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ABSTRACT 

 
We analyzed cancer data using Fully Bayesian inference approach based on Markov Chain Monte 
Carlo (MCMC) simulation technique which allows the estimation of very complex and realistic 
models. The results show that sex and age are significant risk factors for dying from some 
selected cancers. The risk of dying from these cancers is observed to progressively increase as 
age of patients increases. It is also observed that in order to allow for nonlinearity due to metrical 
covariate age, the semiparametric P-splines model is better than the model that categorizes age 
into various age groups.  
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1. INTRODUCTION 
 
 Analysis of survival or failure times has gained a considerable attention, particularly in the 
field of medical applications wherefrom the conventional denotation ‘survival analysis’ arises 
[Hennerfeind(2006)]. Censoring is one phenomenon that makes survival analysis differ from other 
analyses. This is a situation of incompleteness in the observed survival data. The most common 
censoring in survival time data is Right Censoring which occurs when the actual time a subject 
experiences the event of interest is not known. In this type of censoring, it is assumed for some 
individuals in the study that there is a time to event  and the right censoring time C where the 

’s are assumed to be independently and identically distributed with density function f(t) and 
survival function S(t). The exact survival time T of any individual will be known if and only if  is 
less than or equal to C. If  is greater than C, then the individual is a survivor and the exact 
survival time is censored at C. Thus the observed time is T = min( ,C) and the data for such a 
design can be represented by pairs of random variables (T, δ ),where  δ indicates whether the 
survival time T corresponds to an event (δ=1) or is  right censored (δ=0).  

eT

eT

eT

eT

eT

 An aspect of analysis of survival time data that has gained popularity, especially in medical 
research is assessing the relationship between survival time and some biological, socio-economic 
and demographic characteristics that could possibly affect the survival status of patients. One 
popular regression model formulation that is often used in survival analysis is the Cox (1972) 
proportional hazards model. The model utilizes the hazard function λ(t), also known as the hazard 
rate or force of mortality which is defined as the probability of experiencing event of failure in the 
infinitesimally small interval (t, t+Δt), given that such an event has not been experienced prior to t. 
It is expressed as 
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1.1. Likelihood for Right Censored Data 
 The likelihood for censored data is derived by considering the observed survival times . 
Suppose we have n subjects with subject i observed for a time , if the subject fails at time , then 
its contribution to the likelihood function (under non- informative censoring) is 
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If the subject is still alive at , all we know under non- informative censoring is that the lifetime 
exceeds  and thus the contribution of such censored observation to the likelihood is  

it
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  Let iδ  be a failure indicator which takes value 1 if subject i fails at time  and value 0 is subject i 
is censored. Then we write the full likelihood as 
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2. COX PROPORTIONAL HAZARDS MODEL FORMULATION 
 
 Suppose that the data collected on n subjects are denoted by ),,( iii Zt δ , where ti is time to 
failure of the ith subject, δi is the censoring indicator such that for the ith subject, δi =1 if event of 
failure occurs to the subject at time  and δi = 0 if the time is right censored (i.e we observe some 
value c with the knowledge that ti > c) and Zi is a p- dimensional vector of covariates. Cox (1972) 
model assumes that the hazard function for the i-th subject with covariate value Zi has the form  

it

                                                                        (2.1)    , )exp()(),( /
0 γλλ iii ZtZt =

where )(t0λ  is an arbitrary baseline hazard function and γ  is a p- vector of unknown regression 
coefficients. Model (2.1) is semi-parametric because the dependence function  is 
modelled explicitly but no specific probability distribution is assumed for the survival times. Thus 

)exp( /γiZ
γ  

is only estimable through the partial likelihood estimation procedure. 
Often, survival time data involve identified clusters of subjects according to some unobserved 
characteristics such that subjects belonging to the same cluster are similar with respect to such 
characteristics so that the survival times of such subjects are correlated whereas the survival 
times of subjects belonging to different clusters are independent. One appropriate way of 
analyzing such data is to use random effect (frailty) model.  
     ),exp()(),( /

0 γλλ icii ZtWWZt =                                                             (2.2) 
where   is the random effect (frailty) shared by the subjects belonging to cluster c cW
Model in (2.2) can be written as  
               )),(exp()( tt ii ηλ =                                                                                  (2.3) 

with )(tiη = ),  where cico bZtg ++ /)( γ )(log)( ttg oo λ=  and )log( cc Wb =  
Model expressed in (2.3) assumes that effects of covariates are linear on the log hazards and are 
thus modelled parametrically as fixed effects. Often, in practical situations, effects of continuous 
covariates are not linear and thus cannot be adequately modelled as fixed effects. Thus extending 
Hennerfeind et al (2005), the parametric predictor )(tiη  in (2.3) is replaced with a more flexible 
semiparametric structured additive predictor that incorporates this complexity within the same 
framework. Thus the Cox type hazard model, (2.1) can be written as  
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where  is the nonlinear effect of a continuous covariate , jf jx
γ  is the vector of usual linear fixed effects,    

cb  is the cluster specific random effect (frailty) with =  if i-th individual is in cluster , c =1,…,C. 
Clearly,  are usually assumed to be independent realizations from normal or log-gamma 
distribution with known mean and unknown variance. 
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3.  BAYESIAN INFERENCE 
 
 Bayesian analysis requires assignment of priors. Thus for defining priors and developing 
posterior analysis, the predictor (2.4) needs to be rewritten in generic matrix notation. Thus we 
express ,  and b as the matrix product of an appropriately defined design matrix Z which 
leads to re-expressing (2.4) as  

og jf
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We then assign priors as follows. For fixed effect parameterγ  we have assumed diffuse priors i.e. 
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The general form of priors for jβ  can be cast into the form  
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where  is a precision or penalty matrix of rank ( ) = , which shrinks parameters towards 
zero or penalizes too abrupt jumps between neighbouring parameters. 

jK jK jr

 For the baseline  and non-linear effect  of continuous covariate, we assign Bayesian 
P-splines prior as in Lang and Brezger (2004) and the random effect  are assumed to be i.i.d 
Gaussian. i.e  ~ ). 

og jf

cb

cb 2,0( cN τ
 
4. APPLICATION: HOSPITAL ADMISSION OF CANCER PATIENTS 

 
 We consider data on cancer patients who were admitted at the University of Ilorin Teaching 
Hospital (UILTH) from 1999 to 2005. The record of each patient contains information on variables 
length of stay in the hospital recorded in days, sex, age and outcome which indicates whether the 
patient is dead or alive. We define survival time as length of stay till event of death occurs while 
those whose records read “alive” were right-censored because such patients had not died as at 
the time of the study. Nine types of cancer were selected and the Patients were grouped into nine 
cancer/tumor types/sites, which include: carcinoma, leukaemia, lymphoma, melanoma, sarcoma, 
rectum, lung, liver and stomach. Prostate and breast cancers are not included because they are 
gender related and may possibly introduce gender bias into the analysis. 
 Fitting variable cancer type as fixed effect requires that we construct eight dummy 
variables, and this result in eight parameter estimates to be compared to an arbitrarily chosen 
reference category. A more efficient alternative to this is to fit the cancer type as a random effect 
(frailty).        
 At the initial stage, we fitted sex and continuous age as fixed effects with diffuse prior. That 
is we fitted model 
 21)( γγη agesextfo ++=  

Table 1 shows the posterior estimates, standard errors and the 95% credible intervals. 
Effects of sex and age when fitted as fixed effects are seen to be significant as the credible 
intervals do not include zero. To gain more insight into the analysis with respect to gender 
differences, we fitted models for combined and then male and female differently. Since the 
assumption of linear effect of metrical covariates such as age on the predictor is too restrictive as 
discussed in section (2), we consider two widely used alternative ways to allow for non-linearity in 
the effects of metrical covariates. In the first alternative, we categorize the covariate age by 
constructing a set of  variablesjd pjz j ,,1,~ K= , with one being arbitrarily chosen as a reference 
category, thereby producing  dummies with 1−p 11

~,,~
−pγγ L  parameters to be estimated for the 

categorized covariate. In the second alternative, which is a more flexible and data driven way, we 
incorporate age additively in the predictor using smooth regression function  and then model 
it nonparametrically using P-splines prior as in Lang and Brezger (2004). In this paper, Sex was 
coded 1 for male and 0 for female patients. The metrical age was coded into four categories: “less 
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than 23 years” (reference group), “23-39 years”, “40-55 years”, and “greater than 55 years”. Our 
research interest thus includes: investigating the effect of categorized age on the risk of dying from 
cancer for the cancer patients combined and for male and female separate, comparing the two 
ways described above by considering some hierarchical models, starting from very simple model 
and progressively increase model complexity. Model comparisons are based on Deviance 
information criterion (DIC) introduced by Spiegelhalter et al (2002), which is a Bayesian analogue 
of Akaike information criterion (AIC). The following models are fitted, noting that all models contain 
baseline effect. 

 
Model I: cbtfo += )(η    (random effect) -   Null Model 
Model 2: ageo ftf += )(η    (metrical age) 
Model 3: cbftf ageo ++= )(η   (metrical age with random effect) 
Model 4: 321 55)5540()3923()( γγγη >+−+−+= tf o  (categorical age) 
Model 5: cbtfo +>+−+−+= 321 55)5540()3923()( γγγη  (categorical age with random effect) 

 
5.  RESULTS 
 
 Results for the analyses are presented in table 2, showing fixed effects of age of patients 
for the combined, male and female and in table 3, showing the hierarchical models under the 
categorized age and age fitted by P-splines.  

   
Table 1: Effect of sex and continuous age fitted as fixed effects 

Covariate Posterior 
mean 

Std. error 2.5 Quant. 97.5 Quant. 

Sex -0.4100 0.667 -1.219 -0.226 
Age 0.0088 .0062  0.0023 0.0208 

 
Table 2: Fixed effect of age for the combine, male and female patients 

  (a)         Combined 
Covariate(Age) Posterior 

mean 
Std. error 2.5 Quant. 97.5 Quant. 

23-39 years 0.290 0.396 0.485 1.082 
40-55 years 0.418 0.375 0.324 1.189 
>55 years 0.633 0.358 0.061 1.347 

  (b)     Male 
Covariate(Age) Posterior 

mean 
Std. error 2.5 Quant. 97.5 Quant. 

23-39 years 0.443 0.465 0.644 1.204 
40-55 years 0.534 0.475 0.324 1.295 
>55 years 0.657 0.482 0.431 1.338 

  (c)              Female 
Covariate(Age) Posterior 

mean 
Std. error 2.5 Quant. 97.5 Quant. 

23-39 years 0220 0.413 0.536 1.109 
40-55 years 0.423 0.387 0.349 1.332 
>55 years 0.545 0.438 0.393 1.281 

 
 The results in table 2 a,b and c are the posterior means, standard errors and the quantiles 
of fixed effects of the categorized age for combined, male and female patients. It is observed that 
the risk of dying from cancer increases with age for both combined and both sexes separately. For 
example, in the combined data, patients in age group 23-39 years have a risk of exp(0.290) which 
is 1.33 times that of patients in the reference category (less than 23 years).  
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 The results are in the same direction for males and females, though the risks are relatively 
much higher for male than their female counterpart. For example, when the risk for male patients 
in age category 40-55 is 1.70 times those in the reference category, it is 1.52 for the females.   

   
Table 3:        DIC for the various models for combine, male and female patients 

DIC Model 
Combined Male Female 

M1 707.177 300.124 413.924 
M2 740.315 306. 260 421.026 
M3 708.331 288.941 408.092 
M4 748.043 309.906 427.728 
M5 708.474 307.876 415.682 

 
 It is observed in Table 3 that all the models fitted are best for the male patients alone and 
worst for the combined data as revealed by the values of the DIC which is least for the males and 
highest for the combined. It is also observed that the P-splines models for age are better than 
models with categorized age as the DIC values are seen to be smallest for the later than the 
former throughout for the combined, male and female, and we also observe that the data really 
contains random effect (frailty) and that models that take this into account are better than those 
that ignore it. 
 
6. CONCLUSION 
 
 In the analysis of data on hospital admission for the cancer patients under study, results 
show significant differences among age groups with respect to the risk of dying from the selected 
cancer considered. Results of Deviance information criterion (DIC) also reveal that when we allow 
for non-linearity in the effects of metrical covariate age, the  nonparametric model using P-splines 
prior as in Lang and Brezger (2004) is preferred over the model that categorize age. 
Software Package: All analyses in this paper have been done using BayesX, a public domain 
software package for performing complex full and empirical Bayesian inference is available at 
http://www.stat.uni-muenchen.de/~lang/BayesX. 
Limitation of the study: The major caveat to be considered when interpreting the result is about 
patient’s age which is self reported. Most often, self reported age by  patients may not be their true 
age. Despite this limitation, the study strength is significant. 
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