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ABSTRACT

Illustrative examples of how NMR spectroscopy and computational chemistry data can be used in synergy to gain information on
structure, coordination mode, bonding, symmetry and isomeric distribution of transition metal complexes, is presented. Isomer
distribution and the most stable structures in a series of Ti(3-diketonato),Cl, and Ti(3-diketonato),(biphen) complexes as
determined by density functional theory (DFT) methods and the application of the Boltzmann equation, are in agreement with
crystal structures and variable temperature NMR results. Secondly, the DFT determined coordination mode of the 4-amino-
3,5-bis(pyridine-2-yl)-1,2,4-triazole, (bpt-NH,) which has the appropriate chemical geometry to behave as anionic or neutral
bidentate chelating group to form a 5- or 6-membered complex, is shown to be in agreement with "H NMR shifts for
[Rh(bpy),(bpt-NH)]**, [Rh(phen),(bpt-NH)J**, [Rh(bpt-NH)(cod)] and [Ir(bpt-NH)(cod)] (cod = 1,5-cyclooctadiene, phen =
1,10-phenanthroline, bpy = 2,2"-bipyridine). The oxidative addition of CH,I to [Rh(3-diketonato)(CO)(PPh,)] complexes consist
of three reaction steps and involves isomers of two different Rh™"-alkyl and two different Rh™-acyl species. For this reaction
experimental '"H NMR techniques complement the stereochemistry of reaction intermediates and products as calculated by
density functional theory. NMR properties, in agreement with computational results, proved to be useful to access the nature of
the «° to x? distortion in coinage metal-ethylene complexes supported by tris(pyrazolyl)borates. The last example showed that
NMR, X-ray crystal and computational results showed C, symmetry for a series of metal(II) complexes coordinated to a
16-membered pentaaza macrocycle.
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1. Introduction computational method is just as good as its agreement with

Computational chemistry is a branch of chemistry that uses
principles of computer science to generate data which comple-
ments experimental data related to structures, properties and
reactions of complexes. It uses the results of theoretical chemistry
based primarily on the Schrodinger equation, to calculate the
structures and electronic properties of molecules and solids. Any
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experiment. Good agreement with experimental results makes
it possible to predict the properties and reactivity of related
systems. Amongst more advanced techniques used in chemistry
to characterize new complexes, like NMR spectroscopy, X-ray
crystallography, elemental analysis and IR, only crystallography
gives a complete picture of the structure of complexes. When no
single crystals suitable for crystallography can be obtained,
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computational chemistry proved to be an obvious tool towards
this end.

In the published literature there are several examples of the
combined use of computational chemistry and experimental
NMR spectroscopy towards understanding and solving
stereochemistry of organic molecules. For example, solution
NMR spectroscopy, single crystal X-ray diffractometry of
related complexes and PM3 semi-empirical calculations (optimi-
zation of geometries and the calculations of heats of formation as
a function of the dihedral angle) of the structure of N-formyl,
N-acetyl-N-methyl and N-acetyl glycosylamines indicated
an anti conformation around the glycosydic bond for these
substances." "F NMR screening of fluorinated fragments in
combination with crystal structure determination of related
complex and computational analysis represents a sensitive and
powerful approach for identifying fluorophilic hot-spots in
proteins.” In medical chemistry a combined NMR spectroscopy
and computational chemistry approach successfully deter-
mined the absolute stereochemistry of active enantiomers
originating from human papillomavirus type-11 protein.’ A
combined NMR and computational analysis of a series of 13
cis/trans-3,4-dihydro-2-alkoxy-4-(alkyl- or aryl-substituted)-
2H,5Hpyrano[3,2-c][1]benzopyran-5-one derivatives allowed
determination of the cis/trans configurations and conforma-
tional preferences. The conformational analysis of cis com-
pounds, performed via NMR and computational studies,
allowed the establishment of a preference for the conformer
with both substituents in the pseudo-equatorial orientations. 2D
NOESY spectra made assignment of cis/trans configuration
possible with certainty.*

However, the combined use of computational chemistry and
experimental NMR spectroscopy to elucidate the structure of
complexes containing a transition metal is less known. The
present overview does not attempt to give a full coverage of
the available literature on the topic, but presents a number
of illustrative examples that describe the synergy between
experimental NMR’ spectroscopy and computational chemistry
as to predict structure, with the focus on transition metal
complexes.

2. Computational Methods

Density functional theory (DFT)*” is an important develop-
ment in computational chemistry since it appears that new DFT
methods may give equal or greater accuracy and efficiency for
medium-sized or larger molecular systems at lower computa-
tional costs than ab initio methods.*” In DFT the energy is deter-
mined as a function of electron density. The different functionals
used in density functional calculations on atoms and molecules
are generally distinguished by the way that they treat the exchange
(an attractive component of the electron-electron interaction
energy) and correlation (energy difference between Hartree-
Fock (HF) and experimental energy) components.

The simplest models, local density or spin density models are
based on the assumption that the electron density is constant (or
slowly varying) throughout space (Local Density Approxima-
tion, LDA or Local Spin Density Approximation, LSDA).
Non-Local Density Functional methods or Gradient Corrected
or Generalized Gradient Approximation (GGA) functionals
involve both the values of the electron spin densities and its
gradients (B or B88,"° LYR" PW86,” PW91 or P91 or PW92,"
B95"). The so-called ‘pure’ density functionals (PW91, BP86,
BLYP) require only the HF coulomb term while hybrid
functionals make use of the HF exchange term.® There are
several hybrid functionals, such as the Adiabatic Connection

Model (ACM) and the Becke three parameter functional (B3),
that define the exchange functional as a linear combination of
Hartree-Fock, local, and gradient corrected exchange terms.
This exchange functional is then combined with the local and/or
gradient-corrected correlation functional. Examples of DFT
hybrid functionals are B3LYP'""**> and B3PW91.""¢

The DFT calculations reported in sections 3.1-3.5 were carried
out with OLYB®” PW91" or B3LYP""* exchange-correlation
functionals, all-electron STO-TZP basis sets, fine meshes for
numerical integration of matrix elements, and suitably tight
criteria for SCF and geometry optimization, all as implemented
in the ADF 2009 program system.'® All complexes modelled were
closed-shell (diamagnetic) species.

3. Results and Discussion

A couple of case studies” are discussed to illustrate the synergy
between experimental NMR spectroscopy and DFT computa-
tional chemistry to shed light on the structure of coordination
complexes and intermediates. The first examples are Ti(f-
diketonato),ClL,* Ti(p-diketonato),(biphen), [Rh(bpy),(bpt-
NH)J**, [Rh(phen),(bpt-NH)]**, [Rh(bpt-NH)(cod)],*" Ir(bpt-
NH)(cod)],*! [Rh(B-diketonato)(P(OPh),),]** and [Rh(p-
diketonato)(CO)(PPh,)]*** complexes (cod = 1,5-cycloocta-
diene, phen = 1,10-phenanthroline, bpy = 2,2"-bipyridine,
bpt-NH, = 4-amino-3,5-bis(pyridine-2-yl)-1,2,4-triazole,
H,biphen = 2,2’-biphenyldiol). Lastly examples of coinage
metal-ethylene complexes supported by Tris(pyrazolyl)borates
and metal(II) complexes coordinated to a 16-membered
pentaaza macrocycle are also discussed.

3.1. Variable Temperature NMR Spectroscopy, Geometry and
Isomer Distribution®

Titanium(IV) complexes were widely studied for a variety of
purposes, mainly serving as catalyst in different organic reac-
tions®*"as well as for antitumor activity.” Two monomeric Ti(IV)
complexes previously qualified for clinical trials on antitumour
activity: Ti(ba),(OEt), (budotitane, Hba=benzoylacetone)* and
TiCp,Cl, (titanocene dichloride),” but second and third clinical
phases were terminated mainly due to problems with the
galenic formulation of compounds, i.e. the preparing and
compounding of the medicines in order to optimize their
absorption.* No information on the isomer distribution of
budotitane in the galenic formulation used for tests of anticancer
activity is available. It is therefore of importance to develop an
understanding of the spatial arrangement of the monomeric Ti
complex, and which of the five possible isomers of six-
coordinate octahedrally configurated Ti(ba),X, (X=OEt or Cl)
complexes exhibit anticancer activity. We synthesized and char-
acterized complexes related to the latter complexes, viz.
dichlorobis(p-diketonato)titanium(IV) Ti(C.H,COCHCOR),CI,
and (2,2’-biphenyldiolato)bis(B-diketonato)titanium(IV)
Ti(C.H,COCHCOR),(biphen) complexes with R = CH,, CH;
(Ph) and CF, and H,biphen = 2,2-biphenyldiol.” When R =
C,H; only one cis isomer is possible for both complexes. How-
ever, unsymmetrically substituted Ti(B-diketonato),Cl, and
Ti(B-diketonato),(biphen) complexes can adopt three different
cis orientations, see Fig. 1. Additionally, the Ti(B-diketonato),Cl,
complexes can adopt two trans orientations. However, only
Ti(B-diketonato),X, complexes with extremely bulky substitu-
ents such as iodide or p-dimethylaminophenoxy as hydro-
lyzable group X have the trans form.” The isomeric configura-
tion has been defined by three cis or trans prefixes which specify
first the relative position of the Cl-ligands, then the relative
orientation of the phenyl groups, and finally the relative orienta-
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Figure 1 Stereochemistry of the isomers of asymmetrically substituted bis(B-diketonato) complexes of the type Ti(PhCOCHCOR),Cl,. The point

group and the number of 'H NMR signals are shown below each isomer.

tion of the R group on the B-diketonato ligand CH,COCHCOR.

The crystal structures of Ti(C,H,COCHCOCH,),CL,* and
Ti(C,H,COCHCOCH,),(biphen)* are both known. Density
functional theory (DFT) calculations were carried out on the five
different isomers of Ti(C;H,COCHCOCH.,),Cl, and the three
different Ti(C,H,COCHCOCH.,),(biphen) isomers. ADF calcu-
lated relative energies are given in Table 1.

Especially pleasing is the fact that the lowest energy (most
stable) calculated isomer in both cases agrees with the isomer
characterized by X-ray crystallography. Excellent agreement
with the experimental structures is obtained as reflected by the
RMSD values of 0.061 and 0.041 A for Ti(C,H,COCHCOCH,),Cl,
and Ti(C.H,COCHCOCH,),(biphen) respectively. The
root-mean-square distances (RMSD) calculated for non-

hydrogen atoms for the best three-dimensional superposition of
calculated structures on experimental structures give a qualita-
tive measurement of the accuracy of the ground state geometry
of the calculated structures. Structural data computed with this
computational method for related compounds may therefore be
presented with an equally high degree of accuracy. Density
functional theory (DFT) calculations were thus also used in the
study of the five different isomers of Ti(C;H,COCHCOCEF,),Cl,
and the three different Ti(C,H,COCHCOCE,),(biphen) isomers
of which no crystal structures are known.* Relative energies are
given in Table 1. DFT calculated relative energies of three cis
isomers of each complex clearly highlight geometry prefer-
ences and also enable a population analysis of the isomers by
application of the Boltzmann equation. DFT calculated geome-

Table1 Observed and PW91/TZP calculated isomer distribution of Ti(PhCOCHCOR),Cl, and Ti(PhCOCHCOR),(biphen) complexes, R = CF,, CH,

or Ph.
R Isomer Ti(PhCOCHCOR),Cl, Ti(PhCOCHCOR),(biphen)
% Observed 'HNMR  Relative energy/ % Calc. % Observed '"H NMR Relative energy/ % Calc.
kJ mol™! kJ mol™!

CH, cis-cis-cis 27.9 1.7 31.0 25.6 1.7 26.5
cis-trans-cis
(crystal structure) 54.7 0 61.7 49.2 0 43.7
cis-cis-trans 17.4 55 6.7 25.2 14 29.8
trans-trans-trans 0.0 12.0 0.5 - - -
trans-cis-cis 0.0 15.2 0.1 - - -

Ph cis-cis-cis 100.0 0 97.1 100.0 0 100.0
trans-trans-trans 0.0 8.7 2.9 - - -

CF, Cis-Cis-cis 21.5 0.2 39.5 17.1 2.9 19.5
cis-trans-cis 40.6 0 41.9 62.4 0 62.2
cis-cis-trans 38.0 2.0 184 20.6 3.0 18.3
trans-trans-trans 0.0 13.8 0.2 - - -
trans-cis-cis 0.0 21.3 0.0 - - -
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Figure 2 Left: variable temperature "H NMR spectra of the indicated complexes showing methine (ca. 7 ppm) resonances. Right: DFT calculated
geometry of the major isomer of Ti(C,H;,COCHCOCE,),Cl, and Ti(C;H;,COCHCOCE,),(biphen).

tries of the major isomers of Ti(C,H,COCHCOCEF,),Cl, and
Ti(C,H,COCHCOCE,),(biphen) are shown in Fig. 2.

The stereochemistry of Ti(C.H,COCHCOCE,),Cl, and
Ti(C,H,COCHCOCE,),(biphen), however, can also partly be
inferred from NMR spectra. The cis-cis-cis isomer with no
symmetry (point group C,) may give rise to two phenyl and two
ring proton resonances. The other four isomers, cis-trans-cis
(point group C,), cis-cis-trans (C,), trans-cis-cis (C,,) and trans-
trans-trans (C,,) all possess at least a twofold axis and should give
a single resonance for each type of group. At room temperature
(294 K) only one single set of '"H NMR signals was observed for
Ti(C,H,COCHCOCE,),Cl, and Ti(C;H,COCHCOCE,),(biphen).
The resonance signal of the methine H is sharp due to rapid
isomerization (relative to the NMR time scale) which exchanges
groups between non equivalent environments. When lowering
temperature, these signals broaden and split up into four
signals, see Fig. 2. When the temperature is increased the four
signals that were observed at —60 °C collapse into a singlet as a
result of rapid isomerization at room temperature. The four
distinguishable signals of three different intensities at —60 °C are
consistent with the existence of three cis isomers in CDCl, solu-
tion. The two spectral lines of equal intensity are assigned to the
cis-cis-cis isomer. The experimentally observed cis-trans-cis and
cis-cis-trans populations are assigned according to the calculated
isomer distribution. A generally good agreement is obtained
between experimentally observed isomer distribution and
calculated values, see Table 1. This example thus highlight the
synergy between NMR spectroscopy and computational chem-
istry in order to get a better understanding of the geometry
and isomer distribution in Ti(C,H,COCHCOCR),Cl, and
Ti(C,H,COCHCOCR),(biphen) complexes.

3.2. Geometry and Coordination Mode

Over 60 per cent of acetic acid made for use in the chemical
industry is made by methanol carbonylation using rhodium and
iridium as catalysts.” The first major process in the carbonylation
of methanol was developed by Monsanto in the 1970s using
[Rh(I),(CO),]" as catalyst.”™ In 1996 BP Chemicals announced a
new advanced technology, called the Cativa process, which

Table 2 NH 'H NMR signal shifts of complexes and ligands in acetone-d,
DMSO-d and CDCl, *

Compound Ring-size o(;H) of NH/ppm
Acetone-D DMSO-d  CDCl,
bpt-NH, - 8.76 7.82 8.55
[Rh(bpt-NH,)(cod)]* 5 8.51
[Rh(bpy),(bpt-NH,)* 5 7.6
[Rh(bpy),(bpt-NH)]** 6 9.16
[Rh(phen),(bpt-NH)]** 6 9.11
[Rh(bpt-NH)(cod)] 6 9.16
[Ir(bpt-NH)(cod)] 6 10.92

2 Data from references 21, 52 and 53.

replaced rhodium with iridium catalysts, in conjunction with
novel promoters such as rhenium, ruthenium and osmium.
Benefits achieved with the change in catalyst include cheaper
iridium prices, a faster and more effective process, less catalyst
required, larger turnover numbers and less side products.”
Research has shown that the actual catalytic cycles of the
Monsanto and Cativa® processes consist of a series of reactions
including oxidative addition, 1,1-insertion or CO insertion, CO
association and reductive elimination.** Oxidative addition
and CO insertion reactions in rhodium(I) and iridium(I)
complexes were studied in detail in our laboratories,”* and by a
large number of researchers.””" It involved structural and
mechanistic studies by manipulation of e.g. the nucleophilicity
of the metal center using different mono and bidentate ligands,
or changing the steric bulk within the complex to change the rate
of the different key reactions in the process.

One such ligand is 4-amino-3,5-bis(pyridine-2-yl)-1,2,4-
triazole, (bpt-NH,), which has the appropriate chemical
geometry to behave as anionic or neutral bidentate chelating
group to form a 5-membered M'(bpt-NH)(LL), or 5-membered
M'(bpt-NH,)(LL)*, or 6-membered M'(bpt-NH)(LL)) complex,
LL = neutral ligand (bidentate or two monodentate).”'

The difference between these two coordination modes is
deduced from a 'H NMR perspective. Formation of the
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Table 3 DFT (B3LYP/TZP) molecular energies (kJ/mol) of the possible coordination modes and stereo isomers of [M(bpt-NH)(cod)], M = Ir or Rh,
[Rh(phen),(bpt-NH)]** and [Rh(bpy),(bpt-NH)]*" relative to the lowest energy isomer in each case.

Geometry 5-or 6- Energy/kJmol”
membered ring
[Ir(bpt-NH)(cod)] [Rh(bpt-NH)(cod)] [Rh(bpy),-bpt-NH)]***  [Rh(phen),-(bpt-NH)]***
5 50.1 37.0 56.6 75.1
5 23.8 19.7 34.8 54.3
6 72.3 41.1 68.5 b
6 0.0 0.0 0.0 0.0

 Calculations of the present study.
® This geometry spontaneously optimized to the lowest energy geometry.

6-membered ring structure should give rise to a significant
downfield shift of the singlet associated with the amide moiety
with respect to the free ligand, see Table 2 for a summary. The
singlet associated with the NH moiety was found at 10.92 and
9.16 ppm for [Ir(bpt-NH)(cod)] and [Rh(bpt-NH)(cod)] respec-
tively, whereas that of the free ligand was observed at 8.55 ppm
in CDCl; (cod = 1,5-cyclooctadiene). This result indicates a
6-membered coordination mode. A similar downfield shift has
been observed for the singlet associated with the NH moiety of
6-membered [Rh(phen),(bpt-NH)]** and 6-membered
[Rh(bpy),(bpt-NH)]** (9.11 and 9.16 ppm respectively in d,-
DMSO) relative to that of the free ligand at 7.82 ppmin d ,-DMSO
(phen = 1,10-phenanthroline, bpy = 2,2-bipyridine).”* How-
ever, the singlet associated with the NH moiety of the

5-membered [Rh(bpt-NH,)(cod)]* and [Rh(bpy),(bpt-NH,)]**
complexes were found at 8.51 (d,-acetone)” and 7.66 ppm
(d,-DMSO) respectively which is comparable to that of the free
ligand (8.76 ppm in d-acetone™ and 7.82 ppm in d,-DMSO).”
In further support of the coordination mode of [Ir(bpt-
NH)(cod)] and [Rh(bpt-NH)(cod)] density functional theory cal-
culations on the possible isomers of the two coordination modes
of the bpt-NH™ ligand to rhodium(I) and iridium(I) in [Ir(bpt-
NH)(cod)] and [Rh(bpt-NH)(cod)] were performed. In agree-
ment with NMR spectroscopic data,” calculations showed the
6-membered ring complexes with the nitrogen of the uncoordi-
nated pyridine ring rotated in the same direction as the amine
moiety, being more stable by 23.8-72.3 k] mol™ (see Table 3). The
minimum energy optimized structures of [Ir(bpt-NH)(cod)] and

Figure 3 DFT calculated geometry of [Rh(bpt-NH)(cod)] (left) and [Ir(bpt-NH)(cod)] (right).
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Figure 4 S, 2 mechanism for the oxidative addition of methyl iodide to
the Monsanto catalyst, cis-[Rh(CO),1,] leading to a frans oxidative addi-
tion product.

[Rh(bpt-NH)(cod)] are presented in Fig. 3, with selected bond
lengths and angles shown. DFT calculations of this study on the
possible coordination modes of [Rh(bpy),(bpt-NH)]** and
[Rh(phen),(bpt-NH)]** are also shown, and are in agreement
with experiment, with 6-coordinated [Rh(bpy),(bpt-NH)]** at
lowest energy.

3.3. NMR Shifts and Structure”

The oxidative addition reaction of methyl iodide to
cis-[Rh(CO),L]” **** is the first catalytic step in the methanol
carbonylation process with the Monsanto catalyst.”>*" It is
widely accepted that oxidative addition of methyl iodide to
square planar rhodium(I) complexes occurs via a two-step mech-
anism involving nucleophilic attack by the metal on the methyl
carbon to displace iodide during formation of the metal-carbon
bond. This reaction is presumed to proceed with inversion of
configuration at the carbon and coordination of iodide to the
five-coordinated intermediate to give a six-coordinated alkyl
complex, see Fig. 4% The mechanism involves trans addition
of methyl iodide to the square planar rhodium(I) complex. The
observation of cis products has sometimes been taken as
evidence for an alternative concerted three-centre mechanism
leading to retention of configuration at the carbon.”® Since
understanding of the mechanism of activity of a catalyst
requires an understanding of its structure in all reaction steps, an
example of how both 'H NMR spectroscopy and computational
chemistry results indicate trans addition of methyl iodide to
B-diketonatobis(triphenylphosphite)-rhodium(I) complexes, is
presented here.**

The stereochemistry of the product of oxidative addition of
methyliodide to [Rh(acac)(P(OPh),),] (Hacac = acetylacetone =
CH,COCH,COCH,), the rhodium(III)-alkyl complex [Rh(acac)
(P(OPh),),(CH,)(I)] was determined from 'H NMR spectra”*

Figure 5 Four possible [Rh(acac)(P(OPh),),(CH,)(I)] reaction products of
the [Rh(acac)(P(OPh),),] + CH.I reaction with PW91/TZP/methanol
calculated energies (AE;y) listed below each alkyl. Alkyl-A (lowest
energy) result from trans addition, alkyl-B, alkyl-C and alkyl-D represent
the various cis isomers. Energies of reactants are taken as zero.

Figure 6 Schematic illustration of linear, bent and front transition states
for the nucleophilic attack of square planar rhodium(I) on methyliodide.
The movement of applicable atoms in the transition state is indicated by
red arrows. The Monsanto catalyst [Rh(CO),l,] is used in this figure as
example of the square planar rhodium(I) complex.

The 'H NMR spectrum of [Rh(acac)(P(OPh),),(CH,)(I)] shows
two methyl signals. The singlet at 1.43 ppm (acetone-d) for the
two CH, side groups of the bidentate ligand acac, suggests
that these two CH, groups of the B-diketonato ligand are
magnetically equivalent. The methyl signal of the addend (CH,
of methyliodide) appears as a double doublet due toits coupling
with Rh (spin = }4) and P (spin = }%). This indicates that the CH,
is directly bonded to Rh as in an alkyl complex. Based on this
"H NMR spectroscopic data, the structure of [Rh(acac)(P(OPh),),
(CH,)(D)] is thus proposed to adopt an octahedral geometry in
which the acac ligand and the two triphenylphosphite groups
are located in an equatorial plane with the methyl and iodide
ligands in the axial positions. No solid state X-ray crystal struc-
ture has been solved for the product.” Crystal data in support of
the proposed trans-[Rh(acac)(P(OPh),),(CH,)(I)] structure, is the
structure of frans-[Rh(N-benzoyl-N-phenylhydroxyamino)
(P(OPh),),(CH,)(I)]”* and trans-[Rh(trifluoroacetylacetonato)
(P(OPh),),1),"

In further support of the geometry of [Rh(acac)(P(OPh),),
(CH,)(I)] density functional theory calculations were done on
four possible rhodium(III) alkyl isomers: (Alkyl-A) if trans addi-
tion occurs and three possible isomers (Alkyl-B, Alkyl-C and
Alkyl-D) if cis addition occurs.”® The isomers and their ADF
optimized relative electronic energies are displayed in Fig. 5.
These energies, in agreement with "H NMR spectroscopic data,
indicate the trans alkyl product A as being the most stable
product of oxidative addition of methyl iodide to [Rh(acac)
(P(OPh),),].

Figure 6 displays the three types of TS structures that have
been reported for the oxidative addition of methyl iodide to
square planar rhodium(I) complexes (especially the Monsanto
catalyst [Rh(CO),L]).*” Two transition states lead to trans addi-
tion (‘linear’” and ‘bent’) and one to cis addition (‘front’). The
linear TS structure corresponds to a S 2 mechanism, character-
ized by alinear Rh-C,,,-Iarrangement and by a Rh-C,,,-Hangle
close to 90 °. The methyl hydrogen atoms are located in the equa-
torial plane of the five-coordinated carbon atom, resulting in a
trigonal bipyramidal arrangement. The bent and front TS struc-
tures correspond to a side-on approach of the C,,-I bond to the
rhodium atom. The bent transition state structure leads to the
same intermediate product as the linear transition state struc-
ture-a cationic five-coordinated rhodium complex and a free
iodideion.” Both the mechanisms of the linear and the bent tran-
sition state structures are therefore described as S,2 processes.
The front TS structure corresponds to a concerted three-centre
oxidative addition, in which the Rh-I and Rh-C,,; bonds form
simultaneously as the I-C,;; bond breaks, resulting in the cis
addition of the methyliodide. The linear transition state for the
[Rh(acac)(P(OPh),),] + CH,I reaction,” as was also found for the
Monsanto catalyst,” is favoured by a large margin of energy
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Figure 7 PW91/TZP/methanol optimized structure of the rhodium(I) reactant (left) and the TS (right) of the [Rh(acac)(P(OPh),),] + CH,I reaction.
H atoms are removed for clarity (except for the methyl group of CH.I). The square pyramidal TS, involving attack of rhodium on the CH,* group with
displacement vector (blue arrow), indicating movement of the CH,* group at negative frequency (-258.6 cm™). In the reactant [Rh(acac)(P(OPh),),],
thelarge OPh groups are bent backwards so that the Ph groups are arranged above, below and in the plane (formed by the acac-ligand, the rhodium
atom and the two phosphor atoms). As the CH,I group approaches the reactant, the ‘arms’ of the OPh groups above the plane gradually open up to

accept the incoming CH,I group to proceed through the TS.

(> 90 k] mol™) with activation barrier (AE,) of 30 k] mol™. The
linear transition state leads to the trans alkyl product A of oxida-
tive addition of methyl iodide to [Rh(acac)(P(OPh),),], in agree-
ment with '"H NMR spectroscopy data.®® The DFT optimized
[Rh(acac)(P(OPh),),] and the linear TS are visualized in Fig. 7.

3.4. NOESY and Structure®

The reaction between methyliodide and [Rh(acac)(CO)(PPh,)]
(Hacac = acetylacetone) is another Monsanto analogue. The
main difference between the Monsanto process and this reac
tion™”® is that no carbonyl addition and reductive elimination
steps occur as is the case with the Monsanto process itself. While
the stereochemistry of the product of oxidative addition of
methyliodide to [Rh(acac)(P(OPh),),] could be determined from
one dimensional '"H NMR spectroscopy, it is not possible for the
[Rh'(acac)(CO)(PPh,)] + CH.I product, since the two CH, side
groups on acac are not magnetically equivalent. Since the
[Rh'(acac)(CO)(PPh,)] contains a CO group, CO insertion in the
CH, addend group occurs according to Scheme 1.

The notations ‘Rh™-alkyl1’ and ‘Rh™-acyl1’ in Scheme 1 respec-
tively refer to the first alkylated [Rh™(acac)(CH,)(CO)(PPh,)(I)]
and the first acylated [Rh™(acac)(COCH,)(PPh,)(I)] complexes
that are formed. When the last number in the notation changes
to ‘2, as in ‘Rh™-alkyl2’, it shows that after the first alkylated
complexhad been formed, it converted to a second different, but
more stable alkylated structural isomer. The DFT calculated
lowest energy of the [Rh™(acac)(CH,)(CO)(PPh,)(I)]-alkyl
product will thus not necessarily be the first product of oxidative
addition. Also, due to the equilibrium between the different

reaction products, it was not yet possible to isolate the different
reaction products. Representative 'H NMR spectra of a sample
recorded in situ 10°‘minutes after the reaction [Rh(acac)
(CO)(PPh,)] + CH,I has been initiated, are given in Fig. 8 (the
region of phenyl protons of the triphenylphosphine ligand
(PPh,) is excluded). The signals in the '"H NMR spectra of the
reaction were assigned to the applicable Rh(III) complexes by
monitoring the relative decrease and increase of the peaks as the
reaction proceeds, and by comparing it with data obtained by
Varshavsky et al.” and other related reactions.

'H Nuclear Overhauser Effect Spectroscopy (NOESY)*™ in
this case provides valuable information on the stereochemistry
of reaction products, although no crystals suitable for X-ray
analysis of the Rh(III) reaction products have been obtained.*
NOE differs from spin coupling in that NOE is observed
through space, not through bonds. Thus, all atoms in proximity
to each other give NOE’s, whereas spin coupling is observed
only when the atoms are bonded to the same or neighbouring
atoms. A one dimensional (1D) 'H NOESY was recorded in situ
during this reaction, to establish the relative positions of the
ligands in Rh™-alkyll, see Fig. 9. Irradiation of the Rh-CH,
resonance of Rh™-alkyll (at cz 1.4 ppm) gave an NOE showing
the PPh, group, the methine proton and the CH, side groups of
the acac ligand (Fig. 9). The NOE with the methine proton rules
out the possibility of the CH, group being in the square plane
formed by the B-diketonato ligand and the other two groups
bonded to the rhodium centre. The CH, group, bonded to the
rhodium centre of Rh™-alkyll, is thus in the axial position, with
the PPh, group adjacent to the CH, group. The PPh, group is

Scheme 1

Proposed reaction scheme of the reaction of methyl iodide with [Rh(acac)(CO)(PPh;)] where OO’ = acac. Stereochemistry is assigned according to
IR, NMR spectroscopy and computational chemistry results.” This scheme was found to be applicable to all [Rh(B-diketonato)(CO)(PPh,)] + CH,I

reactions.”’®
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Figure 8 "H NMR spectra of the reaction of methyl iodide with [Rh(acac)(CO)(PPh,)] recorded at 10 minutes after the reaction had been initiated.
Peaks are colour coded according to Rh(I) and Rh(Ill) complexes in the proposed reaction scheme shown at the top.”

thus in the square plane surrounding rhodium. From the 1D
'H NOESY spectrum it is not possible to establish whether the
CO group or the iodide is adjacent to the CH, group, since these
groups do not contain any protons. However, all crystal struc-
tures of [Rh™(L,L’-BID)(CH,)(CO)(PPh,)(I)] complexes
(L,L’-BID = a mono-charged bidentate ligand with donor atoms
Land L) to date have the CO group in the square plane formed
by the p-diketonato ligand and the other two groups bonded to
the rhodium centre and the iodide in apical position.?”®*%

These results are thus consistent with trans [Rh™(acac)
(CH,)(CO)(PPh,)(I)]-alkyll, in agreement with the proposed
stereochemistry of the Rh™-alkyll complex in Scheme 1.

In further support of the geometry of [Rh™(acac)(CO)
(PPh,)(CH,)(I)]-alkyll density functional theory calculations
were done to determine the transition state and first product of
oxidative addition.” DFT calculated activation energies (AE,) of
the three possible transition states for the oxidative addition of
methyl iodide to square planar Rh(I) complexes (Fig. 6) were

Figure 9 'H NMR (top) and 1D 'H NOESY (bottom) of [Rh"(acac)(CO)(PPh,)(CH,)(I)]-alkyll, pulsating on the Rh-CH, resonance at ca. 1.4 ppm.

NOE is as illustrated.?
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Figure 10 PW91/TZP optimized structures of [Rh(fctfa)(CO)(PPh;)] (left) and of [Rh(fctfa)(CH,)(CO)(PPh,)(I)]-alkyl2 (right), illustrating the shield-
ing effect of the phenyl ring on the methyl proton in alkyl2 resulting in an upfield shift. Two isomers of each are observed. Isomers A were also charac-
terized by X-ray crystal structures. Middle: The methine region of the 'H NMR spectrum of [Rh(fctfa)(CO)(PPh,)] and [Rh(fctfa)(CH,)(CO)

(PPh.)(T)]-alkyl2.

24 kJ mol™ (linear/back), 141 k] mol™ (bent) and 138 kJ mol™
(front). The linear/back transition state thus has the lowest
activation barrier (AE, = of 24 kJ mol™). The linear transition
state leads to a trans [Rh™(acac)(CO)(PPh,)(CH,)(I)]-alkyll
product of oxidative addition of methyl iodide to [Rh(acac)
(CO)(PPh,)], in agreement with the '"H NOESY NMR data. (The
reader is referred to ref. 23 for a comprehensive discussion on
NMR spectroscopy and computational chemistry results of the
[Rh(acac)(CO)(PPh,)] + CH.I reaction.)

3.5. Shielding and Structure®

The reaction between [Rh'(fctfa)(CO)(PPh,)] and methyl
iodide (Hfctfa = 1-ferrocenyl-4,4,4-trifluorobutane-1,3-dione)
also proceed according to Scheme 1. For this reaction, both the
[Rh(fetfa)(CO)(PPh,)] reactant” and the [Rh™(fctfa)(CO)(PPh,)
(CH,)(I)]-alkyl2” product were stable enough to be isolated from
the reaction mixture and to be characterized by X-ray crystallog-
raphy. In the crystal structure of [Rh(fctfa)(CH,)(CO)(PPh,)
(D]-alkyl2 the PPh, group and iodide are above and below the
square plane formed by the two oxygens of the B-diketonato
ligand and the other two groups bonded to the rhodium centre,
see Fig. 1 top right.**”®

Information about the steriochemistry of [Rh(fctfa)(CH,)
(CO)(PPh,)(I)]-alkyl2 can also be inferred from 'H NMR spec-
troscopy. Due to the unsymmetrical f-diketonato ligand, two
structuralisomers for rhodium(I) as well as for each rhodium(IIT)
reaction intermediate (according to Scheme 1) are observed by
NMR spectroscopy.”® In CDCl, at 25°C, the signals of the
methine proton of the f-diketonato ligand of the [Rh(fctfa)(CO)
(PPh,)] isomers are at 6.08 and 6.09 ppm (Fig. 10),”® while the
signals of the methine proton of the B-diketonato ligand of
the different [Rh(fctfa)(CH,)(CO)(PPh,)(I)]-alkyl2 isomers are
presented as singlets at 5.50 and 5.35 ppm.

The positioning of the PPh, group above (or below) the plane
asin Rh-alkyl2, implies that as the PPh, group rotates, a Ph group
will be rotating directly above the methine H of the B-diketonato
ligand (Fig. 10 right). The ring current inside the phenyl ring
shields the methine H directly below to higher field.” Thus, the
observed shift of the methine proton of the f-diketonato ligand
from ~6.0 ppm for Rh' to higher field at ~5.4 ppm for Rh"™-alkyl2
is consistent with the PPh, group being positioned above (or
below) the plane. (By the same reasoning, it is thus expected that
the PPh, group of the [Rh(fctfa)(CH,)(CO)(PPh,)(I)]-alkyll iso-
mers in Scheme 1 should be positioned in the square plane
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Figure 11 PWO91/TZP calculated relative energies (kJ/mol) of the different isomeric forms of octahedral [Rh(fctfa)(CH,)(CO)(PPh;)(I)]-alkyl com-
plexesin gas phase (blue) and in CH,OH solution (black). The structure of alkyl XII corresponds to alkyl2, characterized by X-ray crystal structure.”

formed by the B-diketonato ligand and the other two groups
bonded to the rhodium centre of which the methine proton
singlets are at 6.10 ppm (alkyll isomers overlap), see reference 24
for a full discussion on NMR spectroscopy and computational
chemistry results of the [Rh'(fctfa)(CO)(PPh,)] + CH.Ireaction).

Finally DFT calculations were done to establish the relative
stability of the different [Rh(fctfa)(CH,)(CO)(PPh,)(I)]-alkyl
reaction products. PW91/TZP calculated relative molecular
energies of 12 possible octahedral Rh"-alkyl reaction products of
[Rh(fctfa)(CO)(PPh,)] with CH,I for gas phase calculations, as
well as in methanol solution are illustrated in Fig. 11. When
comparing the relative energies of the different Rh"-alkyl
complexesin Fig. 11, the lowest energy alkyl isomers are alkyls XI
and XII. Stereo arrangement of the calculated most stable
alkyl XII corresponds to the isolated [Rh(fctfa)(CH,)(CO)(PPh,)
(D]-alkyl2 reaction product characterized by X-ray crystallogra-
phy, in Scheme 1.

3.6. Bonding and Structure”

Transition-metal-ethylene complexes are among the most
important classes of compounds in chemistry. For example, the
first organometallic compound to be isolated in pure form, is the
Zeise’s platinum—ethylene complex, K[PtCl,(C,H,)] H,O (Zeise’s
salt, synthesized in 1827).”** Complexes of coinage metals (Cu,
Ag and Au) and alkenes have significant application in organic
synthesis®™” and in several industrial catalytic processes.” The
Dewar—Chatt-Duncanson model”'™ describes the bonding in
coinage-metal-ethylene complexes as a synergistic combination
of o-donor and m-acceptor interactions between the metal ion
and the ethylene n-system. The bonding between metal-ethylene
complexes can vary from a T-shaped structure to a metallacy-
clopropane, see Scheme 2. In the T-shaped structure, the ethyl-
ene-metal-ion interaction is weak and typically dominated by
the ethylene-to-metal-ion o-donation (leading to the T-shaped
structure). At the other extreme, o-donation and, more impor-
tantly, the metal-ion-to-ethylene n-back-donation is dominant,
and it results in a metallacyclopropane ring structure and a C=C
bond with a bond order approaching unity."” Since both the
o-donor and n-back-bonding contributionslead to the lengthen-

ing of the C=C bond, metal-ethylene adducts should show
C=C distances that are longer than that of free ethylene."

The CC bond distance has been extensively evaluated as a
measure of metal/olefin interaction. Within the Dewar-Chatt-
Duncanson (DCD) model,”'” both ligand-to-metal o-donation
from 7. and metal-to-ligand n-backbonding to the n* .. orbital
will lengthen the ethylene CC bond, which is expected to range
from 1.34 A (n-complex, T-shaped structure) to 1.54 A
(metallacyclopropane). Ethylene complexes of copper,'” silver'”
and gold'™ supported by tris(pyrazolyl)borates (Tp) provide an
interesting example of the k’ to k* coordination of the Tp ligand.
Crystal structures of [HB(3,5-(CF,),Pz),]M(C,H,) with the fluori-
nated hydrotris(pyrazolyl)borate supporting ligand, display ’
coordination for M = Cu and Ag, but k* coordination of the
tris(pyrazolyl)borate ligand (i.e., one very long and two short
Au-N bond lengths) for the Au complex, see Fig. 12.

Data from computational and experimental sources (especially
PC chemical shifts) have been combined to address the bonding
and structure of [RB(3-(R"),5-(R*Pz),]M(C,H,) complexes, where
M = Cu, Ag, Auand R = H or CH,.” DFT (BP86 functional) opti-
mized geometries of a series of [RB(3-(R"),5-(R*Pz),]M(C,H,)
complexes (M = Cu, Ag, Au) have an average calculated CC dis-
tance of 1.389(4), 1.380(4) and 1.422(6) A for M = Cu, Ag and
Au, respectively. The CC bond length of free ethylene at this
level of theory is 1.338 A, i.e. ~4% lengthening of the CC bond
upon coordination to copper. The average CC distance of the
[RB(3-(R"),5-(R*)Pz),]Au(C,H,) complexes are thus significantly

H H
2 4

C
M—I| M
C
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H H

Scheme 2

Limiting structures of a metal-ethylene complex: T-shaped structure
(left) and metallacyclopropane (right).
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Figure 12 A presentation of the crystal structures of [HB(3,5-(CF;),Pz),]M(C,H,) for M = Cu (left) Ag (middle) and Au (right).

Figure 13 The experimental geometry of [MnL’]** (left), with hydrogen atoms removed for clarity (middle) and a flat presentation of the L’ ligand

(right).

shorter than the Ag and Cu congeners. In evaluating the ¥’ to k*

distortion of the [RB(3-(R"),5-(R*Pz),]M(C,H,) complexes (M =
Cu, Ag, Au), the asymmetry within the studied scorpionate com-
plexes is defined as Asym = stdev(MN)/average(MN)*100%.
Calculated Asym values were found to be the largest for Au
(14(2)%), Cu intermediate (8(1) %), and least for Ag (6(1)%), all in
agreement with experimental structures, see Fig. 12.

NMR analysis of bonding in transition metal olefin complexes
proved to be a valuable tool, e.g. Cundari et al. focused on experi-
mental and calculated "C chemical shifts.”” Calculated free
ethylene “C chemical shifts of 128.5 ppm compare well with
experimental values of 123.4 ppm in CD,Cl,. Calculated 8(*C) for
the series of [RB(3-(R"),5-(R*Pz),]M(C,H,) complexes (M = Cu,
Ag, Au) were in accord with experimental chemicals shifts that
have been reported. Calculated chemical shifts are closest to free
ethylene for the silver complexes. The gold complexes, on the
other hand, display the lowest chemical shifts (or most upfield
shifted "C signals relative to free ethylene) among the coinage
metal systems studied.” To further calibrate the coinage metal
complexes studied, a literature survey of "C NMR chemical
shifts was conducted. The survey yielded "C NMR chemical
shifts for 30 complexes with a median of 60 ppm, a sample mean
and standard deviation of 57 = 18 ppm. "C NMR chemical shifts
ranged from 25 ppm (for [Ni(Pr,Im),(C,H,)] considered as the
most metallacyclopropane) to 105 ppm (for [HB(3,5-(CF,),Pz),]
Ag(C,H,)), the ‘most n-complex’ in bonding character.”!
Gold complexes are the least m-complex/most metalla-
cyclopropane in their nature, and vice versa for the silver conge-
ners. Hence, NMR results and calculations support (and extend)
structural analyses.

3.7. Symmetry and Structure'®

The last example is a series of metal(II) complexes coordinated
to a 16-membered pentaaza macrocycle having two
2-aminoethyl pendant arms [2,14-dimethyl-6,10-bis(2-amino-
ethyl)-3,6,10,13,19-pentaazabicyclo[13.3.1]8,8-dimethylnonadec
a-1(19),2,13,15,17-pentaene] (abbreviated as L7, M = Mg, Mn, Zn
and Cd). The geometry of the coordination sphere of [MnL’]**
and [MgL]*" is determined from X-ray crystallography as a
slightly distorted pentagonal bipyramid with the metal ion
located within a pentaaza macrocycle and two pendant amines
coordinating on opposite sides, see Fig. 13.

PC and 'H NMR spectra of the complexes with M = Mg, Zn
and Cd show C, symmetry, which is in agreement with a
heptadentate pentagonal bipyramidal geometry in solution. HF
and DFT calculations predicted structures with C, symmetry,
which is closely approximated in the solid state structures of
[MgL]** and [MnL"]**.
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