u(x) and ρ(y). In

what follows we shall concentrate mostly on the role of η and of the relative number of
technologies N/P . In particular, we shall consider the ‘thermodynamic limit’ N → ∞
with n = N/P finite.

3.3.2. Statistical mechanics with a single consumer The problem of finding the
equilibrium can easily be seen to be equivalent to calculating

max
{si≥0}

U

(

y +
∑

i

siξi

)

(62)
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In fact, first, if (62) is solved then the society evidently maximizes its utility. On the

other hand, producers also maximize profits since ∂si
U =

∑
µ ξµ

i ∂xµu = λ∂si
πi, where the

last equality follows from the fact that, by virtue of the budget constraint, ∂xµU = λpµ

with λ > 0 a Lagrange multiplier. Thus prices disappear from the problem in explicit

form. However a remarkable outcome of the statistical mechanics approach is that

average prices and price fluctuations, like other relevant macroscopic observables, turn
out to be directly connected to or easily derived from the spin-glass order parameters

that emerge from the calculation, as we shall see later on.

The statistical mechanics approach starts with the observation that if U is a

sufficiently regular function one expects a self-averaging condition to hold, i.e.

lim
N→∞

1

N
max
{si≥0}

U

(

y +
∑

i

siξi

)

= lim
N→∞

1

N

〈〈

max
{si≥0}

U

(

y +
∑

i

siξi

)〉〉

(63)

where 〈〈· · ·〉〉 stands for an average over the quenched disorder {ξi}:

〈〈· · ·〉〉 =
〈· · ·

∏
i δ(

∑
µ ξµ

i + ε)〉ξ
〈
∏

i δ(
∑

µ ξµ
i + ε)〉ξ

(64)

Now the right-hand side of the above expression can be evaluated by introducing the

‘partition function’

Z =

∫ ∞

0

dx eβU(x)

∫ ∞

0

ds δ

(

x − y −
∑

i

siξ

)

(65)

and defining the ‘free energy’

f(β) = lim
N→∞

1

βN
〈〈log Z〉〉 . (66)

As usual

lim
N→∞

1

N

〈〈

max
{si≥0}

U

(

y +
∑

i

siξi

)〉〉

= lim
β→∞

f(β) (67)

since in the limit β → ∞ configurations that maximize U give the dominant contribution
to the partition function. The evaluation of f ultimately leads to the identification of a

function G of a vector ω of macroscopic order parameters such that

lim
β→∞

f(β) = extrωG(ω) (68)

where extr means that the solution is provided by the saddle-point of G, that is by the

vector ω$ solving ∂ωG = 0. The convexity assumptions made on u ensure that the
relevant saddle point is of replica-symmetric form (as in (19)). Under this condition, ω

turns out to be a six-component vector (ω = {Q, γ, χ, χ̂, κ, κ̂}) and G takes the form

G(ω) =
1

2
Qχ̂ −

γχ

2n
+

1

n
κκ̂ +

〈
max
s≥0

[
−

1

2
∆χ̂s2 + st

√
∆(γ − κ̂2) − ηκ̂s

√
∆

]〉

t,∆

+
1

n

〈
max
x≥0

[
u(x) −

1

2χ

(
x − y + t

√
nQ + κ

)2
]〉

t,y

(69)
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where 〈· · ·〉x denotes an average over the random variable x, t is a unit Gaussian random

variable and averages over ∆ and y are performed with distributions g(∆) and ρ(y).

Before discussing the economic interpretation of the order parameters let us notice that

G is composed of two “representative agent” problems:

• an ‘effective profit’ maximization by a representative firm, whose solution reads

s$ ≡ s$(t, ∆) =






tσ − ηκ̂

χ̂
√

∆
for t ≥ ηκ̂/σ

0 otherwise

(70)

where we defined σ =
√

γ − κ̂2

• an ‘effective utility’ maximization by the society with respect to the consumption

of an effective commodity, whose solution, namely

x$ ≡ x$(t, y) such that χu′(x$) = x$ − y + t
√

nQ + κ (71)

is always positive provided the assumptions on u are satisfied

These two ‘effective’ problems – which have been derived and not postulated a priori –

are interconnected by the remaining terms.
The saddle-point equations ∂ωG = 0 for (69) have the following form:

Q =
〈
∆(s$)2

〉
t,∆

(72)

χ =
n

σ

〈
ts$

√
∆
〉

t,∆
(73)

κ = χκ̂ + nη
〈
s$
√

∆
〉

t,∆
(74)

κ̂ = 〈u′(x$)〉t,y (75)

σ =
√

〈u′(x$)2〉t,y − 〈u′(x$)〉2t,y (76)

χ̂ =
〈tu′(x$)〉t,y√

nQ
(77)

One sees immediately that κ̂ represents the optimal average (relative) price. In fact,

utility maximization under budget constraint gives ∂xµU = λpµ, with λ > 0 a Lagrange

multiplier that can be set to 1 without any loss of generality. It then follows that σ yields

price fluctuations. It is remarkable that the macroscopic order parameters introduced
with a purely ‘physical’ method can be seen to possess such clear economic meanings. It

is also remarkable that the following laws can be derived, with minimal manipulations,

from the above set of equations:

〈x$ − y〉t,y = −nη
〈
s$
√

∆
〉

t,∆
(78)

〈u′(x$) (x$ − y)〉t,y = 0 (79)

The former expresses the fact that at the relevant saddle point the market-clearing

condition is satisfied (to compare, just average (61) for L = 1 over µ taking the constraint

on technologies into account). The latter expresses the fact that at the relevant saddle
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point the consumer saturates his/her budget when choosing his consumption, a condition

known in economics as Walras’ law [22].

It is possible to obtain a more precise characterization of the macroscopic

properties by calculating the distribution of operation scales, consumptions and prices

at equilibrium. These quantities are given respectively by

P (s) = 〈δ(s − s$)〉t,∆ =

∫ ∞

0

g(∆)P (s|∆)d∆ (80)

P (x) = 〈δ(x − x$)〉t,y =

∫ ∞

0

ρ(y)P (x|y)dy (81)

P (p) = 〈δ(p − u′(x$))〉t,y (82)

where P (s|∆) and P (x|y) denote respectively the probability distributions of operation

scales at fixed ∆ and of consumptions at fixed y. These can be calculated easily from

(70) and (71). One finds

P (s|∆) = (1 − φ)δ(s) +
χ̂√
2πσ2

e−
(χ̂s

√
∆+ηκ̂)2

2σ2 θ(s) (83)

P (x|y) =
1 − χu′′(x)√

2πnQ
e−

(x−y−χu′(x)+κ)2

2nQ (84)

where φ = 1
2 [1 − erf ηκ̂

σ
√

2
] is the fraction of active firms (i.e. firms such that si > 0).

Moreover, notice that P (s|∆) =
√

∆P (s
√

∆|1), which implies that

P (s) =
2

s3

∫ ∞

0

k2g(k2/s2)P (k|1)dk (85)

Thus, power-law distributed operation scales are found for broad classes of distributions

g(∆), as P (s) ∝ s−3−2γ when g(∆) + ∆γ for ∆ , 1. Recently, some empirical evidence

has been found that distributions of firm sizes (defined by the number of employees,

profits etc.) have scaling forms [33].
Numerical solution of the saddle-point equations for a generic choice of the

parameters yields the picture illustrated in Figures 13 and 14. The quantity φ is shown

in Fig. 13 against numerical simulations. One sees that there are two regimes: one

where φ + 1/2 for small n, and a second one for large n where nφ + 1, so that the

number of active firms equals that of commodities, signaling a saturated market. Fig.14,

instead, shows that the average scale of production increases when n grows as long as n
is sufficiently small. This means that the introduction of new technologies (i.e. from an

increase of n) leads to an increased production activity of existing firms if the number of

competitors is low. In parallel, relative price fluctuations decrease, as does the average

level of consumption, signaling that firms are managing to transform abundant goods

into scarce ones. When n is close to 2, operation scales become larger and larger as η

decreases (i.e. as technologies become more and more efficient) and ultimately develop a
singularity at nc in the marginally efficient limit η → 0 (see below for more details about

this limit). The fluctuations of relative consumptions start to drop (the sharper the

lower is η), as the distribution of consumptions becomes more and more peaked around

the mean value. Identifying abundant (or scarce) goods becomes increasingly hard. In
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Figure 13. Behavior of nφ (φ = fraction of active companies) at equilibrium as
a function of n for η = 0.05: analytical prediction (continuous line), computer
experiments with P = 16 (dotted line) and for P = 32 (dashed line) averaged over
100 disorder samples. Dots represent results of a single realization of the technologies.
Inset: φ vs n for η = 0.01, 0.05, 0.1, 0.5 (top to bottom). From [31].
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Figure 14. Typical macroscopic properties of competitive equilibria for g(∆) =
δ(∆ − 1), u(x) = log x and ρ(y) = e−y. Left panels: typical operation scale (top)
and relative price fluctuations at equilibrium for different values of η. Right panels:
typical consumption and relative consumption fluctuations for different values of η
(from [31]).

high n regime, the introduction of new technologies, by e.g. technological innovation

(N → N + 1), leads to a decrease in the average operation scale, i.e. new profitable

technologies punish existing ones. The economy becomes strongly selective as firms

cannot take advantage of the spread between scarce and abundant goods any longer.

On the other hand, the average consumption starts growing with n, as is expected
in a competitive economy that selects highly efficient technologies. In this phase the

introduction of new commodities (an increase in P ) leads to an increase in the scale of

operations.
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The above results confirm rather clearly that the collective properties of competitive

equilibria display a marked qualitative change when n increases, as one passes from an

expanding to a saturated regime around n + 2. Such a change is a smooth crossover

for any finite η > 0. However, in the limit η → 0 in which technologies are ‘marginally

efficient’ the crossover becomes a sharp second-order phase transition characterized by

the fact that φ = 1/2 for n < nc and φ < 1/2 otherwise, whereas

〈s$〉 + |n − nc|−1/2 |n − nc| , 1 (86)

(see [31] for analytical details). This can be explained intuitively by a simple geometric

argument. Let us write the initial endowments as yµ = y + δyµ, separating a constant

part (y) from a fluctuating part (δyµ) such that
∑

µ δyµ = 0. Now market clearing with
η = 0 implies that ξi ·y = ξi ·δy, so that all the transformations take place in the space

orthogonal to the constant vector. This means that those technologies with ξi · δy < 0

which reduce the initial spread of endowments δx0 lead to a increase in wealth and

hence will be run at a positive scale. Those with a positive component along δx0 will

have si = 0. Given that the probability to generate randomly a vector in the half-space

ξi · δy < 0 is 1/2, when N is large we expect N/2 active firms. Still the number of
possible active firms is bounded above by P , hence when n = N/P = 2 the space of

technologies becomes complete and xµ = y for all µ. There is no possibility to increase

welfare further.

3.3.3. Case of many consumers In the model just described, there are N firms running

linear activities ξµ
i , which are vectors in a P -dimensional commodity space, at a scale

si ≥ 0. These firms face a demand function Qµ(p) from consumers, which is the quantity

that consumers will buy at prices pµ. The profit of firm i is given by πi = si

∑P
µ=1 pµqµ

i .

Let us consider a more general case. Let us assume there are L consumers, each

with an initial endowment yµ
' of commodity µ and each taking a share θi' in the profit of

firm i. We assume that consumers face fixed prices pµ. So the initial wealth of consumer

/ = 1, . . . , L is

w' =
P∑

µ=1

pµyµ
' +

N∑

i=1

θi'πi (87)

If consumers are identical, apart from the initial endowments, and aim at maximizing a

utility function U(x) =
∑P

µ=1 log xµ as before, the solution is relatively straightforward:

the problem of consumer / is solved by

xµ
' =

w'

Ppµ
(88)

(i.e. each consumer distributes his wealth uniformly over commodities, taking prices

into account). Now the total demand function will be

Qµ =
L∑

'=1

xµ
' =

W

P

1

pµ
, W =

L∑

'=1

w' (89)



CONTENTS 38

In a pure exchange economy (without production: si = 0 ∀i) the above quantity will

equal to total initial endowment of each commodity, i.e.

Qµ = yµ ≡
L∑

'=1

yµ
' (90)

If yµ
' are drawn independently at random with mean y and variance D, then yµ will have

mean Ly and variance LD and the relative fluctuations of the total initial endowments

will be δy/y =
√

D/(
√

Lȳ), which decreases as L increases. When we allow firms to

operate (si > 0), relative fluctuations in the demand must be expected to be of the same
order

Qµ − Q

Q
∼

1√
L

, Q =
1

P

P∑

µ=1

Qµ. (91)

Therefore, by equation (89), relative price fluctuations will also be of the order 1/
√

L.

This simple argument explains how the different macroscopic quantities re-scale in the

presence of L consumers when L → ∞. We remark that Ref. [31] shows that the

scales of production have a non-trivial behavior in the limit of extremely uniform initial

endowments, which suggest an essential singularity 〈s〉 ∼ exp(−c/
√

L) as L → ∞.
The case of consumers with different utility functions requires a more involved

approach, because the heterogeneity of consumer utility is likely to imply a non-

symmetric demand function (even when prices pµ are all equal). Apart from this, it

is reasonable to expect that the basic insights gained from the above analysis, such as

the presence of a cross-over between two structurally different phases of the economy,

will remain valid.

3.4. Economic growth: the Von Neumann problem

Von Neumann’s expanding model addresses the issue of computing the maximum

achievable growth rate of a linear production economy [34]. Economic growth is seen

basically as an autocatalytic chemical process in which technologies play the role of

reactions and commodities of reactants. In spite of its extremely simple setup, the model
has played a key role in the mathematical theory of economic growth, particularly in

view of its connection to dynamical growth via the so-called turnpike theorems [35].

The time-dependent model is defined as follows. One considers an economy with

P commodities (labeled µ) and N linear technologies (labeled i), each of which can

be operated at a non-negative scale Si ≥ 0 and is characterized by an output vector

ai = {aµ
i } and by an input vector bi = {bµ

i }, such that Sia
µ
i (respectively Sib

µ
i ) denotes

the units of commodity µ produced (respectively used) by process i when run at scale

Si. It is assumed that input/output vectors are fixed in time and that operation scales

are the degrees of freedom to be set, for instance, by firms. At time t, the economy

is characterized by an aggregate input vector I(t) =
∑

i Si(t)bi and output vector
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O(t) =
∑

i Si(t)ai. Part of the latter will be used as the input at period t + 1 whereas

the rest, namely

C(t) ≡ O(t) − I(t + 1) (92)

is consumed. In absence of external sources, in order to ensure stability it is reasonable
to require that inputs at any time do not exceed the outputs at the previous time, i.e.

one must have Cµ(t) ≥ 0 for all µ at all times. Let us focus on solutions in which input

vectors grow in time at a constant rate, i.e. of the form I(t + 1) = ρI(t) with ρ > 0 a

constant (the growth rate). For these solution, the scales of production have the form

Si(t) = siρt, and likewise C(t) = cρt. Therefore the stability condition can be re-cast

in the form

cµ ≡
∑

i

si (a
µ
i − ρbµ

i ) ≥ 0 ∀µ (93)

The (technological) expansion problem amounts to calculating the maximum ρ > 0

such that a configuration s = {si ≥ 0} satisfying the above condition exists (it is

easy to show that such an optimal growth rate exists [24]). In such a configuration

the aggregate output of each commodity is at least ρ times its aggregate input. If the

maximum ρ, which we denote by ρ$, is larger than 1 the economy is ‘expanding’, whereas

it is ‘contracting’ for ρ$ < 1. On the other hand, the actual value of ρ$ is expected to
depend on the input and output matrices. Intuitively, ρ$ should increase with the

number N of technologies and decrease when the economy is required to produce a

larger number P of goods.

In [36] this problem was tacked in the limit N → ∞ with n = N/P finite

under the assumption that (aµ
i , b

µ
i ) are independent and identically distributed quenched

random variables for each i and µ, with the aim of uncovering the emerging collective
properties that are typical of large random realizations of a complex wiring of input-

output relationship. To begin with, let us write aµ
i = a(1+αµ

i ) and bµ
i = b(1+βµ

i ), where

a and b are positive constants while αµ
i , βµ

i are zero-average quenched random variables.

Inserting these into (93) one easily sees that, to leading order in N , the optimal growth

rate ρ$ is given by the ratio a/b of the average output and average input coefficients,

hence it is independent of the specific input-output network. The non trivial aspects of
the problem are related to the corrections to the leading part. We therefore write the

growth rate as

ρ =
a

b

(
1 +

g√
N

)
(94)

so that, assuming a = b for simplicity, (93) becomes

cµ

ā
=

∑

i

si

[
αµ

i −
g√
N

−
(

1 +
g√
N

)
βµ

i

]
≥ 0 ∀µ (95)

The problem thus reduces to that of finding the largest value g$ of g for which it is

possible to find coefficients {si ≥ 0} satisfying (95). In the limit N → ∞ one may
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Figure 15. Behavior of g!/
√

kn vs n. Inset: φ0 and ψ0 (related by (100)) vs n
(from [36]).

resort to a Gardner-type calculus [37]. Defining the characteristic function

χ(s) =
∏

µ

θ

[
1√
N

∑

i

si

[
αµ

i −
g√
N

−
(

1 +
g√
N

)
βµ

i

]]

(96)

one can write the typical volume of configuration space occupied by micro-states

satisfying (93) for N → ∞ at fixed g is given by

Vtyp(g) = lim
N→∞

1

N
〈〈log V (g)〉〉 (97)

where V (g) is the volume of solutions at fixed disorder:

V (g) =

∫ ∞

0

χ(s)δ

(
∑

i

si − N

)

ds (98)

(without affecting the optimal growth rate, we introduced a linear constraint
∑

i si =

N). It is reasonable to expect that, when g increases, Vtyp(g) shrinks, and in particular

that Vtyp(g) → 0 for g → g$. Now after carrying out the disorder average (see [36] for

details), which only depends on

k =
〈〈

(βµ
i − αµ

i )2
〉〉

(99)

the key macroscopic order parameters turns out to be the overlap q''′ = (1/N)
∑

i si'si'′

between different optimal configurations / and /′. Because the space of solutions

{si} is a convex set (by construction), the replica-symmetric approximation, for which

q''′ = q + χδ''′ is in this case exact. Note that χ, which describes the fluctuations of si

among feasible solutions, should also vanish as g → g$, hence the conditions g = g$ and
χ = 0 are equivalent and the analysis of optimal states coincides with the study of the

χ → 0 limit of the replica-symmetric solution.

Results for the re-scaled quantity g$/
√

nk are shown in Fig. 15. The line separates

the region of feasible solutions with g ≤ g$ from the region of unfeasible solutions. g$
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crosses the line g = 0 (i.e. passes from a regime with growth rate ρ < a/b to one with

growth rate ρ > a/b) at nc = 1. In the inset we show the fraction of inactive processes

ψ0 (i.e. such that si = 0) and that of intermediate commodities φ0 (i.e. such that

cµ = 0) at g = g$, as a function of n. These are found to be universal functions of n

independent of the details of the disorder distribution, related by

φ0 = n(1 − ψ0) (100)

Both φ0 and ψ0 tend to one when n increases, meaning that the ‘expanding phase’ at

n > nc is highly selective. The condition (100) has a simple geometrical interpretation:

it implies that the number of active processes equals that of intermediate commodities

at g$. Noting that for any µ such that cµ = 0 we have a linear equation for the scales
si > 0, we see also that (100) simply corresponds to the requirement that the number

of equations should match the number of variables.

Based on these results one can speculate on how long term growth will be affected

by technological innovation. The latter, defined as the introduction of new processes,

i.e. new feasible ways of combining inputs to produce desirable outputs [38] would

just correspond to an increase in the number N of transformation processes which the
economy has at its disposal. Now the change in the growth rate is related to the change

in g$/
√

n, which is given by

δρ + −
a

b

g

n3/2
√

P
δn, (101)

Therefore an increase in N can have a large positive impact on long term growth when

n is small. For technologically mature economies (n 3 1) instead, g$/
√

n increases

much more slowly, hence technological innovation has much smaller effect on long term

growth.

4. Toy models of financial markets: Minority Games

4.1. Introduction

The Minority Game (MG for short) [39] is a strict relative of the El Farol problem (it
corresponds roughly to the case L = N/2) that has been proposed to model speculative

trading in financial markets, that is systems where agents buy and sell asset shares

with the only goal of profiting from price fluctuations. The basic idea is that when most

traders are buying it is profitable to sell and vice-versa, so that it is always convenient to

be in the minority group. Abstracting, one considers the following situation. We have N

agents, each of which has to formulate at every time step t a binary bid bi(t) ∈ {−1, 1}
(buy/sell). The payoff received at time t by each agent depends both on his/her action

and on the aggregate action A(t) =
∑

i bi(t) (the ‘excess demand’) and it is given by

πi(t) = −bi(t)A(t). Thus, agents in the minority group win. The minimal measures of

efficiency to be employed are the average excess demand and fluctuations in the steady
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state:

〈A〉 = lim
T,Teq→∞

1

T − Teq

T∑

t=Teq

A(t) and σ2 =
〈
A2

〉
(102)

where Teq is an equilibration time. An efficient state is one where 〈A〉 = 0 and σ2 is

small. Notice that the number of people which could have been accommodated in the

minority is |A|/2, hence σ is a measure of the waste of resource. What remains to be

specified is how agents make their decisions. Agents who buy or sell at random with

equal probability at every time step lead to a state where 〈A〉 = 0 and σ2 = N . Of
course, it is the way in which agents take their decisions (which needs to be specified)

and their interactions that gives rise to the complex collective behavior.

The MG is a useful toy model that allows to elucidate the collective behavior of

systems of heterogeneous interacting agents by addressing directly the interplay between

microscopic behavior and macroscopic properties (fluctuations, predictability, efficiency,

etc.). From a purely theoretical viewpoint, the detailed study of the emergence of
cooperation in competitive systems makes the Minority Game a benchmark model of

interacting agents. It has however also turned out to be able to reproduce, to some

extent, the rich statistical phenomenology of financial markets, that are well known (and

at least since [40]) to be characterized by clear statistical regularities, often referred to

as “stylized facts”§.
There are at present a few comprehensive books that cover many aspects of the MG,

from both the theoretical viewpoint and the financial market viewpoint [42, 43]. Here

we shall consider some basic and extended aspects of the model that are only marginally

treated elsewhere. In this section we shall concentrate mainly on the original model,

first presenting a more thorough derivation of the minority rule, then a simple version of

the MG and finally discussing the standard model. The next section is instead devoted

to some extensions that have a particularly interesting physical content.

4.2. From agents’ expectations to the minority (and majority) rule

The connection between MGs and financial markets can be established näıvely by

observing that markets are instruments for allocating goods. This, combined with the no

arbitrage hypothesis according to which no purchase or sale by itself may result in a risk-
less profit, suggests that markets should in principle be zero-sum games. Transaction

costs make it a game that is unfavorable on average, i.e. a Minority Game. It would

however be important to understand whether the minority mechanism can be derived

from a particular microscopic scheme. This is indeed possible [44].

§ An ever increasing number of such facts are documented in the literature. The best known of these
are the following: (a) asset returns are approximately uncorrelated beyond a time scale or the order of
tens of minutes; (b) the unconditional distribution of returns displays a power-law tail with an exponent
ranging from 2 to 4 for different stocks and markets; (c) the distribution of returns over a time scale
τ becomes more and more Gaussian as τ increases; (d) volatility is positively autocorrelated over
time scales as long as several days, implying that periods of high volatility cluster in time (‘volatility
clustering’). See [41] for details.
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Let us imagine a market in which N agents submit their orders ai(t) for a certain

asset simultaneously at every time step t = 1, 2, . . .. Let ai(t) > 0 mean that agent

i contributes ai(t) to the demand for the asset while ai(t) < 0 means that i sells

−ai(t)/p(t − 1) units of asset, which is the current equivalent (i.e. at price p(t − 1)) of

|ai(t)| . With ai(t) = ±1 and A(t) =
∑

i ai(t), the demand is given by D(t) = N+A(t)
2 ,

whereas the supply is S(t) = N−A(t)
2p(t−1) . Finally, assume that the price is fixed by the

market clearing condition, p(t) = D(t)/S(t), i.e.

p(t) = p(t − 1)
N + A(t)

N − A(t)
. (103)

Taking the logarithm of both sides and expanding to the leading order one gets

log p(t) − log p(t − 1) +
A(t)

λ
(104)

with λ = N . The quantity on the left-hand side is normally called the ‘return’ of the

asset. A(t) is instead the excess demand, namely the difference between demand and

supply. This equation expresses the dynamics of prices in terms of an aggregate quantity

A(t) that all agents contribute to form [45]. A(t) may thus be considered a proxy for

the return.

Now take agent i and assume he must decide whether to buy or sell at time t. To
do this, he should compare the expected profit (or utility) of the two actions, which

depends on what the price will be at time t + 1. For instance the utility he would face

at time t + 1 if he buys 1 of asset at time t (i.e. ai(t) = 1) is given by

ui(t) =
p(t + 1)

p(t)
− 1 (105)

(ui(t) > 0 if p(t + 1) > p(t)). At this stage the price p(t + 1) is unknown to him (and

presumably to everybody else). Therefore if our agent i wants to use Eq. (105) to make

his choice at time t, he has to replace p(t+1) by the expectation he has at time t of what

the price will be at time t + 1, denoted by E
(i)
t [p(t + 1)]. Let us assume that that [44]

E
(i)
t [p(t + 1)] = (1 − ψi)p(t) + ψip(t − 1) (106)

The parameter ψi allows to distinguish two types of traders, depending on whether ψi

is positive or negative. Agents with ψi > 0 believe that market prices fluctuate around

a fixed value (the ‘fundamental’), so that the future price is an average of past prices.

For this reason these agents are called ‘fundamentalists’. They may also be called
contrarians since they believe that the future price increment ∆p(t+1) = p(t+1)−p(t)

is negatively correlated with the last one

E(i)
t [∆p(t + 1)] = −ψi∆p(t). (107)

On the other hand, if ψi < 0 the agent believes that the future price increment will
occur in the direction of the trend defined by the last two prices, so that future price

increments ∆p(t + 1) are positively correlated with the past ones, as if the price were

following a monotonic trend. This type of agents are called ‘trend followers’.
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The expected utility for buying at time t will be E
(i)
t [ui(t)|ai(t) = +1] = −ψi[p(t)−

p(t − 1)]/p(t) which, using (103), becomes

E
(i)
t [ui(t)|ai(t) = +1] = −2ψiA(t)/[N + A(t)] (108)

A similar calculation can be carried out for the expected utility for selling at time t.

The net result is that the expected utility for action ai(t) at time t can be written as

E
(i)
t [ui(t)] = −2ψiai(t)

A(t)

N + ai(t)A(t)
. (109)

Notice that agents who took the majority action ai(t) = sign[A(t)] expect to receive

a payoff −2ψi|A(t)|/[N + |A(t)|] whereas agents in the minority group expect to get
2ψi|A(t)|/[N − |A(t)|]. It is clear that the expected payoff of fundamentalists (resp.

trend-followers) is positive when they are in the minority (resp. majority) group.

Therefore Minority Games are simple schemes for describing the behavior of contrarians

whereas Majority Games are appropriate for trend-followers.

In real markets, both groups are present and the resulting price dynamics stems

from a competition between the two groups [46]. Which group dominates and shapes
the price dynamics depends on the evolution of traders’ expectations, which in turn

depends on the behavior of price itself. Common sense suggests that when everybody is

going to buy the price will rise and it will be convenient to buy. Accordingly, speculative

markets in certain regimes (e.g. bubbles) should look more like Majority Games rather

than Minority Games (and vice-versa in other regimes). If all traders base themselves on

the same price history, expectations should converge and traders would end up playing
either a Majority or a Minority Game. But of course agents revise and calibrate their

expectations according to the real price history so fundamentalists and trend-followers

coexist symbiotically in real markets. The problems with arguments in support of either

the Minority or the Majority Game essentially arise from the fact that the objective

assessment of the validity of a trading strategy is a complex inter-temporal problem that

cannot be based on the result of a single transaction: whether buying today is profitable
or not depends on what the price will be when one sells. Hence the payoff of a single

transaction is hardly a meaningful concept unless one considers round-trip (buy/sell or

sell/buy) transactions. From this point of view the MG is a rather crude approximation.

Yet, we shall see below that it provides a remarkably rich and realistic picture of financial

markets as complex adaptive systems. Models of interacting fundamentalists and trend-

followers will be addressed in the following section.

4.3. The simplest Minority Game

Before considering the model in its full complexity, it is instructive to to take a glimpse

at a minimal version with inductive agents in which the collective behavior can be

easily understood with simple mathematics [44]. Let us suppose that traders employ a

probabilistic rule of the form

Prob{bi(t) = b} = C(t) exp [b∆i(t)] b ∈ {−1, 1} (110)
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where C(t) is a normalization factor and ∆i(t) accounts for the agent’s expectations

about what will be the winning action (if ∆i(t) > 0 then he/she will choose bi(t) = 1

with higher probability). The ‘score function’ ∆i is updated according to

∆i(t + 1) − ∆i(t) = −ΓA(t)/N (111)

with Γ > 0 a constant, so that if A(t) < 0 agents increase ∆i and the probability of

choosing action 1. Let us finally assume that the initial conditions ∆i(0) are drawn

from a distribution p0(∆) with standard deviation s. How does the collective behavior

depend on the parameters Γ and s?

Notice that y(t) = ∆i(t) − ∆i(0) does not depend on i, for all times. For N 3 1,

the law of large numbers allows us to approximate A(t) by its average with probability
distribution (110). This yields an approximate dynamical equation for y(t):

y(t + 1) + y(t) − Γ 〈tanh[y(t) + ∆(0)]〉0 (112)

where the average 〈. . .〉0 is on the distribution p0 of initial conditions. Eq. (112) admits

a fixed point y(t) = y$, with y$ the solution of 〈tanh[y$ + ∆(0)]〉0 ≡ 〈A〉 = 0. Let us
assume that this solution is stable. This describes a stationary state where the relative

scores ∆i(t) are displaced by a quantity y$ from the initial conditions. This gives

σ2 =
N∑

i=1

(
1 − 〈ai〉2

)
= N

[
1 −

〈
tanh[y$ + ∆(0)]2

〉
0

]
(113)

Notice that σ2 ∝ N and it decreases with the spread of the distribution of initial

conditions. A linear stability analysis of Eq. (112) shows that these solutions are stable

only when

Γ < Γc =
2

1 − 〈tanh[y$ + ∆(0)]2〉0
=

2N

σ2
. (114)

When Γ > Γc one finds periodic solutions of the form y(t) = y$ + z$(−1)t where y$ and
z$ satisfy certain prescribed conditions. The parameter z$ plays the role of an order

parameter of the transition at Γc (z$ = 0 for Γ < Γc). Again we have 〈A〉 = 0, but now

σ2 + N2 〈tanh[y$ + z$ + ∆(0)]〉20 + 〈tanh[y$ − z$ + ∆(0)]〉20
2

(115)

i.e. fluctuations are proportional to N2. Hence this is a much less efficient state. The

orbits of the dynamics of y(t) for Γ < Γc and Γ > Γc are shown in Fig. 16 together with

the behavior of σ2/N2. We conclude that the more heterogeneous the initial condition
is, the more efficient is the final state and the more the fixed point y$ is stable. The

transition from a state where σ2 ∝ N to a state with σ2 ∝ N2 will turn out to be a

generic feature of MGs.

4.4. The Minority Game

In the simple case discussed above, agents base their choice only on their past experience.

The standard Minority Game describes a more general situation in which traders use
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Figure 16. Left panels: the map y(t) for Γ = 1.8 < Γc and Γ = 2.5 > Γc for s = 0.
Right panel: global efficiency σ2/N2 as a function of Γ for two different sets of initial
conditions: ∆i(0) is drawn from a Gaussian distribution with variance s2. The full
line corresponds to s = 1/2 whereas the dashed line is the result for s = 1. The inset
reports the critical learning rate Γc as a function of the spread s of initial conditions.

both their past experience and some (endogenous or exogenous) information pattern.

The model is defined as follows [47]. There are N agents labeled i. At each time

step t agents receive one of P possible information patterns µ(t) (whose precise nature

will be discussed below) based on which each trader must formulate a binary bid
bi(t) ∈ {−1, 1}. To this aim, each of them is endowed with S strategies aig = {aµ

ig}
(g = 1, . . . , S) that map informations µ ∈ {1, . . . , P} into actions aµ

ig ∈ {−1, 1}. Each

component aµ
ig of every strategy is selected randomly and independently from {−1, 1}

with equal probability for every i, g and µ at time t = 0 and is kept fixed throughout the

game. Agents keep tracks of the performance of their strategies by means of valuations

functions or scores Uig that are initialized at some value Uig(0) and whose dynamics
reads

Uig(t + 1) − Uig(t) = −aµ(t)
ig A(t)/N (116)

where A(t) =
∑

i bi(t) is the excess demand at time t. At each round, every agent picks

the strategy gi(t) = arg maxg Uig(t) carrying the highest valuation and formulates the
corresponding bid: bi(t) = aµ(t)

gi(t)
. In this way, agents adopt at each time the strategy

they expect to deliver the highest profit (the score of strategies forecasting the correct

minority action increase in time).

The nature of the information patterns µ(t) is still to be specified. In principle, the

natural choice corresponds to taking the string of the past m minority actions (hence

P = 2m) as the information fed to agents at every time step, with the idea to describe a
closed system where agents process and react to an information they produce themselves

collectively. We refer to this choice as the case of endogenous information. On the other

hand, one may think of replacing for the sake of simplicity the above information (which
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has a non-trivial dynamics itself) with an integer drawn at random at each time step

from {1, . . . , P} with uniform probability. This corresponds to the case of random

exogenous information [48]. Again, this replacement induces a major simplification in

the structure of the model by turning a complex non-Markovian system with feedback

into a Markovian one. In addition and at odds with the El Farol problem, it was shown

that collective properties are roughly unaffected when real information is substituted
with random information. These results suggest that, to some extent, the feedback is

irrelevant as far as collective properties are concerned. We shall hence focus on the case

of exogenous information for the following sections. A more careful discussion of the

subtle case of endogenous information will be deferred to Sec. 4.8. In summary, the

Minority Game is completely defined by the following rules:

gi(t) = arg max
g

Uig(t)

A(t) =
∑

i

aµ(t)
igi(t)

(117)

Uig(t + 1) − Uig(t) = −aµ(t)
ig A(t)/N

Let us now discuss the macroscopic properties of the model. Early works focused

on the cooperative properties of the system in the stationary state. The central quantity

of interest is the numerical difference between buyers and sellers at each time step, A(t).

It is easy to anticipate that none of the two actions −1 and 1 will systematically be the
minority one, i.e. that A(t) will fluctuate around zero. Were it not so, agents could easily

improve their scores by adopting that strategy which visits most often that side. The size

of fluctuations of A(t), instead, displays a remarkable non-trivial behavior. The variance

σ2 = 〈A2〉 of A(t) in the stationary state measures the efficiency with which resources are

distributed, since the smaller σ2, the larger a typical minority group is. In other words

σ2 is a reciprocal measure of the global efficiency of the system. Early numerical studies
have shown that the relevant control parameter of the model is the relative number of

information patterns α = P/N . The behavior σ2 is illustrated in Fig. 17. With α fixed,

one typically observes that A(t) +
√

N or equivalently that σ2 = O(N). When α 3 1

the information space is too wide to allow for a coordination and agents essentially

behave randomly as σ2/N + 1, the value corresponding to random traders. As α

decreases, that is as more and more agents join the game or as the possible number of
information patterns decreases, σ2/N decreases suggesting that agents manage to exploit

the information in order to coordinate to a state with better-than-random fluctuations.

It turns out that these steady states are ergodic, that is they are reached independently

of the initial conditions Uig(0). Lowering α further, ergodicity is lost and the steady

state depends on Uig(0). For the so-called flat initial conditions, Uig(0) = 0 for all i and

g, which describe agents with no a priori bias toward one of their strategies, one is driven
into highly inefficient steady states where σ2 diverges as α decreases approximately as

σ2 + 1/α. Notice that this implies σ2 + N2. This behavior for has been attributed

to the occurrence of “crowd effects”. Remarkably this ergodicity breaking transition is

related to a phase transition with symmetry breaking that was first discovered by Savit
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and coworkers [49] for the case of endogenous information. Reporting the frequency

with which the minority action was 1 conditional on the value of µ, they observed that

for α , 1 the minority was falling on either side with equal probability irrespective of µ.

But when α 3 1 the minority happened to be more likely on one side, depending on the
value of µ. These observations have been sharpened in a study that allowed to locate

the phase transition at the point αc + 0.34 for S = 2 where σ2 attains its minimum

(see next section for details). The transition separates a symmetric (α < αc) from an

asymmetric phase (α > αc). The symmetry which is broken is that of the average of

A(t) conditional on the history µ, 〈A|µ〉. The idea is that if 〈A|µ〉 '= 0 for a certain

µ then the knowledge of µ alone suffices for a non-trivial statistical prediction of the
sign of A(t). In the asymmetric phase, 〈A|µ〉 '= 0 for at least one µ. Thus the sign of

A(t) is predictable, to some extent, on the basis of µ alone. A measure of the degree of

predictability is given by the function

H =
1

P

P∑

µ=1

〈A|µ〉2 . (118)

In the symmetric phase 〈A|µ〉 = 0 for all µ and hence H = 0. H is a decreasing function

of the number N of agents (at fixed P ): newcomers exploit the predictability of A(t)
and hence reduce it. The behavior of H is also reported in Fig. 17. Notice that it acts

like a ‘physical’ order parameter.

4.5. Statistical mechanics of the MG: static approach

We shall discuss in this review two lines along which the statistical mechanics of the

Minority Game with random external information can be studied. The first one is
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a static theory whose crucial steps are (a) finding a (random) Lyapunov function of

the dynamics that allows one to identify the steady states of the learning process

with its minima; (b) calculating the latter via the replica method. The second one

consists in constructing a dynamical mean-field theory using the learning dynamics

as a starting point. The two approaches are essentially complementary: the statics

gives more information about the predictability and allows to interpret the collective
properties in terms of a minimized quantity; the dynamics focuses on ergodicity and

is a more appropriate setting to discuss fluctuations. Below we will outline the static

approach to the standard MG for the case S = 2, deferring a discussion of the dynamical

method to Sec. 5.3. Other possibilities, like the ‘crowd-anticrowd’ theory [50] will not

be discussed here (an account can be found in [6]).

It is helpful for a start to introduce the auxiliary variables [47]

ξi =
ai1 − ai2

2
, ωi =

ai1 + ai2

2
, yi(t) =

Ui1(t) − Ui2(t)

2
(119)

in terms of which (116) can be re-cast as

yi(t + 1) − yi(t) = −
1

N
ξµ(t)
i A(t) (120)

The advantage lies in the fact that the dependence of aigi(t) on the strategy valuation

can be made explicit by noticing that gi(t) = 1 if yi(t) > 0 and gi(t) = 2 if yi(t) < 0 (we

shall therefore refer to yi as the ‘preference’ of agent i). As a consequence, the relevant

microscopic dynamical variable is the Ising spin si(t) = sign[yi(t)]. On has in particular

aigi(t) = ωi + si(t)ξi (121)

A(t) =
∑

i

[
ωµ(t)

i + si(t)ξ
µ(t)
i

]
≡ Ωµ(t) +

∑

i

si(t)ξ
µ(t)
i (122)

The dynamics (120) is non-linear in a way that doesn’t allow to write it in the form of a

gradient descent. However, as in the El Farol problem, one may regularize the dynamics

via a learning rate Γ > 0 such that [51]

Prob{gi(t) = g} = C(t) eΓUig(t) C(t) = normalization (123)

It is then possible to construct the continuous-time limit of (120) in view of the fact

that the dynamics possesses a ‘natural’ characteristic time scale given by P . Proceeding

as shown for the El Farol case, one arrives at the following continuous-time Langevin

process [16]:

ẏi(τ) = −ξiΩ −
∑

j

ξiξj tanh[yj(τ)] + zi(τ) (124)

〈zi(τ)zj(τ
′)〉 +

Γσ2

αN
ξiξjδ(τ − τ ′) (125)

where τ = Γt/P is a re-scaled time and σ2 is the volatility‖ and the over-line denotes
an average over µ. One sees that in the limit Γ → 0, in which the dynamics becomes

‖ Eq. (125) is based on a time-independent volatility approximation which happens to be very well
satisfied away from the critical line. We refer the interested reader to [16] for further details.
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deterministic, the system performs a gradient descent with a well-defined Hamiltonian.

Indeed, in order to extract the steady state from the above process, one may take its

time average:

˙〈yi〉 = −ξiΩ −
∑

j

ξiξjmj , mi = 〈tanh(yi)〉 ∈ [−1, 1] (126)

It is now clear that the stationary values of the variables mi can be obtained from the
minimization of

H =
1

P

∑

µ

[

Ωµ +
∑

i

ξµ
i mi

]2

(127)

which coincides with the predictability in the steady state. Hence agents coordinate so
as to make the market as unpredictable as possible. This conclusion remains correct

even for Γ > 0: indeed mi are still given by the minima of H , though the dynamics is

no more deterministic (see [16]). Actually, within the approximation of Eq. (125), it

can be shown (see Sec. 4.6) that for α > αc the steady state is independent of Γ.

As usual, minimization of H is achieved through the replica trick as

lim
N→∞

1

N

〈〈
min

m

H

N

〉〉
= lim

β→∞
lim
r→0

lim
N→∞

1

βrN
log

〈〈[
Trm e−βH

]r〉〉
(128)

The calculation is detailed at length in the literature (see e.g. [52]). The resulting phase

structure is as follows:

• for α larger than a critical value αc = 0.3374 . . . there is a unique (Γ-independent)
minimum with H > 0

• for α < αc, there is a continuous of minima where H vanishes. The minimum

selected by the dynamics depends on initial conditions (and on Γ)

Hence the system at αc undergoes a phase transition from a predictable to an

unpredictable phase. Such a static transition corresponds to a dynamical instability in

the dynamics of preferences for Γ = 0. To see this, let us first mention that in numerical
simulations one observes that yi either grows linearly with time or stays finite. Based

on this, one can conclude that solutions of (126) are of the form 〈yi〉 = vit, with

vi = −ξiΩ −
∑

j

ξiξjmj (129)

and that there are two possibilities:

• either vi '= 0 and yi(t) diverges as t → ∞, in which case mi = sign(vi) the agent

ends up using just one of his strategies (we call these agents ‘frozen’)

• or vi = 0 and 〈yi〉 stays finite, in which case −1 < mi < 1 and the agent keeps

flipping between his strategies (we call these agents ‘fickle’)

Let us consider the dynamics of preferences for fickle agents. Setting yi(τ) = 〈yi〉+ εi(τ)

where εi(τ) describes small fluctuations about the average, one can expand (124) to first

order in εi(t):

ε̇i(τ) = −
∑

j fickle

ξiξj(1 − m2
j)εj(t) ≡ −

∑

j fickle

Tijεj(t) (130)
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where Tij = ξiξj(1 − m2
j ). As long as the matrix T = (Tij) is positive definite, the

above dynamical system will be linearly stable. Now T = UV with Uij = ξiξj and

Vij = (1 − m2
i )δij. But for fickle agents (|mi| < 1) all eigenvalues of V are positive

definite, so that det(T ) vanishes together with det(U). The spectrum of the random

matrix U can be evaluated using random matrix theory. For our purposes it suffices to

calculate the minimum eigenvalue, which turns out to be λ0 = 1
2

(
1 −

√
1−φ
α

)2

. The

instability sets in when λ0 = 0, that is when

1 − φ = α (131)

This equation and the distinction between fickle and frozen agents only depend on mi,

which are determined for α ≥ αc by the unique minimum of H , independently of Γ.

Hence Eq. (131) and the location αc of the phase transition, are independent of Γ.

4.6. The role of learning rates and decision noise

It is interesting to consider briefly the impact that the introduction of a finite learning

rate Γ has on the properties of the model. Let us begin by noting that Γ, which at the

level of agents plays a role similar to an ‘inverse temperature’, at the collective level acts
instead as an effective ‘temperature’, since it tunes the fluctuating random component

in agent’s dynamics (see (125)). The larger Γ or, equivalently, the smaller the minimum

score difference agents can appreciate (this quantity is roughly of order 1/Γ), the more

the response fluctuates and the longer it takes to average fluctuations out and reach a

steady state.

We have anticipated above that Γ affects the steady state only in the sub-critical
phase. Its effect is particularly strong on the volatility, which can be written as

σ2 = H +
∑

i

ξ2
i (1 − m2

i ) +
∑

i(=j

ξiξj 〈(tanh yi − mi)(tanh yj − mj)〉 (132)

The dependence on Γ is only present in the last term on the right-hand side, which

measures fluctuations of tanh yi around its mean. The average is over the distribution

of yi (which in turn depends on σ2 via the noise). The latter can be computed from
the Fokker-Planck equation associated to (124), which itself depends on σ2 (see 125).

Hence σ2 is determined by the solution of a self-consistent problem [16]. For α > αc,

fluctuations of yi are independent and hence the third term of (132) is identically zero.

As a result, σ2 is independent of Γ, as confirmed to a remarkable degree of accuracy

by numerical simulations [16]. When α < αc a correlation arises from the fact that the

dynamics is constrained to the subspace of y which is spanned by the P vectors ξµ, and
which contains the initial condition y(0). The dependence on initial conditions and the

dependence on Γ both arise as a consequence of this fact. Again, numerical simulations

fully confirm this picture [16].

It is worth remarking that, the smoothed choice rule (123) can also be written as

si(t) = sign [yi(t) + ζi(t)/Γ] (133)
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where ζi(t) are independent identically distributed random variables with probability

density p(ζ) = 1
2 [1 − (tanh ζ)2]. Indeed, for Γ = 0 the noisy part of the argument of the

sign dominates and the agent selects his strategy at random with equal probability

at each time step, while for Γ → ∞ one recovers the original deterministic rule

si(t) = sign[yi(t)].

On the basis of this observation, Coolen et al. [53] introduce a different type of
decision noise, called ‘multiplicative noise’, defined as

si(t) = sign [yi(t) (1 + ζi(t)/Γ)] (134)

which corresponds to

Prob{si(t) = ±1} = C(t) e±Γsign[yi(t)] C(t) = normalization (135)

It is evident that in this case frozen agents are affected as well. Indeed, the critical point
αc turns out to depend rather strongly on Γ: when Γ gets smaller the informationally

efficient phase shrinks as the critical point shifts to smaller values of α.

4.7. The role of market impact

Ever since J. Nash’s pioneering work in game theory, that of Nash equilibrium (NE)

has been a reference concept in socio-economic systems of interacting agents. A NE
is in some sense an optimal state of strategic situations, one in which no agent has

incentives to deviate from his behavior unilaterally. It is easy to see that, a priori, the

Minority Game possesses a huge number of such states when N 3 1. In fact, there

is one symmetric NE in mixed strategies, where agents draw their bid bi at random at

every time step with Prob{bi = +1} = 1/2 for all i. This state has σ2 = N and H = 0.

If N is even, there are also
(

N
N/2

)
pure strategy NE where half of the players take bi = +1

and the other half takes bi = −1. Moreover, states where N − 2k agents play mixed

strategies and the remaining 2k play pure strategies bi = +1 and bi = −1, are also NE.

Thus the game possesses an exponentially large number of Nash equilibria. One can then

ask whether the steady state of the model is one of them. The answer is a resounding

no. In this section we will study this issue and discuss the important question of why it

is so. Why are inductive agents playing sub-optimally? We shall see that at the heart
of the matter lies the consideration which agents have of their market impact, i.e. of

their impact on the aggregate quantity A(t). In fact, the inability to coordinate on a

NE follows from the näıve idea that in a system of N agents every single agent ‘weights’

1/N and is thus negligible in the statistical limit N → ∞. Once this assumption is

dropped and agents account for their own impact, the resulting steady state improves

dramatically and eventually a NE may be reached.

To begin with, it is instructive to study the role of market impact in the simplest
MG with P = 1 discussed in Sec. 4.3, in which agents must choose at each time step

between the two actions ai ∈ {−1, 1}. Let us consider the following modification of the

learning dynamics (111):

∆i(t + 1) − ∆i(t) = −
Γ

N
[A(t) − ηai(t)]. (136)
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The term proportional to η in (136) describes the fact that agent i accounts for his

own contribution to A(t). One indeed sees that (136) reduces to (111) for η = 0,

whereas for η = 1 agent i considers only the aggregate action of other agents,

A(t) − ai(t) =
∑

j (=i aj(t), and does not react to his own action ai(t). Values of η

between 0 and 1 tune the extent to which agents account for their “market impact”.

It is easy to see that the dynamics for η = 1 behaves in the long run in a radically
different way than for η = 0. Let us take the average of (136) in the steady state and

define mi = 〈ai〉. We note that

〈∆i(t + 1)〉 − 〈∆i(t)〉 = −
Γ

N

[
∑

j

mj − ηmi

]

= −
Γ

N

∂Hη

∂η
(137)

where

Hη =
1

2

(
∑

i

mi

)2

−
η

2

∑

i

m2
i . (138)

This implies that the stationary values of the mi’s are given by the minima of Hη.

Notice that H1 is a harmonic function of the mi’s. Hence it attains its minima on the
boundary of the hypercube [−1, 1]N . So for η = 1 all agents always take the same actions

ai(t) = mi = +1 or ai(t) = mi = −1 and the waste of resources is as small as possible,

as σ2 = 0 or 1 if N is even or odd, which is a tremendous improvement with respect to

the case η = 0 (where σ2 ∼ N or N2). These states are indeed Nash equilibria of the

associated N persons minority game. This argument can be extended with some work

to all η > 0, and one can show that the stationary states of the learning process for any
η > 0 are Nash equilibria. Hence as soon as agents start to account for their market

impact (η > 0) the collective behavior of the system changes abruptly and inefficiencies

are drastically reduced. Furthermore, the asymptotic state is not unique (Hη possesses

more than one minimum!) and the one in which the system settles is selected by the

initial conditions. The set of equilibria is discrete and the system jumps discontinuously

from an equilibrium to another, as the initial conditions ∆i(0) vary. This also contrasts
with the η = 0 case, where the equilibrium shifts continuously as a function of the initial

conditions.

Let us now consider the full MG with market impact correction with public

information [52] (the above picture is representative of the situation in the MG in the

limit α → 0), whose learning dynamics reads

Uig(t + 1) − Uig(t) = −
aµ(t)

ig

N

[
A(t) − η

(
aµ(t)

igi(t)
− aµ(t)

ig

)]
(139)

As before, η allows to interpolate between the naive ‘price-taking’ behavior of the

standard MG in which agents are unaware of their market impact (η = 0) and a more

sophisticated behavior where agents account for it. Note indeed that with η = 1 the

reinforcement Uig(t + 1)−Uig(t) is proportional to the actual payoff that agent i would

have got had he actually played strategy g at time t. Hence in a way the above learning

process assumes that agents are able to disentangle their contribution from the aggregate
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A(t). This may not be realistic in practical situations. For example imagine that, as in

the original version of the MG, agents only observe the sign of A(t) and not its value.

This information is not enough to infer the sign of A(t) − aµ(t)
igi(t)

+ aµ(t)
ig and hence the

payoff they would have received if they had played strategy g instead of gi(t). However,

agents can approximately account for the market impact by rewarding the strategy they

have played by a reinforcement factor η, i.e.

Uigi
(t + 1) − Uig(t) = −aµ(t)

ig

A(t)

N
+

η

N
δggi(t) (140)

In fact, the collective behavior of the learning dynamics above is identical to that

obtained with (139). This is because what matters in the long run is the time average

of the processes, which is the same because 〈aigaig′〉 + δg,g′.
At first sight, the term proportional to η looks negligible with respect to A(t)

because it is of order one whereas A(t) = O(
√

N). However while A(t) fluctuates

around zero, δs,si(t) has always the same sign. When the term proportional to A(t) is

averaged over the P = αN states µ it also becomes of order one. Hence the effect of

the two terms is comparable in the long run. (A similar phenomenon occurs in spin

glasses where the naive mean filed theory has to be corrected by the Onsager reaction
term to eliminate self-interaction effects.). For generic η (0 ≤ η ≤ 1) the steady state is

described by the minima of

Hη = H − η
∑

i

ξ2
i (1 − m2

i ) (141)

where H = 〈A|µ〉2 is the predictability. Note that H1 = σ2, so players who fully account

for their impact effectively minimize fluctuations.

Unfortunately, the study of the ground state properties of Hη requires techniques

which are more sophisticated than those used for the MG. Indeed for η > 0 the simple

replica-symmetric solution that we have discussed so far becomes unstable against

perturbations that break replica permutation symmetry (this is related to the fact
that Hη has more than one minimum) and one needs to study more complicated

solution types [54]. The ensuing phase structure is shown in Fig. 18 The critical

line (analog to the de Almeida-Thouless line of spin-glass theory) can be calculated

straightforwardly using the dynamical stability argument mentioned at the end of Sec.

4.5. It suffices to replace Uij = ξiξj with Uij = ξiξj − ηδijξ2
i . The resulting condition

reads 1 − φ = α(1 − √
η)2 and coincides with the critical line for replica-symmetry

breaking.

The MG behavior (η = 0) is separated from the Nash equilibrium behavior (η = 1)

by a phase transition which is continuous for α > αc. Remarkably for α < αc the

transition occurs at η = 0 and it becomes discontinuous. As shown in Fig. 19, nothing

dramatic happens when crossing the transition for α > αc. For α < αc instead σ2/N

features a discontinuous jump across the transition line at η = 0. The origin of the
discontinuity lies in the dynamic degeneracy of the system for α < αc and η = 0.

Even an infinitesimal change in η can dramatically alter the nature of the minima of



CONTENTS 55

0.01 0.1 1 10 100

*

0

0.5

1

%

RS

RSB

Figure 18. Phase diagram of the Minority Game in the (α, η) plane. The RS
region corresponds to the replica-symmetric phase and the RSB region to the replica
symmetry broken phase (from [54]). The mark corresponds to the critical point
αc + 0.3374. Above it, the RSB → RS transition is second order; below it, it is
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Figure 19. σ2/N as a function of η for S = 2 and α + 0.079 < αc + 0.3374 and
α + 0.63 > αc. Results both of numerical simulations of the minority game and of the
numerical minimization of Hη are shown. In both cases the replica symmetry breaks
at η = 0 (from [52]).

Hη: for negative η there is only one minimum which becomes shallower and shallower

as η → 0−. At η = 0 the minimum is always unique but it is no more point-like.

Rather it is a connected set. An infinitesimal positive value of η is enough to lift

this degeneracy. The set of minima becomes suddenly disconnected. At fixed α < αc,

varying η across the transition Hη changes continuously – with a discontinuity in its first

derivative – whereas the remaining fluctuation terms in σ2/N change discontinuously
with a jump. The potential implications of this result are quite striking: rewarding the
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strategy played more than those which have not been played by a small amount is always

advantageous. In particular, an infinitesimal reward is sufficient to reduce fluctuations

by a finite amount, for α < αc.

Let us finally come to the case η = 1, corresponding to NE, in which, as we said,
steady states coincide with the states of minimum σ2. One understands that these

minima occur when agents play only one of their available strategiesP , since σ2 attains

minima in the corners of the configuration space [−1, 1]N . The statistical properties of

the minima of σ2 can again be analyzed with tools of statistical mechanics. As is clear

from Fig. 18, for η = 1 one is always in the phase with broken replica symmetry because

σ2 attains its minima on a disconnected set of points. For S = 2 strategies per agent it
has been shown analytically via the so-called annealed approximation that the number

of NE (i.e. of minima of σ2) is exponentially large in N (see Fig. 20). It is clear that the

global efficiency of NE is better than in the standard MG, since fluctuations are smaller.

Furthermore, increasing the number S of strategies the efficiency of NE increases (i.e.

σ2 decreases) as shown in [52]. This contrasts with what happens in the MG, where the

efficiency generally decreases when S increases. Therefore, not only agents in the MG

play sub-optimally, but the more resources they have the larger is the deviation of their
behavior from an optimum.

We are still left with the question: why do agents in the MG play sub-optimally?

In order to answer, let us consider the case of an external agent with S strategies,

P There may also be other NE, which correspond to saddle points of σ2 and are hence stationary
points of the multi-population replicator dynamics. Agents do not play evolutionarily stable strategies
in these NE and as we shall see the dynamics of learning never converges to these states. Hence we do
not consider these NE further.
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an agent who does not take part in the game but just observes its outcome from

the outside. From this position, each of his strategies delivers an average virtual gain

πvir
g = −ag 〈A〉 (g = 1, . . . , S). Given that the strategies aµ

g are drawn randomly, the

πvir
g ’s are independent random variables. Moreover, since πvir

g is the sum of P 3 1

independent variables aµ
g 〈Aµ〉 /P , their distribution is Gaussian with zero mean and

variance

Var
(
πvir

g

)
=

1

P 2

P∑

µ=1

Var(aµ
g ) 〈A|µ〉2 =

H

P
. (142)

Clearly, the strategy g$ bearing the highest expected profit πvir
g( is superior to all others.

It would be most reasonable for this agent to just stick to this strategy.

However, the same agent inside the game will typically use not only strategy g$

since every strategy, when used, delivers a real gain which is reduced with respect to

the virtual one by the “market impact”. Imagine the “experiment” of injecting the new

agent in a MG. Then, neglecting the reaction of other agents to the new-comer, one

would have that 〈A|µ〉 → 〈A|µ〉 + aµ
g . Then the real gain of the newcomer is:

πreal
g + −ag 〈A〉 − 〈ag ag〉 = πvir

g − 1. (143)

The agent will then update the score of the strategy he uses (say g) with the real gain

πreal
g and those of the strategies he does not use (say g′) with the virtual one, so that

Ug′ = πreal
g′ + 1 − agag′ + πreal

g′ + 1. Therefore agents in the MG over-estimate the

performance of the strategies they do not play. Then if strategy g is played with a

frequency fg, the virtual score increases on average by

vg = Ug(t + 1) − Ug(t) = πreal
g − fg + 1 (144)

The fact that a good strategy g is used frequently reduces its perceived success+ and

leads agents to mix their best strategy with less performing ones. This is a consequence

of the fact that agents neglect their impact on the market. It is now clear why, given
that the market impact reduces the perceived performance vg of strategies by an amount

which equals the frequency fg with which strategies are played, agents can improve their

performance if they reward the strategy which they have played by some extra points

(the η factor). This contributes a term ηfg to the rate of growth of strategy g so (144)

becomes vg = πreal
g − (1− η)fg + 1. Any η > 0 reduces the market impact and improves

agent’s performance. In particular for η = 1 agents properly account for the market
impact and indeed in this case the growth rate vs of their strategies do not depend on

the way they play.
+ More precisely the frequency fg with which the agent plays strategy g will be such that the rate
of increase of the scores is the same vg = v! for all strategies with fg > 0. Strategies which are not
played (fg = 0) have πreal

g + 1 < v!. Considering the reaction of other agents does not modify these
conclusions.
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4.8. Exogenous vs endogenous information

In the El Farol problem and in the MG the state µ(t) is determined by the outcome of
past games, as in (32). In other words µ(t) is an endogenous information which encodes

information on the game itself: agents record which has been the winning action in the

last m = log2 P games and store this information in the binary representation of the

integer µ. How do the results which we derived for exogenous information, i.e. when µ

is just randomly drawn at each time, change if we go back to endogenous information?

This issue has been the subject of much debate and considerable analytical and
numerical work was required to settle it. We will limit ourselves here to a sketch of

the line of reasoning and of the results. As we said, it was at first believed, based on

computer simulation, that the MGs with exogenous and endogenous information yield

the same macroscopic pictures. However the situation turned out to be more subtle.

In fact, (32) implies that the dynamics of µ(t) depends on the collective behavior of

the game outcome A(t). The key quantity to understand the dynamics of information
patterns is the stationary state distribution of the process µ(t) which is induced by the

dynamics of A(t). As in the El Farol model, this process is a diffusion on a De Bruijn

graph, where the transition probabilities depend on the statistics of A(t) conditional on

a particular site µ of the graph. When the dynamics of A(t) has a strong stochastic

component, which occurs when many agents play in a probabilistic fashion (i.e. when

|mi| = | 〈si〉 | < 1), all possible transition µ → µ′ occur with a positive, finite probability.

Hence the stationary state distribution has a support on all the states µ ∈ {1, . . . , P}.
At odd with the case of exogenous information, some state may be visited more often

than some other state, but all states are visited. This leads ultimately to the same

qualitative scenario as in the completely random case and explains the early numerical

finding on the irrelevance of the origin of the information in the MG∗. Roughly speaking,

one can say that this scenario holds whenever

1

N

N∑

i=1

m2
i < 1, (145)

which in sufficient to ensure that agents behave in a probabilistic way.
To be more precise, one can analyze the steady-state distribution of history

frequencies ρ(µ) relative to the uniform case, which is given by

Q(f) =
1

P

∑

µ

δ[f − Pρ(µ)] (146)

(if ρ(µ) = 1/P for all µ, Q(f) is a delta-distribution at f = 1) as was done e.g. in [55].

This quantity is reported in Fig. 21. One sees that in the supercritical regime the

distribution is indeed not uniform. This explains why, from a quantitative viewpoint it

turns out that macroscopic observables actually depend on the type of information

in the asymmetric regime α > αc where the deviations of the history frequency
∗ Rather than the origin of information, Ref. [48] speaks of irrelevance of memory. The term “memory”
is used in an improper way. Actually the memory of agents is stored into their scores Uig(t).
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Figure 21. Relative distribution of frequencies Q(f) for at α = 0.1 (top) and α = 2
(bottom). Simulations performed with αN2 = 30000, with averages over 100 disorder
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distribution from uniformity are more significant. The arguments just described, though
approximate, are able to account for these deviations rather well. Recently, the dynamics

of the MG with endogenous information was solved exactly by the generating functional

method [56], confirming the general picture outlined above.

Clearly, the situation changes drastically when one considers the MG corrected for

the market impact with η = 1. We know that all agents ultimately freeze in this case,

so that the learning dynamics converges to a state with Q = 1, i.e. with no stochastic
fluctuations; therefore in the long run A(t) becomes a function of µ(t) alone. This

means that the dynamics of µ(t) becomes deterministic: it locks into periodic orbits

of the order of
√

P values of µ. As a consequence, only a tiny fraction of information

patterns are generated by the dynamics of A(t) and these few on the periodic orbit are

visited uniformly (one after the other). This dynamic reduction of the size information

space from P to a number of order
√

P implies a similar reduction of the effective value
of α to something close to 0. Given that σ2/N decreases with α, we conclude that the

performance of the system with endogenous information improves with respect to the

case of exogenous information. For intermediate values of η and endogenous information

the system interpolates between the two extreme behaviors of the standard MG (η = 0)

– where the origin of information is to some extent irrelevant – and of the sophisticated

agents (η = 1) case – where a dynamic selection of a small subset of states µ occurs.

5. Extensions and generalizations

We shall discuss now a few variations on the MG theme, mostly inspired by problems

related to financial markets, in particular by the origin of the peculiar intermittent and

non-Gaussian (‘fat tailed’) fluctuation patterns they generate. In the reference model
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of price dynamics, which is the simplest one accounting for no-arbitrage hypothesis

and market’s efficiency, the logarithm of prices performs a random walk and hence

returns are gaussian. On the other hand, several complex agent-based models are able

to reproduce a realistic phenomenology to a high degree but with little analytic control.

In the context of MGs we shall see that heavy tails in the distribution of returns and

clustering in time emerge close to the phase transition, which suggests that markets
operate close to criticality. Realistic behaviour persists also when agents have a finite

score memory, but it disappears as soon as agents account for their market impact. We

shall also briefly discuss MGs with many assets, in which agents have to choose among

several assets with different information content. Then we shall move on to Majority

Games and review the properties of mixed models in which fundamentalists and trend-

followers interact. A discussion of a model with asymmetric (private) information closes
the section.

5.1. Grand-canonical Minority Game and stylized facts

The following model introduces volume fluctuations in the MG, as the number of agents

involved in the game varies from one time step to the next. In the grand-canonical
MG [57], each agent i has at his disposal only one quenched random trading strategy

ai = {aµ
i } and has to choose whether to join the market (φi(t) = 1) or not (φi(t) = 0) at

every time step. In order to make this decision the agent compares the expected profit

from joining the market to a fixed standard. The model is completely defined by the

following scheme:

φi(t) = θ[Ui(t)]

A(t) =
∑

i

φi(t)a
µ(t)
i (147)

Ui(t + 1) − Ui(t) = −aµ(t)
i A(t) − εi

The quantity εi represents the benchmark: εi < 0 means that agents have an incentive

to take part in the market because, for instance, they are urged to sell or exchange

assets; εi > 0 implies that agents receive a fixed positive payoff by staying away from

the market, like a fixed interest from a bank. Alternatively, εi can be seen as the a

priori incentive of agent i to enter the market: if εi < 0 (resp. εi > 0) the agent has
a small incentive to enter (resp. stay out). One can consider two different types of

agents: producers, who always enter the market and are characterized by εi = −∞; and

speculators, who instead aim at taking profit of fluctuations and are characterized by a

finite εi. We set

εi = ε for 1 ≤ i ≤ Ns

εi = −∞ for Ns + 1 ≤ i ≤ Ns + Np ≡ N

where Ns and Np stand for the number of speculators and producers, respectively.

Speculators act on the market only if they expect to receive a payoff higher than the

benchmark; producers act no matter what.
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Figure 22. Left panel: relative number of active agents (top), volatility and
predictability per pattern (bottom) as a function of ns for ε = 0.1 (open markers)
and ε = −0.01 (full markers). Right panel: cumuluative probability distribution
P>(A) = Prob{|A(t)| > x} versus x in the steady state. Inset: time series A(t)
versus t for ns = 20 (top) and ns = 200 (bottom). From [57].

The relevant control parameters are the relative number of speculators and

producers, respectively: ns = Ns/P and np = Np/P . As usual, one is interested in

the behavior of the volatility σ2 and of the predictability H . Besides, it is interesting

to analyze also the relative number of active speculators, defined as

nact =
1

P

∑

i

〈φi〉 (148)

Results are shown in Fig. 22. On sees that with a fixed number np of producers, the

market becomes more and more unpredictable, i.e. H decreases, as the number ns

of speculators increases, independently of the value of ε. At the same time also the

volatility σ2 decreases as agents play in an increasingly coordinated way. In a market

with few speculators (ns < 1 in Fig.), most of the fluctuations in A(t) are due to the
random choice of µ(t) (i.e. σ2 + H) and the number nact of active speculators grows

approximately linearly with ns. When ns increases further, the market reaches a point

where it is barely predictable. Now the collective behavior becomes ε-dependent:

• for ε < 0 the relative number of active speculators continues growing with ns even

if the market is unpredictable H + 0. The volatility σ2 has a minimum and then
it increases with ns

• for ε > 0, instead, the relative number of active traders decreases and finally

converges to a constant. This means that the market becomes highly selective:

only a negligible fraction of speculators trade (φi(t) = 1) whereas the majority is

inactive (φi(t) = 0). The volatility σ2 also remains roughly constant in this limit

In other words, ε = 0 for ns ≥ n$
s(np) (n$

s(1) = 4.15 . . .) is the locus of a first order phase

transition across which Nact and σ2 exhibit a discontinuity.
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different system sizes P for Γ = 1, 10 and ∞.

So far for collective properties; what about stylized facts? Numerical simulations

reproduce anomalous fluctuations similar to those of real financial markets close to the

phase transition line. As shown in Fig. 22, the distribution of A(t) is roughly Gaussian

for small enough ns (it must tend to a Gaussian when ns → 0), and has fatter and fatter
tails as ns increases. The same behavior is seen for decreasing ε: fat tails emerge in the

vicinity of the critical point. In particular the distribution of A(t) shows a power law

behavior P (|A| > x) ∼ x−β with an exponent which can be estimated to be β + 2.8, 1.4

for ns = 20, 200 respectively and ε = 0.01. With ns = 100 the exponent takes values

β + 1.4, 2.3, 3.1 for ε = 0.01, 0.1, 0.5. Note that empirical values of β typically range

from 2 to 4. Finally: volatility clustering is observed in conjunction with the power-law
tails (see inset).

Let us analyze more closely the emergence of power-law tails in the distribution

of A(t) and of volatility clustering. In Fig. 23 the kurtosis excess (if x is a generic

random variable with zero mean, K is defined as K =
〈x4〉
〈x2〉2 − 3; loosely speaking, it

is a convenient proxy for the distance of a certain distribution from a Gaussian, for
which K = 0) K of the distribution is shown as a function of the system size and of the

learning rate Γ for a ‘regularized’ model with choice rule

Prob{φi(t) = 1} = 1/[1 + e−ΓUi(t)] (149)

One sees that as the system size increases (or if one introduces a small enough learning

rate Γ,see below) the distribution tends to a Gaussian as K decreases with P . Moreover

we see that for a rage of parameters the appearance of fat tails is sample-dependent, as

both samples with and without fat tails may occur.
This behaviour is reminiscent of well-known finite-size effects in the theory of critical

phenomena: in the d-dimensional Ising model, for example, at temperature T = Tc + γ

critical fluctuations (e.g. in the magnetization) occur as long as the system size N

is smaller than the correlation volume ∼ γ−dν . But for N 3 γ−dν the system shows
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the normal fluctuations of a paramagnet. Some light on the finite-size effects in our

case can be shed by studying the continuous-time limit of the score updating dynamics.

Regularizing the choice rule to

prob{φi(t) = 1} = 1/[1 + e−ΓUi(t)] (150)

with learning rate Γ, and applying the machinery described in Sec. 4.5, one can

transform the discrete-time learning dynamics into the continuous-time Langevin

process

U̇i(t) = −ai 〈A〉y − ε + ηi(t) (151)

〈ηi(t)ηj(t
′)〉 =

σ2

N
aiajδ(t − t′) (152)

Notice that the noise strength is proportional to the time dependent volatility σ2 = 〈A2〉.
The noise term is a source of correlated fluctuations because aiaj 〈A2〉/N + 1/

√
N is

small but non zero, for i '= j if N is finite. This noise competes with the deterministic

part of (151): if the former outweighs the latter, then one expects that the dynamics

will sustain collective correlated fluctuations in the Ui(t) which otherwise would be

washed away. In order to obtain an approximate analytic condition for the onset of

volatility clustering one may then compare the noise correlation term, which is of order

aiaj 〈A2〉y/N ∼ σ2/P 3/2 for i '= j, with the square of the deterministic term of (151),

which is given by
[
ai 〈A〉y + ε

]2
+

[√
H/P + ε

]2
. Rearranging terms, one finds that

volatility clustering can be expected to set in when

H

σ2
+ 2ε

√
H

P

P

σ2
+ ε2 P

σ2
+

B√
P

(153)

where B is a constant. This prediction finds remarkable confirmations in numerical

experiments [57]. Recalling the analogy with magnetic systems made at the beginning

of this section, one understands that (153) and H/P ∼ ε2 imply that the same occurs

in the GCMG with dν = 4. In other words, the critical window shrinks as N−1/4 when
N → ∞. However, because of the long range nature of the interaction, anomalous

fluctuations either concern the whole system or do not affect it at all. In the critical

region the Gaussian phase coexists probabilistically with a phase characterized by

anomalous fluctuations. This, like the discontinuous nature of the transition at ε = 0,

is typical of first order phase transitions.

5.2. Market ecology

One of the first modification of the MG has investigated the effects of introducing an

explicit asymmetry in the two possible actions [58]. This is the case of the El Farol bar

problem: the actions ‘go’ or ‘don’t go’ to the bar are not symmetric because (i) if one

takes the wrong action there is still a difference between going to a crowded bar and not
going to an uncrowded bar and (ii) the comfort level corresponds to a share of 60% of

agents attending. If each agent takes the opposite choice one ends up in an inefficient
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attendance of 40%. The outcomes of the MG are instead symmetric: If every agent

switches to the opposite choice, all the payoffs remain unchanged. Quite generally this

leads to study games where the payoffs to agent i at time t is given by

πi(t) = −aµ(t)
igi(t)

[

Aµ(t)
0 +

∑

j

aµ(t)
jgj(t)

]

(154)

where A0 = {Aµ
0} is some fixed vector. In particular, [58] investigated the case where

Aµ
0 = L independently of µ, as in the El Farol bar, and where information is endogenous.

Interestingly, because of the fact that due to (32) some values of µ occur more often

than others, the conclusion that the collective behavior is independent of whether the
information µ is endogenously generated or is exogenous (i.e. random), which was

roughly correct for the standard MG, is not true in this case.

There is however a second motivation for considering a model based on (154) which

was explored in [59,60]. Considering the MG as a model of a financial market, it can be

argued that there are different types of market participants with different goals. Some

trade to gain money from transactions with no particular interest in the asset they buy
and sell. Only price fluctuations matter for this kind of traders, which one usually calls

‘speculators’. Another type of market participants are those who use the market for

exchanging goods. This is indeed the reason why markets exist. This type of agents

is interested in the asset itself: they will buy it or sell it irrespective of the history of

recent fluctuations: this type of agents can be called producers. While speculators have

a range of behavioral rules which process the available information in search of arbitrage
opportunities, producers use a trading rule which is constant in time. Producers are

part of the financial world and their behavior is correlated with the state of the world µ

which is thought to capture all relevant economic information: in other words, they only

have one strategy at their disposal. This type of traders play a role similar to that of

hedgers7: they inject information into the market. Their trading activity is completely

predictable given the state of the world µ and the term Aµ
0 represents their aggregate

contribution to the market.

It is easy to understand that in a market composed of producers only the

distribution of price changes would be nearly Gaussian: in fact, Aµ
0 can be regarded

as the sum of Np random terms, where Np is the number of producers. The process

associated to producers can be considered as the fundamentals, i.e. the price process

which reflects the economic performance of the asset. Roughly speaking, one may expect
that speculative trading will color this process and transform its statistical properties.

Actually the discussion may be extended to a further type of agents, the so-called noise

traders. These persons totally disregard the state of the world µ or have no information

at all on it. They rather follow rules of behavior which are statistically uncorrelated

with µ (such as the moon phases) and with the behavior of other agents. The presence

of these agents does not introduce any new qualitative features. The question is: how
do all these “species” of traders interact?

/ A hedge is an action (e.g. buy/sell) done with the aim of reducing the risk of another action.
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Figure 24. Average gains of producers and speculators as a funcion of the (reduced)
number N/P of adaptive agents (speculators). The plot refers to a system with Np = P
passive agents (producers). The gain of speculators is positive only when they are few
and it decreases when new speculatos join the market. Producers losses are reduced by
speculators. The predicatbility H is also plotted. Inset: Phase diagram in the space
of the reduced numbers of speculators and producers. The shaded region to the right
of the solid line is the symmetric phase where H = 0. The gain of speculators vanishes
on dashed line and it is positive in the region to the left.

An intuitive argument runs more or less as follows. First, note that in a market

composed of producers price changes would depend only on µ. Such a highly predictable

market is very favorable for speculators who may derive considerable gains. However

when more and more speculators join the market, its predictability decreases and the

profit of speculators gets more and more meager. This effect is illustrated in Fig. 24,

which also shows that producers instead benefit from the presence of speculators because
their losses are reduced. When the number of speculators increases beyond a critical

value, which depends on the relative number Np/P of producers, the market enters the

symmetric phase where H = 0 and the outcome A(t) becomes unpredictable from µ.

This shows that the relation between these two species is more similar to symbiosis than

to competition: producers feed speculators by injecting information in the market and

benefit, in their turn, of the liquidity provided by speculators.

5.3. Multi-asset Minority Games

5.3.1. Definitions and results Minority Games with many assets have been introduced

in order to investigate how speculative trading affects the different assets in a market

[61, 62]. A tractable version of these models has been considered in [63], with the aim

of studying how agents modify the composition of their portfolios depending on the
‘complexities’ or information contents of the different assets.

The model consists essentially of two coupled MGs with one strategy each. Let us
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consider the case of a market with two assets γ ∈ {−1, 1} and N agents. At each time

step /, agents receive two information patterns µγ ∈ {1, . . . , Pγ}, chosen at random and

independently with uniform probability. As always, Pγ is taken to scale linearly with N ,

and their ratio is denoted by αγ = Pγ/N . Every agent i disposes of one trading strategy

per asset, aiγ = {aµγ

iγ }, that prescribe an action a
µγ

iγ ∈ {−1, 1} (buy/sell) for each

possible information pattern of asset γ. Each component a
µγ

iγ is selected randomly and
independently with uniform probability and is kept fixed throughout the game. Traders

keep tracks of their performance in the different markets through a score function Uiγ(/).

The behavior of agents is summarized by the following rules:

si(t) = sign[yi(t)]

Aγ(t) =
N∑

j=1

a
µγ (t)
jγ δsj(t),γ (155)

Uiγ(t + 1) − Uiγ(t) = −aµγ (t)
iγ Aγ(t)/

√
N

where Aγ(t) represents the ‘excess demand’ or the total bid of asset γ, while yi(t) =∑
γ γUiγ(t). The Ising variable si indicates the asset in which player i invests at time t,

which is simply the one with the largest cumulated score. As usual, it is the minus sign
on the right-hand side of (155) that enforces the minority-wins rule in both markets.

It is possible to characterize the asymptotic behaviour of the multi-agent system (155)

with a few macroscopic observables. In the present case, besides traditional observables

such as the predictability H and the volatility σ2, defined respectively as

H =
∑

γ∈{−1,1}

1

NPγ

Pγ∑

µγ=1

〈Aγ |µγ〉2 = H+ + H− (156)

σ2 =
1

N

∑

γ

〈
A2

γ

〉
= σ2

+ + σ2
− (157)

it is important to analyze the relative propensity of traders to invest in a given market,

namely

m =
1

N

N∑

i=1

〈si〉 (158)

A positive (resp. negative) m indicates that agents invest preferentially in asset +1

(resp. −1).

The phase structure of the model is displayed in Fig. 25. The (α+, α−) plane is

divided in two regions separated by a critical line. In the ergodic regime, the system
produces exploitable information, i.e. H > 0, and the dynamics is ergodic, that is

the steady state turns out to be independent of the initialization Uiγ(0) of (155).

Below the critical line, instead, different initial conditions lead to steady states with

different macroscopic properties (e.g. different volatility), but traders manage to wash

out the information and the system is unpredictable (H = 0). This scenario essentially

reproduces the standard MG phase transition picture.
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Figure 25. Left panel: analytical phase diagram of the canonical two-asset Minority
Game in the (α+, α

−
) plane. Right panel: behavior of m (top), H (middle) and σ2

(bottom) versus α+ − α
−

for α+ + α
−

= 0.5. Markers correspond to simulations with
N = 256 agents, averaged over 200 disorder samples per point. Lines are analytical
results (from [63]).

The behaviour of the macroscopic observables m, H and σ2 along the cut α++α− =

1/2 (in the ergodic phase) is also reported in Fig. 25. One sees that agents play

preferentially in the market with smaller information complexity, which is particularly

inconvenient as it coincides with the one with less exploitable information. This is
a somewhat paradoxical result since a näıve argument would suggest that agents are

attracted by information rich markets. It actually turns out that this simple argument

is incorrect and the observed behavior is due to the fact that agents are constrained to

trade in one of the two markets. Rather than seeking the most profitable asset, agents

simply escape the asset where their loss is largest. The conclusion is indeed reversed

when traders may stay out of the market and have negative incentives to trade (that
is, when they have an incentive not to trade). In this case, which corresponds to a

grand-canonical multi-asset MG, the information-rich asset is chosen preferentially [63],

though the phase structure becomes more complex than usual as new phases (with

broken ergodicity and global predictability) arise. Note however that in this framework

no correlations among the assets emerge, i.e. 〈AγA−γ〉 = 0. Indeed

〈A+A−〉 =
∑

i,j

〈
aµ+

i+ aµ−
j−

1 + si

2

1 − sj

2

〉
(159)

Now, the dynamical variables Uiγ(t) evolve on timescales much longer (of order Pγ)

than those over which the µγ evolve. Hence we can safely assume that the distribution

of si is independent of µγ and factorize the average 〈aµ+
i,+aµ−

j,−〉 = 〈aµ+
i,+〉〈a

µ−
j,−〉 over the

independent information arrival processes µ±(t). Given that
〈
aµ±

i,±
〉
+ 0 the conclusion

〈A+A−〉 + 0 follows immediately. The reason for this is that traders’ behavior is aimed



CONTENTS 68

at detecting excess returns in the market with no consideration about the correlation

among assets. This conclusion is against the empirical evidence, as in real financial

markets correlation between stocks are overwhelmingly positive (if it wasn’t so, making

money in a financial market would be much easier!). The microscopic origin of this

phenomenon is a rather difficult issue, which will surely receive much attention in the

near future.
Below we describe the dynamical solution of this model, as an example of the

application of the path-integral formalism to this type of problems.

5.3.2. Dynamics (path-integral approach) The dynamical approach to the stationary
macroscopic properties of Minority Games is based on the use of dynamical generating

functionals à la Martin-Siggia-Rose [64] to turn the original multi-agent process into

a single stochastic equation for the behavior of a single ‘effective agent’, similarly to

what is done to study the dynamics of spin systems with quenched disorder after [65].

This procedure, which was first applied to Minority Games in [66], allows ultimately

to derive closed equations for correlation functions, response functions, and all other
relevant time-dependent macroscopic parameters. Typically, the resulting equations are

too complicated to be solved at all times. However, with suitable Ansätze one may

restrict the analysis to specific solvable regimes (in this case, we shall focus on ergodic

steady states). Dynamical phase transitions can then be identified from the breakdown

of the assumed behavior. The method is very general, it doesn’t rely on the existence of

a Hamiltonian nor on the validity of detailed balance, but requires an analytical tour de
force for solving the most general MGs. Luckily, some reasonable starting simplification

help to make it less cumbersome. One is Markovianness, which in MGs corresponds to

models with random external information. Another is changing the updating rule from

the usual ‘on-line’ learning, in which agents modify their preferences at each time step,

to a ‘batch’ learning, in which agents update their preferences only after they have seen

all possible information patterns Strictly speaking, the batch process is not equivalent
to the on-line process but in many cases, including that which we consider here, the

two are qualitatively identical. Both simplifications will be made in this section, where

we expound the dynamical solution of the canonical multi-asset MG. The method is

described in detail for other models and more general cases in [43].

So we consider two coupled GCMGs, interpreted as a system with two assets

characterized by different sizes of information sets and, on the agents’ side, by different
strategies and valuation functions. From (155), one sees that the preferences evolve

according to

yi(t + 1) − yi(t) = −
∑

γ∈{−1,1}

γaµγ (t)
iγ Aγ(t)/

√
N (160)

The ‘batch’ approximation is obtained by averaging the right-hand side over the µσ’s.

This leads, after a time re-scaling (for simplicity, we denote the re-scaled time again by
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t), to

yi(t + 1) − yi(t) = −
∑

γ∈{−1,1}

nγ

N∑

j=1

Jγ
ijφjγ(t) (161)

where nγ = 1/αγ and Jγ
ij = (1/N)

∑
µγ

aµγ

iγ aµγ

jγ are quenched random couplings of

Hebbian type. We also introduced the variable

φiγ(t) = γδsi(t),γ =
1

2
[γ + si(t)] (162)

All moments like mi(t) = 〈si(t)〉 and cij(t, t′) = 〈si(t)sj(t′)〉 – the brackets standing for

an average over all possible time evolutions of the system – and in turn macroscopic

quantities like the magnetization m = 〈〈
∑

i mi(t)/N〉〉 or the autocorrelation function

C(t, t′) = 〈〈
∑

i cii(t, t′)/N〉〉 can be derived formally from the generating functional

Z[ψ] =
〈
ei

∑
t ψ(t)·s(t)

〉
(163)

by taking suitable derivatives with respect to the auxiliary generating fields ψ = {ψi};
for instance

C(t, t′) = −
i

N

∑

i

lim
ψ→0

∂2 〈〈Z[ψ]〉〉
∂ψi(t)∂ψi(t′)

(164)

The 〈· · ·〉 average is performed by imposing that the si satisfy (161) at each time step:

〈〈Z[ψ]〉〉 =

∫
p[y(0)] ei

∑
t ψ(t)·s(t)

〈〈
∏

t

W [y(t) → y(t + 1)]

〉〉

dy(t) (165)

with transition matrix fixed by (161):

W [y(t) → y(t + 1)] =
∏

i

δ



yi(t + 1) − yi(t) − hi(t) +
∑

γ∈{−1,1}

nγ

N∑

j=1

Jγ
ijφjγ(t)



 (166)

The fields hi(t) will be used to generate response functions. At this point the following

steps need to be taken:

a. Introduce the order parameters

Q(t, t′) =
1

N

N∑

i=1

si(t)si(t
′)

L(t, t′) =
1

N

N∑

i=1

ŷi(t)ŷi(t
′)

K(t, t′) =
1

N

N∑

i=1

si(t)ŷi(t
′) (167)

a(t) =
1

N

N∑

i=1

si(t)

k(t) =
1

N

N∑

i=1

ŷi(t)
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in (165) via such identities as

1 =

∫
dQ(t, t′)δ

[

NQ(t, t′) −
N∑

i=1

si(t)si(t
′)

]

; (168)

b. Use the integral representation for the δ-distributions;

c. Average over the quenched disorder after isolating the relevant terms with the help

of the variables

xµγ
γ (t) =

1
√

Pγ

∑

i

φiγ(t)a
µγ

iγ (169)

wµγ
γ (t) =

1
√

Pγ

∑

i

ŷi(t)a
µγ

iγ (170)

These steps require standard manipulations at most. After a factorization over i and

µγ, one arrives at

〈〈Z[ψ]〉〉 =

∫
DΘDΘ̂ eN[Ψ(Θ,Θ̂)+Ω(Θ̂)+Φ(Θ)] (171)

where Θ(t, t′) = {Q(t, t′), L(t, t′), K(t, t′), a(t), k(t)} is the vector of order parameters,

Θ̂(t, t′) = {Q̂(t, t′), L̂(t, t′), K̂(t, t′), â(t), k̂(t)} is the conjugate vector of Lagrange

multipliers, while the functions Ψ, Φ and Ω are given by

Ψ = i
∑

t

[
a(t)â(t) + /(t)/̂(t)+

]

+i
∑

t,t′

[
Q(t, t′)Q̂(t, t′) + L(t, t′)L̂(t, t′) + K(t, t′)K̂(t, t′)

]
(172)

Ω =
1

N

∑

i

log

∫ ∏

t

dŷ(t)dy(t)p[y(0)] e−i
∑

t[â(t)s(t)+'̂(t)ŷ(t)]

×ei
∑

i ψi(t)s(t)+i
∑

t ŷ(t)[y(t+1)−y(t)−hi(t)]−i
∑

t,t′[Q̂(t,t′)s(t)s(t′)+L̂(t,t′)ŷ(t)ŷ(t′)+K̂(t,t′)s(t)ŷ(t′)] (173)

Φ =
∑

γ

{
−

αγ

2
log ‖nγDγ‖

+αγ log

∫
dŵe−

nγ
2

∑
t,t′ L(t,t′)ŵγ(t)ŵγ(t′)− 1

2

∑
t,t′[AT

γ (nγDγ)−1Aγ](t,t′)ŵγ(t)ŵγ (t′)
}

(174)

where

Dγ(t, t
′) =

1

4
[1 + γa(t) + γa(t′) + Q(t, t′)] (175)

Aγ(t, t
′) = δtt′ −

inγ

2
[γk(t′) + K(t, t′)] (176)

In the limit N → ∞ the integral (171) is dominated by the saddle-point where the

order parameters take the values

C(t, t′) = 〈s(t)s(t′)〉$ L(t, t′) = 〈ŷ(t)ŷ(t′)〉$
K(t, t′) = 〈s(t)ŷ(t′)〉$ a(t) = 〈s(t)〉$

k(t) = 〈ŷ(t)〉$ Ĉ(t, t′) = i
∂Φ

∂C(t, t′)
(177)
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L̂(t, t′) = i
∂Φ

∂L(t, t′)
K̂(t, t′) = i

∂Φ

∂K(t, t′)

â(t) = i
∂Φ

∂a(t)
k̂(t) = i

∂Φ

∂k(t)

where

〈· · ·〉$ =
1

N

∑

i

∫
· · ·M({y(t)}, {ŷ(t)})

∏
t dy(t)dŷ(t)∫

M({y(t)}, {ŷ(t)})
∏

t dy(t)dŷ(t)
(178)

denotes an average performed with the measure

M({y(t)}, {ŷ(t)}) = p[y(0)] ei
∑

t ŷ(t)[y(t+1)−y(t)−hi(t)]−i
∑

t[â(t)s(t)+'̂(t)ŷ(t)]

×e−i
∑

t,t′[Ĉ(t,t′)s(t)s(t′)+L̂(t,t′)ŷ(t)ŷ(t′)+K̂(t,t′)s(t)ŷ(t′)] (179)

Now comparing the above averages with the derivatives of 〈〈Z〉〉 with respect to

ψ and h one easily sees that, in the limit N → ∞, Q(t, t′) may be identified with the

autocorrelation function C(t, t′), a(t) turns out to coincide with the magnetization m(t),

whereas K(t, t′) may be related to the response function

G(t, t′) = lim
N→∞

1

N

∑

i

∂ 〈〈〈si(t)〉〉〉
∂hi(t′)

(180)

through K(t, t′) = iG(t, t′). Working out the remaining equations, and in particular the

expression of Φ, one finds in addition that

L = k = Ĉ = â = 0

K̂
T

= −
1

2

∑

γ

A−1
γ k̂ = −

1

2

∑

γ

γA−1
γ (181)

L̂ = −
i

2

∑

γ

[
A−1

γ (nγDγ)A
−1
γ

]

Therefore M can be seen as describing the single-agent process with noise z(t) given by

y(t + 1) − y(t) = −
∑

γ,t′

[
1 +

nγ

2
G
]−1

(t, t′)φγ(t
′) + z(t) (182)

〈z(t)z(t′)〉 =
∑

γ

[(
1 +

nγ

2
G
)−1

(nγDγ)
(
1 +

nγ

2
G
)−1

]
(t, t′) (183)

which is completely equivalent to the original multi-agent system in the limit N → ∞.

Let us now focus on the asymptotic properties of the stationary state, considering
the simplest possibility. Making for the asymptotic behavior of C and G the

assumptions of time-translation invariance,

lim
t→∞

C(t + τ, t) = C(τ) (184)

lim
t→∞

G(t + τ, t) = G(τ) (185)

finite susceptibility,

lim
t→∞

∑

t′≤t

G(t, t′) < ∞ (186)
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and weak long-term memory,

lim
t→∞

G(t, t′) = 0 ∀t′ finite (187)

ergodic stationary states of the dynamics can be fully characterized in terms of a few

parameters. These are, in particular, the persistent autocorrelation

c = lim
τ→∞

1

τ

∑

t<τ

C(t) (188)

the magnetization

m = lim
t→∞

1

t

∑

t′

m(t′) (189)

and the susceptibility (or integrated response)

χ = lim
τ→∞

∑

t≤τ

G(t) (190)

In this regime, the quantities

ỹ = lim
t→∞

y(t)

t
s = lim

t→∞

1

t

∑

t′

s(t′) z = lim
t→∞

1

t

∑

t′

z(t′) (191)

are easily seen to be related by

ỹ = −
∑

γ

κγ
s + γ

2
+ z (192)

where

κγ =
2

2 + nγχ
(193)

〈
z2
〉

=
∑

γ

αγ (1 + 2γm + c)

(2αγ + χ)2
(194)

We have the following scenarios:

(i) if ỹ > 0, then s = 1 (the agent is frozen on asset 1): this occurs if z > κ+

(ii) if ỹ < 0, then s = −1 (the agent is frozen on asset −1): this occurs if z < −κ−

(iii) if ỹ = 0, then s = s$ ≡ 2z−
∑

γ γκγ∑
γ κγ

(the agent is fickle): this occurs if −κ− < z < κ+

Separating the contribuctions of different cases we end up with the following equations

for m, c and χ:

m = 〈θ(z − κ+)〉z + 〈s$θ(z + κ−)θ(κ+ − z)〉z − 〈θ(−κ− − z)〉z
c = 〈θ(z − κ+)〉z +

〈
(s$)2θ(z + κ−)θ(κ+ − z)

〉
z
+ 〈θ(−κ− − z)〉z (195)

∑

γ

αγχ

2αγ + χ
= 〈θ(z + κ−)θ(κ+ − z)〉z

where 〈· · ·〉z is an average over the static Gaussian noise z. The Gaussian integrals

can be easily computed and these equations can be solved numerically for c, m and χ.

Notice that n+ > n− (or α+ < α−) implies κ+ < κ− so that the probability that an
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agents ‘freezes’ on asset γ is larger for γ = +1, i.e. for the asset with less information.

This conclusion is immediately clear from the above equations. A little more work is

required to see that H is given (apart from factors αγ) by the persistent part of the

noise variance (183):

H =
∑

γ

α2
γ (1 + 2γm + c)

(2αγ + χ)2
(196)

These expressions finally yield the analytical curves shown in Fig. 25.

5.4. The Majority Game

The simplest way to get a glimpse on the macroscopic properties of the Majority Game
is to consider the simplified information-free context of Sec. 4.3, where the model is

described by the rules

Prob{bi(t) = b} = C exp [b∆i(t)] (197)

∆i(t + 1) − ∆i(t) = ΓA(t)/N (198)

by which agents reward the action taken by the majority and increase the probability

of choosing bi(t+1) = sign [A(t)]. An analysis similar to that outlined in the case of the

Minority Game easily leads to the conclusion that the dynamics of y(t) = ∆i(t)−∆i(0)

(which is i-independent) admits the solution y(t) = y0 +vt where v = ±Γ. In this state,

agents behave coherently (bi(t) = b for all i). Consequently, 〈A〉 is either N or −N and
σ2 = O(N2) independently of Γ.

The above conclusion that Majority Games generate huge fluctuations is rather

intuitive. However the full Majority Game turns out to be a surprisingly rich model [67].

It is defined by the following setup:

gi(t) = arg maxUig(t)

A(t) =
∑

i

aµ(t)
igi(t)

(199)

Uig(t + 1) − Uig(t) = aµ(t)
ig

[
A(t) − η

(
aµ

igi(t)
− aµ

ig

)]

where µ(t) ∈ {1, . . . , P} stands for the information pattern presented to agents at time

t (taken to be external and random) and η tunes the agents’ ability to learn to respond

to the action of all other agents by disentangling their own contribution to the game’s
outcome.

Using the notation introduced in Sec. 4.5, it is easy to see that

vi ≡ 〈yi(t + 1) − yi(t)〉 = ξiΩ +
∑

j

ξiξjmj − ηξ2
i mi (200)

where mi = 〈sign(yi)〉. Hence the dynamics minimizes the function

Hη = −
1

2

∑

i,j

ξiξjmimj −
∑

i

ξiΩmi +
η

2

∑

i

ξ2
i m

2
i (201)
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Adding the constant −Ω2/2 to complete a square with the first to terms above, one

sees that Hη is a downward concave function of the mi’s, which implies that minima

occur on the corners of the definition domain [−1, 1]N . Thus the solution with vi = 0

corresponding to fickle agents is ruled out in this case and the only remaining solutions

are those with vi '= 0 (and yi(t)/t finite as t → ∞), corresponding to frozen agents. For

these,

mi = sign(vi) = sign

(

ξiΩ +
∑

j

ξiξjmj − ηξ2
i mi

)

(202)

Notice that since the relevant steady states have mi = ±1 the last term in Hη plays the

role of a mere constant. Hence impact factors do not alter the steady state properties of

the Majority Game. (Also due to agents’ freezing, the ‘batch’ and ‘on-line’ version yield
the same stationary properties as fluctuations play no role in this case.) Furthermore,

it is clear that any configuration {mi} which is a solution of these equations for some

value of η ∈ [0, 1] will also be a solution for all η′ < η. Hence the set Sη of stationary

states is such that Sη ⊂ Sη′ for η′ < η and, in particular, S1 ⊂ Sη for all η < 1. It is

also easy to see that the state with minimal value of Hη lies in S1 for all η ∈ [0, 1]. This

shows that Nash equilibria are stationary states of the majority game for all values of
η, but the converse is not true (except for η = 1 of course).

It is possible to draw a complete picture of the model’s behavior by studying the

minima of Hη explicitly via the replica method. The calculation has been carried out

in [67] under the assumption that the two strategies of the same agent can be to some

degree correlated, which is allowed if one takes the disorder distribution

P (a1, a2) =
w

2
(δa1,1δa2,1 + δa1,−1δa2,−1) +

1 − w

2
(δa1,1δa2,−1 + δa1,−1δa2,1) (203)

Notice that w = Prob{aµ
i1 = aµ

i2}. It turns out that, depending on the parameters, the

system can be in one of two phases: a ‘retrieval’ phase characterised by attractors with a

macroscopic overlap A1 = O(N) with a given pattern (say, µ = 1) and a spin glass phase

with no retrieval (Aµ = O(
√

N)). The occurrence of ‘retrieval’ may be thought of as the

emergence of crowd effects such as fashions and trends, when a large fraction of agents
behave similarly in some respect, or to economic concentration, when, for example, one

particular place is arbitrarily selected for large scale investments. Interestingly, one

finds that the development of these crowd effects requires: (i) that the number of agents

is large compared to the number of resources (α small), (ii) a sufficient differentiation

between strategies of agents (w < 2/3) and (iii) a large enough initial bias (i.e. an

initial macroscopic overlap) towards a particular resource, fashion or place. Finally
crowd effects can be sustained under more general conditions (i.e. in the spin glass

phase) if agents do not behave strategically, i.e. if they neglect their impact on the

aggregate (η small). This phenomenon can be attributed to the self-reinforcing term

(1−η)ξ2
i si in the dynamics which causes a dramatic increase in the number of stationary

states as η decreases (which can be seen quantitatively by analyzing the entropy).
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5.5. Models with interacting trend-followers and contrarians

It is rather easy to understand that the two main groups of traders, that is
fundamentalists and trend-followers, contribute opposite forces to the price dynamics.

Fundamentalists believe that the market is close to a stationary state and buy (sell) when

they repute the stock to be underpriced (overpriced), thus inducing anti-correlation in

market returns and holding the price close to its ‘fundamental’ value. Trend-followers,

instead, extrapolate trends from recent price increments and buy or sell assuming that

the next increment will occur in the direction of the trend, thus creating positive return
correlations and large price drifts (‘bubbles’). Chartist behavior, which can also be

driven by imitation, is known to cause market instability. Fundamentalists act instead

as a restoring force that dumps market inefficiencies and excess volatility. The next

question we address concerns the macroscopic properties of models in which contrarians

and trend-followers interact.

As usual, we start from the simple model with no information. Let us assume
that a fraction f of agents are trend followers whereas the remaining (1 − f)N are

fundamentalists. The dynamics is governed by the following scheme:

Prob{bi(t) = b} = C exp [b∆i(t)] (204)

∆i(t + 1) − ∆i(t) = εiΓA(t)/N (205)

where εi = 1 for trend-followers (say for i ∈ {1, . . . , fN}) and εi = −1 for
fundamentalists (say i ∈ {fN + 1, . . . , N}). Assuming that ∆i(0) = 0 for simplicity,

we can approximate A(t)/N with its average and see that the dynamics of y(t) =

∆i(t) − ∆i(0) ≡ ∆i(t) is given by

y(t + 1) − y(t) = (2f − 1)Γ tanh[y(t)] (206)

Linear stability analysis of (206) leads to the following scenario. For f < 1/2 we have

two regimes:

• for Γ < 1
1−2f the fixed point y$ = 0 is stable. One has 〈A〉 = 0 and σ2 = O(N) as

in the information-free Minority Game with subcritical Γ

• for Γ > 1
1−2f the fixed point y$ = 0 is unstable. One has 〈A〉 = 0 and σ2 = O(N2)

as in the information-free Minority Game with supercritical Γ

For f > 1/2 instead the fixed point y$ = 0 is unstable and the solution y(t) = y0+vt with

v = ±(2f − 1)Γ appears. Here, both trend-followers and contrarians behave coherently:

bi(t) = b for all i ∈ {1, . . . , fN} and bi(t) = −b for all i ∈ {fN +1, . . . , N}. As a result,

〈A〉 is either (2f−1)N or (2f−1)N and σ2 = O(N2) as in the information-free Majority
Game. The conclusion we draw is that the expectations of the majority group (be it

fundamentalists or trend-followers) are fulfilled in the steady state. This is confirmed

by studying the autocorrelation of returns as a function of f in the steady state, see

Fig. 26.

This conclusion extends to the full model, whose properties have been analyzed

in [68]. The mixed Majority-Minority Game is defined by

gi(t) = arg maxUig(t)
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Figure 26. (from Ref. [44]) Autocorrelation of returns as a function of the fraction f
of fundamentalists in the market. Autocorrelation is taken in the stationary state of
a system of N = 104 agents with Γ = 2.5. Arrows mark the transitions between the
three regimes described in the text, which occur at f = 0.5 and at f = 0.9. The inset
shows a detail of the central part of the graph.

A(t) =
∑

i

aµ(t)
igi(t)

(207)

Uig(t + 1) − Uig(t) = εia
µ(t)
ig A(t)/N

where as before εi = 1 for trend-followers (or i ∈ {1, . . . , fN}) and εi = −1 for
fundamentalists (or i ∈ {fN + 1, . . . , N}). The statistical mechanics of this model

is slightly more involved than previous cases. As before, one finds that the steady

state can be characterized in terms of the microscopic variables mi = 〈sign(yi)〉 where

yi(t) = 1
2 [Ui1(t) − Ui2(t)]. In particular, the stationary mi’s for can be obtained by

solving the following problem:

max
m2

min
m1

H(m1, m2) (208)

where

H(m1, m2) =
1

P

∑

µ

[

Ωµ +
∑

i

ξµ
i mi

]2

(209)

and m1 (resp. m2) denote collectively the mi variables of Minority (resp. Majority)

game players. Hence the mixed game where both minority and majority players

are present at the same time requires a minimization of the predictability in certain
directions (the minority ones) and a maximization in others (the majority ones). It is

possible to tackle this type of problem by a replica theory [69]. The idea is to introduce

two ‘inverse temperatures’ β1 and β2 for minority and majority players respectively,

such that [68]

max
m2

min
m1

H(m1, m2) = lim
β1,β2→∞

1

β2
〈〈log Z(β1, β2)〉〉 (210)
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with the following generalized partition function:

Z(β1, β2) =

∫
dm2 e

β2

[
− 1

β1
log

∫
dm1 e−β1H

]

=

∫
dm2

[∫
dm1 e−β1H

]−γ

(211)

where γ = β2/β1 > 0. In physical jargon, this describes a system where: first, the m1

variables are thermalized at a positive temperature 1/β1 with Hamiltonian H at fixed
m2; then, the m2 variables are thermalized at a negative temperature −1/β2 with an

effective Hamiltonian Heff defined by −β1Heff(m2) = log
∫

dm1 e−β1H . The disorder

average can be carried out with the help of a ‘nested’ replica trick. First, one replicates

the minority variables by treating the exponent −γ as a positive integer R (in the end,

the limit R → −γ < 0 must be taken). (211) thus becomes

Z =

∫
dm2

[∫
dm1 e−β1H

]R

=

∫
dm2

[∫
e−β1

∑
r H({mr

1},m2)
∏

r=1,R

dmr
1

]

(212)

Then a second replication is needed, this time on the m2 variables:

ZR′
=

∫
e−β1

∑
a,r H({mar

1 },{ma
2})

∏

a=1,R′

∏

r=1,R

dmar
1 dma

2 (213)

At this point we have two replica indexes with different roles: the replicas labeled a

have been introduced to deal with the disorder, and their number R′ will eventually go

to zero, as usual; the replicas labeled r have been introduced to deal with the negative

temperature, and their number R must be set to a negative value. Majority variables

bear just one index, while minority ones have two. We can interpret this fact by saying
that ma

2 indicates a particular configuration of the majority variables, i.e. a given

manifold in the whole m space; and mar
1 indicates the minority coordinates in that

particular manifold. Notice that the min and max operations and hence the meaning

of coordinates in the above interpretation can be interchanged. In general, this leads to

different solutions. In our case, however, one can verify that the main results would not

change, though the intermediate steps (e.g. the definition of γ) would vary.

Following the procedure outlined above it is possible to calculate the phase diagram
of the model (Fig. 27), namely the line of critical points αc(f) for different values of

f separating the asymmetric, information-rich phase (α > αc(f)) from the symmetric,

unpredictable regime (α < αc(f)). One sees that the efficient regime shrinks as the

fraction of trend-followers increases until, for f = 1/2 it disappears. Now trend-followers

are the majority group and the market becomes completely predictable. The dynamical

calculation clarifies the phase transition further by relating the critical line to the onset
of ergodicity breaking.

While this model captures one of the basic effects of the presence of trend-followers

in the market, namely a decrease in efficiency, it is clear that the properties of mixed

games are to some extent a linear combination of those of pure games and thus a

gross simplification with respect to a realistic case. Now it is reasonable to think that

real traders may revise their expectations if they prove wrong or simply may want to
weigh their decisions against other factors than the expected profit. For instance, in
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Figure 27. Phase diagram of the mixed majority-minority game (from [68]).

certain market regimes (e.g. bubbles) a trader could perceive the market as a Majority

rather than Minority Game and consequently switch from a fundamentalist to a trend-

following behavior. Similarly, in situations of high volatility traders would likely take

into account the risk factor when choosing a trading strategy over another. How would

the macroscopic properties of the Minority Game change if agents were allowed to modify
their behavior and expectations according to the market conditions they perceive?

This issue may be tackled through the introduction of a more general MG setting

with the rationale that traders prefer to adopt a trend-following attitude, and thus

perceive the market as a Majority Game, when fluctuations are small while they revert

to fundamentals, and hence perceive the market as a Minority Game, when the price

dynamics becomes more chaotic [70, 71]. This mechanism leads to a surprisingly rich
phenomenology which includes the formation and disruption of trends and the emergence

of ‘heavy tails’ in the returns distribution. The model is defined through

gi(t) = arg maxUig(t)

A(t) =
∑

i

aµ(t)
igi(t)

(214)

Uig(t + 1) − Uig(t) = aµ(t)
ig Fi[A(t)]

where the function Fi embodies the way in which agent i perceives the performance of
his/her g-th trading strategy in the market. For simplicity we shall henceforth assume

that Fi = F for all i. Clearly, F (A) = −A for a Minority Game whereas F (A) = A for

a Majority Game. The case we consider is

F (A) = A − εA3 (215)

with ε ≥ 0. For ε = 0 one has a pure Majority Game. Upon increasing ε, the non-linear

gains importance, and for ε → ∞ one obtains a Minority Game with F (A) ∝ −A3. A

couple of remarks are in order.
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for different values of ε (left) and probability distributions P (A) of A > 0 for different
values of ε for α = 0.05 (top right) and α = 2 (bottom right). From [70].

(i) This mechanism is expected to induce a feed-back in the dynamics of the excess

demand: when it is small, trend-followers dominate and drive it to larger values

until fundamentalists eventually take over and drive it back to smaller values.

(ii) It is reasonable to think that ε should fluctuate in time and possibly be coupled

to the system’s performance. A possible microscopic mechanism is the following.
When ε is large a high volatility is to be expected as agents are more likely to behave

as trend-followers. As a consequence, they should likely reduce their threshold since

the market is risky; however, for small ε fundamentalists are expected to dominate

and the game should acquire a Minority character. Hence the predictability will be

smaller and there will be less profit opportunities. Agents may then decide to adopt

a larger threshold to seek for convenient speculations on a wider scale. If these two
competing effects are appropriately described by an evolution equation for ε, the

system should self-organize around an ‘optimal’ value of the parameter. However

such a time evolution should take place on time-scales much longer than those

which the model addresses (intra-day/daily trading) and hence it is reasonable to

study the case of fixed ε.

It turns out (see Fig. 28) that while for low enough (resp. high enough) ε the behavior

of a pure Majority (resp. Minority) game is recovered (with some qualitative differences

due to the unconventional nature of the MG in this case), there exists a range of values

of ε for which the two tendencies coexist and one can cross over from one to the other

by changing α and/or ε. This can be seen from the behavior of the (normalized)

autocorrelation D = 〈A(t)A(t + 1)〉 /σ2 as a function of α. The crossover gets sharper
and sharper as α increases and turns into a sharp threshold for α 3 1. In this case, the

threshold can be estimated analytically. Indeed one has

vi ≡ 〈yi(t + 1) − yi(t)〉 = ξµ
i 〈F (A)|µ〉 (216)

As usual, if vi '= 0, then yi(t) ∼ vit and si(t) tends asymptotically to sign(vi): there is a
well defined preference towards one of the two strategies and the agent becomes frozen.
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For large α, we can approximate A(t) with a Gaussian random variable with variance

H . By virtue of Wick’s theorem, this implies that 〈A3|µ〉 + 3H 〈A|µ〉, so

vi + (1 − 3εH)ξµ
i 〈A|µ〉 (217)

If 1 − 3εH > 0, the agents’ spins will freeze on the Majority-type solution si =

sign(ξµ
i 〈A|µ〉), which is unstable for 1 − 3εH ≤ 0. Given that H = 1 for large α,

we see that the crossover from the Majority- to the Minority-regime takes place at

ε + 1/3 for α 3 1, which is significantly close to the numerical value of εc + 0.37.

For small α, when the contribution of frozen agents is small, we expect the system

to self-organize around a value of A such that F (A) = 0: indeed one can see from Fig.

28 that the peak of the distribution moves as 1/
√

ε. Besides, as ε increases, large excess

demands occur with a finite probability. The emergence of such ‘tails’ in P (A), while not
power-law, is a clear non-Gaussian signature. The dynamics in this regime is particularly

interesting: while the market is mostly chaotic and dominated by contrarians, ‘ordered’

periods can arise where the excess demand is small and trends are formed, signaling

that chartists have taken over the market. These trends, that can be arbitrarily long,

eventually eventually die out restoring the fundamentalist regime.

In order to understand the full impact of trend-followers it is however necessary to
emply endogenous information [71]. Indeed, one identifies two regimes in an intermittent

market dynamics. Phases with small fluctuations, dominated by contrarians and in

which the information dynamics is roughly ergodic over the possible patterns, are

followed by phases with large fluctuations dominated by trend-followers, where the

information dynamics is strongly non-ergodic (actually a single information pattern

is dynamically selected).

5.6. Markets with asymmetric information

A crucial assumption in all models we have been dealing with so far is that all agents

possess the same information, be it the real price time series or the bar attendance

sequence or a random integer. As long as all agents process the same information

pattern the system can reach some level of coordination and a more or less complicated

phase structure arises. Unfortunately, it is hard to believe that all agents in real systems

possess the same information. This brings us to the question: how are the coordination
properties affected when the information is private, i.e. agent-dependent?

This question is indeed of fundamental theoretical importance. A substantial part

of economic theory is based on the assumption that markets are informationally efficient.

Roughly speaking, a market is efficient with respect to an information set if the public

revelation of that information would not change the prices of the assets. In other words,

this means that all the relevant information is incorporated into prices. This includes
both public and private information. However, it has been understood [Akerlof] that

asymmetric information may cause inefficiency of the equilibrium, given the strategic

incentive of each agent not to reveal the information he has. The salvation comes from

the system size: in fact this nefarious effect may vanish in large markets, since the
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single bits of information possessed by an individual agent become less significant the

larger is the number of agents. Hence, the common understanding is that prices reflect

information more accurately in large systems.

To conclude our review, we shall now discuss a model in which the above scenario

emerges as a phase transition between an informationally efficient phase and an

informationally inefficient one [72]. The control parameter is, as in the MG, the ratio
between the size of the information space and the number of traders.

We consider a market with one asset. The market can find itself in any of P states

of the world, labeled µ. The return of the asset depends on the state of the world only,

and is denoted by Rµ. We assume that each Rµ is given by

Rµ = R +
rµ

√
N

(218)

where the rµ are independent samples of a Gaussian random variable with zero mean
and variance s drawn at time t = 0 and fixed (quenched disorder). We further assume

that at each time step the state of the market is drawn randomly and independently from

{1, . . . , P} with equal probability. This process determines the time series of returns

{Rµ(t)}t≥0 completely.

N traders act in this market. They have no information concerning the state of

the world but rather they observe a coarse-grained signal on the information space
{1, . . . , P}. We denote it as a vector

ki : {1, . . . , P} 1 µ → kµ
i ∈ {−1, 1} (219)

in which every state of the market is associated to a particular value of a binary variable

(in other words, an agent cannot tell which state the market is in but only knows whether
it is an “up state” or a “down state”). Different agents receive different signals, as each

component kµ
i of every vector ki is taken to be drawn randomly and independently from

{−1, 1} with equal probability for all i and µ. This defines the private information

structure. Note that if an agent knew simultaneously the partial information of all

agents he would be able to know the state µ, with probability one, for N → ∞.

At each time step, traders i has to decide an investment. Let zi(t) denote the
amount of money he decides to invest (buying or selling) at time t. We assume that the

price at time t, p(t) is fixed by a market clearing condition, in which the demand of the

asset is determined by the aggregate money invested and the supply is fixed at N :

1

N

∑

i

zi(t) = p(t) (220)

We further assume that zi(t) depends on whether his information kµ(t)
i about the state

is “up” or “down”: zi(t) =
∑

m∈{−1,1} zm
i (t)δ

kµ(t)
i ,m

. In this way the price depends on

the state since the amount invested by each agent depends on the state: p(t) = pµ(t).

At the end of each period t, each unit of asset pays a monetary amount Rµ(t). If
agent i has invested zi(t) units of money, he will hold zi(t)/p(t) units of asset, so his
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payoff will be zi(t)(
Rµ(t)

p(t) − 1). It follows that the expected payoff is given by

πi =
1

P

∑

µ

∑

m∈{−1,1}

δkµ
i ,mzm

i

(
Rµ

pµ
− 1

)
=

∑

m∈{−1,1}

δki,mzm
i

(
R

p
− 1

)
(221)

Every agent aims at choosing the zm
i ’s so as to maximize their expected payoff. We

consider inductive agents who repeatedly trade in the market. Each agent i has

a propensity to invest Um
i (t) for each of the signals m ∈ {−1, 1}. His investment

zm
i = χi(Um

i ) at time t is an increasing function of Um
i (t) (χi : R → R

+
0 ) with χi(x) → 0

if x → −∞ and χi(x) → ∞ if x → ∞ (a convenient choice for numerical experiments

is zm
i = Um

i θ(Um
i )). After each period agents update Um

i (t) according to the marginal
success of the investment:

Um
i (t + 1) = Um

i (t) + Γδ
kµ(t)

i ,m

[
R(t) − p(t) − η

zi(t)

N

]
(222)

The idea is that if the return is larger than the price, the agent’s propensity to invest in

that signal increases, otherwise it decreases. The η term provides the distinction between

näıve (or price-taking) agents (η = 0), who are unaware of their market impact, and
“sophisticated” traders (η = 1) who instead are able to disentangle their contribution

to the price exactly. Γ > 0 is a parameter (In [72] the dynamics (222) is obtained from a

more properly justified process involving the marginal utility of a certain investment.).

As a measure of coordination we employ the distance between prices and returns

in the steady state:

H = |R − p|2 ≡
∑

µ

(Rµ − pµ)2 (223)

Clearly, if H = 0 prices follow returns and hence incorporate the information about the

states of the world, so that the market is informationally efficient.

Numerical results for the stationary H as a function of α = P/N for η = 0 and

η = 1 (and Γ small enough) are given in Fig. 29.

Let us start from näıve traders (η = 0). As the number of agents increases, i.e.
as α = P/N decreases, agents are collectively more efficient in driving prices close to

returns. Indeed the distance H decreases as α decreases. The price-return distance

vanishes at a critical point αc which turns out to mark a second order phase transition

in the statistical mechanics approach. The value of αc depends on the intensity s of

fluctuations of returns. The region α < αc is characterized by the condition H = 0,

which means pµ = Rµ for all µ. This means that the market efficiently aggregates
the information dispersed across agents into the price. It can be shown that the

efficient phase, where H = 0, shrinks as s increases. This is reasonable because as the

fluctuations in Rµ increase, it becomes harder and harder for the agents to incorporate

them into prices. This behavior can be understood analytically as usual by constructing

the continuous-time limit of (222). It turns out that H is a Lyapunov function of

the dynamics: price takers cooperate to make the market as informationally efficient
as possible. From the agent’s point of view the steady states in the efficient phase
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Figure 29. Behaviour of H/α versus α for η = 0 (left; u(0) is the initial bias in
the score functions) and various η > 0 (right: η = 0.05 (circles), η = 0.25 (squares),
η = 0.5 (diamonds) and η = 0.75 (triangles). From [73].

(α < αc) are not unique and the state in which agents will end up depends on the

initial conditions {Um
i (t = 0)} (prices, of course, do not depend on the initial condition,

because pµ = Rµ for all µ). It can also be shown that these steady states in which H

is minimum correspond to competitive equilibria, namely configurations obtained when
agents choose their investments zm

i a priori by solving

max
x≥0

xδki,m

(
R

p
− 1

)
(224)

for m ∈ {−1, 1}, namely by maximizing their expected profits.

Turning to sophisticated agents (η = 1), one sees that the phase transition

disappears: the distance between prices and returns smoothly decreases as α decreases

and it vanishes only in the limit α → 0. Moreover, the steady state is unique in both

prices and investment for all α > 0: the asymptotic behavior of learning dynamics does

not depend on initial conditions. It can be shown that the steady state in this case is
a Nash equilibrium, that is it corresponds to all agents choosing their investments by

solving

max
x≥0

x
∑

µ

δkµ
i ,m

(
Rω

pω
−i + x/N

− 1

)
(225)

for m ∈ {−1, 1}, where pω
−i = pω −

∑
m∈{−1,1} δkω

i ,mzm
i /N is the contribution of all other

agents to the price (in other words, each trader disentangles his contribution from the
price and optimizes the response to all other traders).

These findings defy the intuition that Nash equilibria behave similarly to

competitive equilibria when N → ∞. Another striking proof of the difference between

the two equilibrium concepts is given by the quantity

q =
1

N

N∑

i=1

(
z+

i − z−i
2

)2

(226)
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Figure 30. Behaviour of q versus α for η = 0 (left; u(0) is the initial bias in the score
functions) and various η > 0 (right: η = 0.05 (circles), η = 0.25 (squares), η = 0.5
(diamonds) and η = 0.75 (triangles). From [73].

which measures how differently agents invest under the two signals, i.e. how much

they use the information they possess (Fig. 30). Price takers exploit their signals

much more than sophisticated traders, who invest very similar amounts of money in the

two states they distinguish. Note that for η = 0 the steady state depends on initial

conditions below αc. The efficient/inefficient transition may then be characterized also

dynamically trhough transition via path-integral methods [73].

There are several other aspects of the model that deserve attention, starting with
the dependence of fluctuations on Γ. We refer the interested reader to [72,73] for a more

detailed discussion.

6. Conclusions

Compared to reality, the models discussed in this review have a marked theoretical
nature. The aim of these models is not that of providing quantitative predictions

but rather to understand under what conditions the rich variety of behaviors, ranging

from anomalous fluctuations to spontaneous coordination, may emerge in a simplified

controllable setting. This is a complementary approach to that of empirical analysis,

which has been dominating the scene of interdisciplinary ventures of statistical physicists

into economics and finance. Indeed, a proper understanding of how interaction
propagates from the micro to the macro scale, is crucial in many cases in order to

infer what empirical analysis should focus on.

Here we have reviewed a number of models with N heterogeneous interacting

agents – be they firms, species, drivers or traders – who compete for the exploitations

of a number P of resources. The collective behavior of all these systems belongs to

the same generic phenomenology, as discussed in Secion 2.1. A key parameter is the
ratio (α = P/N) between the number of resources and the number of agents, and the
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central quantities of interest are the (in)efficiency σ2, which is related to the amount of

unexploited resources, and the unevenness H with which resources are exploited.

The collective behavior depends strongly on whether agents account or not for their

impact on the resources. This is somewhat surprising, as one would expect that in the

limit N → ∞, the contribution of each agent to the exploitation of each resource is

vanishing. For the ease of exposition, we distinguish between the two extreme case
of competitive equilibria (CE) and Nash equilibria (NE), where agents fully neglect

or account exactly for their impact, respectively. The stationary state of the learning

dynamics which converges to these equilibria, in Minority Game type models markedly

differ in the following respects:

Equilibrium condition In CE resources are exploited, on average, as evenly as

possible, i.e. H is minimal. In NE fluctuations or wastes are as small as possible

(i.e. σ2 is minimal).

Phase transition A phase transition occurs in CE when the number of agents exceeds

a critical one, i.e. when α < αc. This separates an asymmetric (H > 0 for α > αc)
from a symmetric (H = 0 for α ≤ αc) phase. No phase transition takes place in

NE (i.e. H > 0 for all α > 0)

Degeneracy The stationary state is unique in CE for α > αc and it is degenerate on
a continuous set for α ≤ αc. There is an exponential number of disjoint NE.

Initial conditions The stationary state does not depend on initial conditions for CE
and α > αc and it depends continuously on initial conditions for α ≤ αc. The NE

to which the system converges depends discontinuously on initial conditions.

Fluctuations Agents’ behavior is stochastic in CE (i.e. σ2 > H) whereas it is

deterministic (σ2 = H) in NE. Put differently, in NE agents always play a single

strategy, whereas in CE agents switch between different strategies.

Number of choices Giving more strategies to agents improves coordination in NE but

it can make agents worse off in CE (typically when α is small).

Convergence Agents converge fast to CE whereas agents may fail to learn to

coordinate on NE [74]

Not all these conclusions apply to the asset market model with private information of

Sec. 5.6, though even there CE and NE differ substantially [72].

There still remain interesting theoretical challenges in this field. Some of these are:

• The MG is a prototype model of a systems where the collective fluctuations which

agents produce feed back into their dynamics. Still, there are no analytical tools
which allows us to characterize this feedback in precise terms in the symmetric

phase of the MG, i.e. to compute the volatility σ2 as a function of Γ.

• MG based models of financial markets show that anomalous fluctuations similar to

the stylized facts observed in real markets arise close to the phase transition line.

Still the critical properties at this phase transition have not yet been characterized.

Detailed numerical studies of critical properties or analytic approaches based on
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renormalization group techniques would be very important to shed light on this

issue.

• The MG suggests that real markets operate close to a phase transition but it does

not explicitly describe a mechanism of how markets would “self-organize” to such

a state. Though some arguments have been put forward [57], these have not yet

been formalized in a definite model.

• The extensions to cases where firms behave strategically, as in Cournot games [2],

of the model of economic equilibria may prove interesting. The conjecture is that,
even in the limit N → ∞ if the number of commodities (or markets) also diverges,

the NE may be markedly different from a CE.

As a concluding remark, we observe that socio-economic phenomena have features

which are markedly different from those addressed in natural sciences. Above all, the

economy and society change at a rate which is probably much faster than that at which

we understand them. For example, many of the things which are traded nowadays in

financial markets did not exist few decades ago, not to speak of internet communities. In

addition, we face a situation in which the density and range of interactions are steadily
increasing, thus making theoretical concepts based on effective non-interacting theories

inadequate.

Definitely, socio-economic systems provide several interesting theoretical challenges.

Our hope is that these effort will help refine our understanding of how individual

behavior, interaction and randomness may conspire in shaping collective phenomena,

which, broadly speaking, is the aim of statistical physics.
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